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1  |  INTRODUC TION

Mitochondria are multifunctional cellular organelles that have 
a critical role in energy production via oxidative phosphoryla-
tion.1,2 Mitochondria not only generate adenosine triphosphate 
(ATP, Table 1) during the oxidative phosphorylation (OXPHOS) 
process, but also contribute to many other processes, such as cell 
survival and autophagy.3 The OXPHOS complexes in mitochon-
dria are dually encoded by the mitochondrial DNA (mtDNA) and 
the nuclear DNA (nDNA). Mutations in mtDNA or mitochondrial 
nDNA can cause fatal or severely debilitating disorders,4 such as 

mitochondrial encephalomyopathies, which occur in the neuro-
muscular system.

The traditional “mitochondrial cocktail” has little therapeutic 
effect on mitochondrial encephalomyopathies.2 Mitochondria 
dysfunction have unusual characteristics that may be treated 
from the cell level to the molecular level.2 Gene therapy prior 
to conception and reproductive technology to uncouple the in-
heritance of mtDNA from nDNA may offer possible solutions for 
mitochondrial encephalomyopathies. However, treatments for 
current mitochondrial patients still face numerous challenges. 
By understanding the molecular pathogenesis of mitochondrial 
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Abstract
Mitochondrial encephalomyopathies are disorders caused by mitochondrial and nu-
clear DNA mutations which affect the nervous and muscular systems. Current ther-
apies for mitochondrial encephalomyopathies are inadequate and mostly palliative. 
However, stem cell- derived mitochondria transplantation has been demonstrated to 
play an key part in metabolic rescue, which offers great promise for mitochondrial 
encephalomyopathies. Here, we summarize the present status of stem cell therapy 
for mitochondrial encephalomyopathy and discuss mitochondrial transfer routes and 
the protection mechanisms of stem cells. We also identify and summarize future per-
spectives and challenges for the treatment of these intractable disorders based on the 
concept of mitochondrial transfer from stem cells.
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diseases, it has been possible to develop some targeting ther-
apy approaches, such as DNA manipulation and small- molecule 
pharmaceuticals.2,5,6 However, the heterogeneity of mito-
chondrial encephalomyopathies and double- membrane struc-
ture make these therapy approaches difficult to materialize.2,7 
The development of stem cell therapy may offer great promise 
for mitochondrial encephalomyopathies.2,8- 15 The therapeu-
tic mechanism includes paracrine cytokines, modulation of the 
immune system, and transdifferentiation effects.2,16 Recently, 
stem cells have been found to donate healthy mitochondria to 
injured cells to rescue aerobic respiration and recover their me-
tabolism capability. This is being considered as a new therapeu-
tic strategy for tissue damage,17,18 especially for mitochondrial 
diseases.15 Here, we summarize and discuss the current research 
on mitochondrial transfers and their protection mechanisms to 
provide an update on stem cell therapy targeting mitochondrial 
encephalomyopathy.

2  |  CLINIC AL AND PRECLINIC AL 
E VIDENCE FOR STEM CELL THER APIES IN 
MITOCHONDRIAL ENCEPHALOMYOPATHY

More and more research evidence supports the effects of stem 
cell therapy in some neurological diseases with mitochondrial 
dysfunction.19 One of the most representative mitochondrial 
diseases that benefits from stem cells therapy is mitochondrial 
neurogastrointestinal encephalopathy (MNGIE), which is due to 
thymidine phosphorylase (TP) gene mutations, leading to second-
ary mitochondrial DNA damage.20 Stem cell therapies can recover 
TP enzyme function and improve the prognosis of MNGIE pa-
tients, which provides the initial evidence to support the effects 
of stem cell therapy in mitochondrial encephalomyopathy.20- 23 
The relative lack of mtDNA- based animal models limits stem cell 
research on mtDNA- related mitochondrial encephalomyopa-
thies.24 Encouragingly, some in vitro studies have demonstrated 
stem cells donate healthy mitochondria to replace dysfunctional 
mitochondria and recover energy metabolism in different types of 
recipient cells.18,25- 36 Mesenchymal stem cells (MSCs) are shown 
to transfer their own mitochondria into mtDNA- depleted cells.37 
Moreover, Wharton's jelly MSCs can also transfer mitochondria 
to stressed mitochondrial encephalopathy fibroblasts to elimi-
nate mutation burden, rescue mitochondrial functions, and resist 
against apoptotic stress, which demonstrates the protective ef-
fects of stem cell- derived mitochondria transplantation in an in 
vitro model of mitochondrial encephalomyopathy.15,38 Recently, in 
an in vivo study, transplanted pluripotent stem cell- derived MSCs 
can transfer their own mitochondria to recipient cells to protect 
against damaged retinal ganglion cell.35 These findings pave the 
way for clinical therapy study on mtDNA- related mitochondrial 
encephalomyopathies through stem cell- derived mitochondrial 
transplantation.

3  |  TRIGGERING MECHANISMS FOR 
MITOCHONDRIAL RELE A SE

The transfer of stem cell mitochondria is a complex and intriguing 
phenomenon. The intercellular communication between recipient 
cells and stem cells may set up a specific "find- me" and "rescue me" 
signal connection in the local injured regions.18 Mitochondrial dam-
age appears to be the main trigger for release of the mitochondria.39 
For the mitochondrial encephalomyopathies, injured mitochondrial 
components and other molecules are secreted to the periplasmic 
space as triggering signals by stressed cells.40,41 Mahrouf- Yorgov 
et al. found MSCs engulfed the mtDNA released by the co- cultured 
cells with mitochondrial dysfunction. They reported there were 
subsequently increases in cytoprotective enzyme heme oxyge-
nase- 1 expression that potentially enhanced the mitochondrial do-
nation capability of MSCs.42 The loss of cytochrome c can trigger 
mitochondrial transport from stem cells to the injured cells.43 In 
addition, mitochondrial components and mtDNA also play a role 
in damage- associated molecular patterns.44- 48 The cytokines inter-
leukin- 1 (IL- 1), IL- 4, IL- 10, and tumor necrosis factor alpha (TNFα) 
can be perceived by stem cells and can also act as triggering sig-
nals.49 Jiang et al. found that the high production of TNFα from 
the retinal ganglion cells results in mitochondrial release from stem 
cells.35 The translocation of p53 in neurotoxic recipient cells sends 

TA B L E  1  The list of abbreviations in the paper

Abbreviations

ATP adenosine triphosphate

BNIP3 Bcl2 interacting protein 3

Cx43 connexin 43

Drp 1 dynamin- related protein 1

EVs extracellular vesicles

Fis1 fission 1 protein

IL cytokines interleukin- 1

LC3 light chain 3

MERRF myoclonic epilepsy with ragged red fibers

Mfn1 mitofusin 1

Miro mitochondrial Rho- GTPase

MNGIE mitochondrial neurogastrointestinal encephalopathy

MSC mesenchymal stem cell

mtDNA mitochondrial DNA

nDNA nuclear DNA

OPA1 optic atrophy 1

OXPHOS oxidative phosphorylation

PINK1 putative kinase 1

TNFα tumor necrosis factor alpha

TNT tunneling nanotube

TP thymidine phosphorylase

TRAK trafficking kinesin protein
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out a danger signal to donor MSCs to prompt healthy mitochondrial 
transfer.50 When stem cells receive these triggering signals from 
cells with mitochondrial dysfunction, the intrinsic mechanisms 
in stem cell begin to regulate the mitochondria transfer.49- 51 The 
CD38/CADPR/Ca2+ pathway is also shown to mediate astrocytes 
to provide their mitochondria to the damaged neurons.52 It is nec-
essary to explore whether the CD38/CADPR/Ca2+ pathway also 
works in stem cells. These findings suggest that stem cells might 
perceive some degree of metabolic dysfunction in adjacent cells 
with mitochondrial disorders and prepare to initiate mitochondrial 
transfer.

4  |  PATHWAYS OF MITOCHONDRIAL 
DELIVERY

Several different routes have been found to participate in mitochon-
drial transmission from stem cells to recipient cells, which include 
tunneling nanotube (TNT) formation, release of extracellular mi-
crovesicles, cellular fusion, and mitochondrial extrusion (Figure 1A). 
The molecular mechanisms mediating different intercellular trans-
mission routes are complex. A clear understanding of these routes 
and mechanisms will be a benefit to stem cell therapy in mitochon-
drial diseases.

4.1  |  Tunneling nanotubes

Tunneling nanotubes are actin- based cytoplasmic extensions connect-
ing cells as intercellular channels 50– 1000 nm in diameter in a wide 
variety of cell types. Ramírez- Weber initially described a kind of mem-
brane nanotube when studying drosophila wing imaginal disks.53 The 
tunneling nanotubes were then defined by Rustom et al. in a rat PC12 
cell- human 293 cell co- culture.54 As a new mechanism of intercellular 
communication, TNTs promote the exchange of signaling molecules 
and cellular components between cells such as Ca2+, nucleic acids, 
pathogens, organelles, and plasma membrane components, includ-
ing mitochondria.18,54,55 A variety of motor proteins enable efficient 
transport of mitochondria between connected cells,56 like mitochon-
drial Rho- GTPase 1 (Miro1) and Miro2,57,58 KLF 5 kinesin motor pro-
tein,59 trafficking kinesin protein 1 (TRAK 1) and TRAK 2,60,61 and 
Myo 1962 and Myo 10.63 MSCs have been shown to rescue damaged 
cells through TNT- mediated mitochondrial transmission. MSCs detect 
a "find- me" signal gradient, form membrane protrusions, and extend 
to create TNT with adjacent injured cells.18,64 Meanwhile, the injured 
cells can also form membrane protrusions, subsequently extending 
the adjacent stem cells to establish TNT structures. The activation of 
tumor suppressor molecule p53 is a necessary mechanism for the for-
mation of TNTs, and the downstream pathway (Akt/PI3K/mTOR sign-
aling) upregulated by p53 is also involved in nanotube formation.65,66 

F I G U R E  1  Transfer routes and protection mechanisms of stem cell- derived mitochondria. (A) The routes of healthy mitochondria 
transfer from stem cells to recipient cells with dysfunctional mitochondria include TNT formation, release of extracellular microvesicles and 
mitochondrial extrusion. Exosomes might transfer organelle fragments (such as protein complexes of the mitochondrial electron transfer 
chain), mtDNA and ribosomes. The permanent cell fusion and formation of synkaryons are scarce in co- culture conditions and in vivo, which 
are not drawn in the figure. (B) Stem cell- derived mitochondria might rescue aerobic respiration and energy metabolism directly, regulate 
mitophagy and mitochondrial biogenesis, optimize mitochondrial fission and fusion, and decrease the mtDNA mutation load. Cx43, connexin 
43; Drp 1, dynamin- related protein 1; Miro1, Mitochondrial Rho- GTPase 1; mtDNA, mitochondrial DNA; Mfn, mitofusin; Mid, mitochondrial 
dynamics protein; OPA1, optic atrophy 1; PINK1, putative kinase 1; TNT, Tunneling nanotube. (Figure Created with BioRe nder.com)

http://BioRender.com
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Connexin 43 (Cx43) has also been demonstrated to mediate intercellu-
lar communication through TNTs.67 Overexpression of Cx43 facilitated 
mitochondrial transmission from stem cells to epithelial cells through 
the upregulation of tunnel tube formation.68,69 The stress caused by 
rotenone or TNFα has also been shown to induce nanotube forma-
tion.57 The TNFα/NF- κB/TNFαip2 pathway is upregulated in response 
to TNFα70; then, stem cells further promote the formation of TNT.71 
Inflammation by interferon- γ or lipopolysaccharide has also been 
shown to promote the expression of M- Sec proteins associated with 
TNT formation.72,73 The Rho- GTPase Miro1 can facilitate the migra-
tion of mitochondria via TNTs between two cells. A high level of Miro1 
can enhance the ability of mitochondrial transfer and the rescue po-
tential of MSCs via TNT.57

4.2  |  Extracellular vesicles

Extracellular vesicles (EVs), ranging from 40 to 1000 nm, are divided 
into microvesicles, exosomes, and apoptotic bodies according to 
their size, molecular composition, and source.39,56,74,75 Exosomes are 
small extracellular vesicles with a diameter from 30 to 150 nm.76- 80 
Due to the small size, exosomes are unlikely to carry intact mito-
chondria.56 Instead, they are able to transfer organelle fragments 
and genetic components.56

As larger EVs (50– 1000 nm), microvesicles can contain both in-
tact mitochondria and mtDNA.52,81 Microvesicles are more hetero-
geneous structures independent of cell origin.56 The mechanisms of 
microvesicle biogenesis are associated with TSG101 protein recruit-
ment to the cell surface.82 Islam et al. discovered the phenomenon of 
microvesicle- mediated mitochondrial transmission from stem cells 
to pulmonary alveoli protects against acute lung injury.30 The mi-
tochondria are packaged into vesicles containing light chain 3 (LC3) 
in the cytoplasm of stem cells and then integrated into outward 
budding in the plasma membrane.49 Stem cells can depolarize mi-
tochondria to the plasma membrane via arrestin domain- containing 
protein 1- mediated microbubbles, thereby controlling intracellular 
oxidative stress and enhanced bioenergetics.78 Another study has 
shown that astrocytes can produce extracellular mitochondria that 
enter neurons to improve neuronal activity after ischemic stroke.52 
These studies suggest that intercellular mitochondria transmission 
through microvesicles is an important route to rescue mitochondrial 
function in the damaged cells.3

Recently, apoptotic bodies generated from cells undergoing 
apoptosis have been demonstrated to be rich in mitochondria and 
mitochondrial components.83 Galleu et al. have demonstrated that 
the presence of labilized cytotoxic cells in patients can induce apop-
tosis in stem cells and predict therapeutic efficacy of stem cells.56,84

4.3  |  Cellular fusion

Aberrant mitochondrial function and endoplasmic reticulum stress 
enables upregulation of cell fusion events, which might represent 

the adaptive mechanism that promotes cell plasticity and survival 
in oxidative injury.85 Cell fusion is a multistep process, including a 
cellular stress response, activation of autophagy, rearrangement of 
cellular cytoskeleton structure, expression of fusion protein, inter-
cellular communication, and exchange of cytoplasm.39,85,86 It has 
been reported that stem cells can fuse with cardiomyocytes, airway 
epithelial cells, neurons, and hepatocytes.25,87 Adrien et al. have 
demonstrated that stem cells reprogram myocytes into an immature 
state through cell fusion and mitochondrial transfer.32 However, the 
synkaryons and permanent cell fusion are scarce both in vivo and 
in co- cultures, so cell fusion does not seem to be the main route of 
mitochondrial transfer and stem cell therapy.32,39

4.4  |  Mitochondrial extrusion

Emerging data speculate that naked mitochondrial extrusion is an-
other route for mitochondrial transfer. Akihito Nakajima et al. show 
that cytoplasmic vacuoles engulf and subsequently extrude naked 
mitochondria into the extracellular medium when undergoing acute 
TNFα- induced apoptosis.88 Unuma et al. also indicate that the ex-
trusion of mitochondria and mitochondrial contents in this process, 
which can provoke the inflammatory response of the immune cells.89 
Both basophils90 and eosinophils91 can eject their mtDNA to bind 
and kill infectious bacteria in an ROS- dependent manner. Boudreau 
et al. show that platelets can release naked mitochondria leading to 
inflammatory responses both in vitro and in vivo.92 Although the 
above data are supported, whether stem cells are able to release 
naked mitochondria into the extracellular medium as a route for 
therapeutic mitochondria transfer is yet to be shown.

5  |  PROTEC TION MECHANISMS ON 
RECIPIENT CELL S

After the process of intercellular delivery, stem cell- derived healthy 
mitochondria able to enter the recipient cells with defective mito-
chondria and corporate with the endogenous energy metabolism 
network.39 Existent data suggest that stem cell- derived mitochon-
dria might improve survival of recipient cells through rescuing aero-
bic respiration and energy metabolism, regulating mitophagy and 
mitochondrial biogenesis, optimizing mitochondrial dynamics, and 
decreasing the mtDNA mutation load (Figure 1B).

5.1  |  Rescuing aerobic respiration and energy 
metabolism directly

Spees et al. firstly show that the mitochondria transfer from adult 
stem cells can directly rescue aerobic respiration in recipient 
cells.25 It has also been demonstrated that the stem cells able to 
rescue cybrid cells of myoclonic epilepsy with ragged red fibers 
(MERRF) through providing intact mitochondria and improving 
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mitochondrial bioenergetics.15 Likewise, bone marrow- derived 
MSCs able to rescue energy metabolism of the cells under oxida-
tive stress through transporting healthy mitochondria in vitro.93 
MSCs can also transfer intact mitochondria to protect against 
acute central nervous system17 or lung injury in vivo.30 Therefore, 
it is a quick and direct way that stem cell- derived mitochondria 
incorporate into the endogenous mitochondrial network to repair 
metabolic machinery.

5.2  |  Regulating mitochondrial 
biogenesis and mitophagy

For mitochondrial encephalomyopathy, stem cell- derived healthy 
mitochondria are also important pathways for intracellular quality 
control of mitochondria. Mitophagy and biogenesis are coordinated 
and opposing pathways that regulate mitochondrial quality control 
and metabolism.94 Mitochondrial biogenesis is intricate process that 
includes transcription and translation of nuclear and mitochondrial 
genomes, recruitment, and import of mitochondrial proteins and 
lipids.94- 96

Mitochondrial biogenesis is rigorously controlled by intracellu-
lar signaling pathways and the activation of nuclear transcription 
factors, such as peroxisome proliferator- activated receptor gamma, 
coactivator 1 α, nuclear respiratory factors, and transcription factor 
A.96 The kinase pathways, second messenger molecules, and hor-
mones participate in regulating the complex process.95,96 The import 
of stem cell- derived mitochondria and components may provide a 
quick supplement for mitochondrial biogenesis, and the exogenous 
mitochondria also require coordination with intracellular network in 
recipient cells.

Dysfunctional mitochondria are also deleterious in mitochon-
drial encephalomyopathy.97- 99 Mitophagy, the selective degrada-
tion of mitochondria, is also crucial to maintain cell homeostasis. 
Parkin- dependent process, which is regulated by induced putative 
kinase 1 (PINK1), is a well- studied mechanism of mitophagy.100- 102 
Besides, FUN14 domain containing 1, Bcl2 interacting protein 3 
(BNIP3) or BNIP3L can directly recruit autophagosomes to injured 
mitochondria via interaction with LC3.100 In addition to canonical 
mitochondrial degradation, mitochondrial- derived vesicle is one 
important kind of mitophagy pathway.100,103 Mitochondrial spher-
oid also distincts from other autophagy pathways and represents 
the structural remodel of mitochondria in response to oxidative 
stresses.100,104- 107 The transmitophagy has also been observed 
in stem cells that mitochondria released from damaged cells are 
engulfed by stem cells,108,109 then stem cells can degrade the 
damaged mitochondria and produce healthy mitochondria against 
programmed cell death.42 Except the mitochondrial transfer, the 
transport of progenitor cell- derived lysosomes via TNT is also ob-
served and involved in the autophagy process of stressed cells.110 
Therefore, stem cells may involve in regulating both intra-  and in-
tercellular mitophagy and biogenesis process of mitochondria in 
host cells with mitochondrial disorders.

5.3  |  Optimizing mitochondrial dynamics

As high dynamic organelles, mitochondria fission and fusion are 
crucial for quality control. The fission can segregate dysfunctional 
mitochondria, while fusion can share healthy mitochondrial com-
ponents.100,111,112 Mitochondrial encephalomyopathies always 
have the imbalance of mitochondrial dynamics in skeletal muscle or 
nervous system.113 It has the possibility that stem cell- derived mi-
tochondria may involve in the mitochondria dynamics in recipient 
cells of mitochondrial encephalomyopathies, especially the fission 
and fusion process.108 A 3D imaging of the cells shows that the MSC 
mitochondria are spread out throughout the endogenous recipient 
mitochondria network.114

Mitochondrial fusion is controlled by three dynamin- related 
GTPase proteins. The fusion of the outer mitochondrial membrane 
is regulated by mitofusin 1 (Mfn1) and Mfn2,103,115,116 and the fusion 
of the inner mitochondrial membrane is regulated by optic atrophy 
1 (OPA1).103,117,118 Recently, another study demonstrates that stem 
cells play protective role in a mitochondrial dysfunction mice model 
through the mechanisms of transferring mitochondria and increasing 
the fusion gene expression of OPA1, Mfn1, and Mfn2 in host cells.119

Mitochondrial fission is mediated by the dynamin- related pro-
tein 1 (Drp 1), which binds to four receptors: fission 1 protein (Fis1), 
mitochondria fission factor, mitochondrial dynamics protein of 
49 and 51 kDa.100,103,120 Chuang et al. show that the stem cells able 
to rescue MERRF cybrid cells and optimize mitochondrial dynamics 
through donating healthy mitochondria.15 The MERRF cybrid cells 
present decreased OPA1 and increased Fis1, which cause the imbal-
ance of mitochondrial fusion and fission.15 It is demonstrated that 
stem cells can recapture the dysfunctional mitochondria network 
and abnormal fusion/fission protein in MERRF cybrid cells through 
mitochondria transfer.15

5.4  |  Decreasing the mtDNA mutation load

Majority of mitochondrial encephalomyopathies is caused by the 
pathogenic mtDNA mutations. Previous research find that the 
level of the mtDNA mutations will also influence disease severity 
and is reliable measure for clinical assessment.121,122 Therefore, 
reducing mutation load through intercellular exchange of mtDNA 
may have a certain effect on alleviating clinical severity of mito-
chondrial encephalomyopathy. The transfer of low copy number 
of mtDNA can recover the mitochondrial function of immunoin-
competent mice.123 Jayaprakash et al. find the horizontal trans-
fer of mitochondrial DNA between different cell lines in the 
co- cultures.124 Tumor cells can repair the transcription and trans-
lation of mtDNA and improve mitochondrial bioenergetics through 
acquiring healthy mtDNA from ambient cells.39 It is also proposed 
that stem cells can partly reduce mtDNA mutation load via pro-
viding healthy mtDNA and mitochondria, which is sufficient to 
recover the mitochondrial respiration in MERRF cybrid cells long 
term.15 The routes of mtDNA transfer not only restrict to TNTs, 
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microvesicles, cellular fusion, and mitochondrial extrusion,125- 127 
but also including more tiny structures such as exosomes and gap 
junction.127,128 However, emerging data challenge the potential 
therapeutic use of EV- based delivery systems for mtDNA- based 
diseases.129 After exposure to the donor mtDNA in EV fractions 
for years, there is little transfer of the donor mtDNA to the host 
mtDNA fraction in subjects tissues.129

6  |  FUTURE PERSPEC TIVES AND 
CHALLENGES

An increasing number of diseases are being found to have the 
pathogenesis of mitochondrial dysfunction.130 However, the treat-
ments for mitochondrial disorders are inadequate, especially in the 
therapies of mitochondrial encephalomyopathies. The main strategy 
employed in the treatment of nDNA- based mitochondrial encepha-
lomyopathy, while current capacity to repair or replace mDNA in so-
matic cells is inadequate. Stem cells have the characteristic of lower 
immunogenicity and the ability for long- term proliferation to amplify 
the quantity of mitochondria.49 Thus, stem cells are an ideal choice 
as potential mitochondrial donors.

The transplantation of stem cell- derived mitochondria to so-
matic cells has been demonstrated not only in vitro but also in vivo 
and is recognized as a novel and promising strategy for treating 
mitochondrial dysfunction. However, there are still several major 
challenges and concerns remaining. Time, number, efficiency, 
and route of mitochondrial transfer are important for the activity 
restoration of the recipient cells bearing mitochondria dysfunc-
tion.39,72,73 Various transfer routes of stem cell- derived mitochon-
dria include TNTs, extracellular microvesicles, cellular fusion, and 
mitochondrial extrusion, which have significant differences in the 
dosage and efficiency of mitochondria transfer and may directly 
affect the rescue effect of stem cells.39,72,73 TNTs are known as 
the highway for intercellular organelle transport,54 which is much 
more efficient than other modes of intercellular mitochondria de-
livery, such as the extracellular microvesicles and mitochondrial 
extrusion.43 In spite of this, it is possible that different transfer 
routes might complement each other in different pathophysio-
logical stages and microenvironments, and even cooperate with 
each other to promote the therapeutic effect of stem cells. On the 
other hand, various mitochondria transfer routes have respective 
signaling pathways. The identification of these signaling pathways 
and the mechanisms of intercellular mitochondria delivery will im-
prove the potential applications of cell therapy- based mitochon-
drial restoration.131,132

Future therapeutic investigations should consider strategies 
to pharmacologically enhance or control the transfer of stem cell- 
derived mitochondria,39 especially in stem cell therapy for mito-
chondrial encephalomyopathy.

Moreover, the mechanisms through which stem cell- derived mi-
tochondria can be incorporated into the endogenous energy metab-
olism network remain to be elucidated.39

Furthermore, mitochondrial damage and ROS are considered to 
be probably involved in the inflammation.133 The mitochondrial dys-
function could also play an important role in chronic inflammation of 
the neurodegenerative disorders and mitochondrial diseases.134 The 
transplantation of stem cell- derived mitochondria may be used as 
an effective treatment for these pathologies, which may attenuate 
production of ROS and have immunomodulatory effects.133,134

Future research on the molecular mechanisms underlying the 
improvement of aerobic respiration, dynamics, and the quality con-
trol of transplanted mitochondria will accelerate the development 
of stem cell treatment in mitochondrial encephalomyopathies. 
However, most current studies on mitochondrial disease remain in 
the in vitro stage due to a lack of mtDNA- based animal models of 
mitochondrial encephalomyopathies. Meanwhile, novel tracking 
technologies are necessary to unravel the mechanism of intercellular 
mitochondria transmission in vivo. The development of cell hetero-
plasmy in single cells and mitoception to detect mitochondrial trans-
fer114 are useful to unambiguously assess mitochondria transmission 
and the effects of stem cell mitochondria on cell metabolism and 
function studies.39

7  |  CONCLUSION

Currently, the treatment of mitochondrial encephalomyopathy faces 
serious challenges.39 Restoring the function of mitochondria and res-
cuing damaged mitochondria are crucial for treating mitochondrial 
disorders. Stem cell- derived mitochondria transplantation has been 
demonstrated to play a significant role not only in metabolic rescue 
but also in mitochondrial dynamics, quality control, and reduction of 
mutation load, which may eventually prevent cell apoptosis. Thus, 
the therapy offers great promise for mitochondrial encephalomyo-
pathies. Meanwhile, mitochondrial integrity and mitochondrial dy-
namics also become dysfunctional during some neurodegenerative 
diseases.135- 138The application of stem cell- derived mitochondria 
transplantation has also attracted attention for its potential to treat 
many diseases with the pathogenesis of mitochondrial dysfunction, 
such as cerebral vascular disease,139,140 Parkinson's disease, demen-
tia, amyotrophic lateral sclerosis, myocardial ischemia– reperfusion 
injury, and acute lung injury.30,71,74,108,141- 144 However, as one of the 
most representative and intractable mitochondrial diseases, mito-
chondrial encephalomyopathies should be the first to see a break-
through and benefit from this novel treatment strategy.
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