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Abstract
In view of the call by the World Health Organization (WHO) for elimination of schistosomia-

sis as a public health problem by 2025, use of molluscicides in snail control to supplement

chemotherapy–based control efforts is likely to increase in the coming years. The mecha-

nisms of action of niclosamide, the active ingredient in the most widely used molluscicides,

remain largely unknown. A better understanding of its toxicology at the molecular level will

both improve our knowledge of snail biology and may offer valuable insights into the devel-

opment of better chemical control methods for snails. We used a recently developed Biom-
phalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of

sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata
relative to untreated snails. Most of the genes highly upregulated following exposure of

snails to niclosamide are involved in biotransformation of xenobiotics, including genes

encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transport-

ers, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx

transporter). Niclosamide also induced stress responses. Specifically, six heat shock pro-

tein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated.

Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein

(CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mamma-

lian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggest-

ing niclosamide may affect oxygen transport. Our results show that snails mount substantial

responses to sublethal concentrations of niclosamide, at least some of which appear to be

protective. The topic of how niclosamide’s lethality at higher concentrations is determined

requires further study. Given that niclosamide has also been used as an anthelmintic drug
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for decades and has been found to have activity against several types of cancer, our find-

ings may be of relevance in understanding how both parasites and neoplastic cells respond

to this compound.

Author Summary

Schistosomes are snail-transmitted parasites that continue to infect over 230 million peo-
ple worldwide and cause the disease schistosomiasis. Currently there is no effective vaccine
against the disease. Control programs have relied primarily on use of chemotherapy with
praziquantel to eliminate adult worms from infected people. An increasing body of evi-
dence, however, suggests that praziquantel-based control programs are not likely to be suf-
ficient to achieve sustainable transmission control. Snail control achieved by focal use of
molluscicides, especially in combination with other methods like chemotherapy, sanitation
and health education, offers considerable promise for reduction of disease transmission.
Consequently, use of molluscicides in snail control is likely to increase in the coming
years. We undertook a microarray study to assess transcriptional responses to niclosa-
mide, the active ingredient in commonly-used molluscicides, in the schistosome-transmit-
ting snail Biomphalaria glabrata. We show that niclosamide activates components in
snails’ pathways known to be involved in biotransformation of xenobiotics and stress
responses. We suggest that major alterations in vesicle trafficking and interference with
oxygen transport also follow niclosamide exposure. The results contribute to our under-
standing of molecular impacts of niclosamide exposure on snails, and provide a basis for
further studies to define the mode of action of niclosamide and other molluscicides in the
future.

Introduction
Schistosomiasis, caused by blood-dwelling digenetic trematodes of the genus Schistosoma, is
one of the world’s major neglected tropical diseases. By conservative estimates, at least 230 mil-
lion people worldwide are infected with Schistosoma spp. [1]. Among eukaryotic parasites, the
global health impact of schistosomiasis is second only to malaria.

Schistosomes have an indirect life cycle, involving asexual reproduction in a snail intermedi-
ate host and sexual reproduction in a mammalian or avian definitive host. Use of praziquantel
to kill adult worms has been a mainstay of schistosomiasis control for about forty years [2].
However, an increasing body of evidence suggests that praziquantel-based control programs
are not likely to be sufficient to achieve sustainable transmission control [3–5].

Recently, King and Bertsch (2015) reviewed the application of molluscicides around the
world and re-emphasized their importance in schistosomiasis control [6]. Snail control
achieved by focal use of molluscicides, especially in combination with other methods like che-
motherapy, sanitation and health education, offers considerable promise for reduction of dis-
ease transmission.

For the past half-century, snail control has relied primarily on a single compound, namely,
niclosamide. Niclosamide was selected as a molluscicide in the 1950s after screening of well
over 20,000 compounds for toxicity against the schistosome-transmitting snail Biomphalaria
glabrata [7]. Currently, Bayluscide, containing niclosamide or its ethanolamine salt, is still
being applied in many endemic areas, mostly in Africa and Asia [8–12].

Transcriptomic Responses of Snails to Niclosamide
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A limited number of early studies based on physiological and biochemical assays suggested
that niclosamide affects snail oxygen consumption and carbohydrate metabolism. High con-
centrations of niclosamide (above 0.15mg/L) reduce oxygen uptake whereas low concentra-
tions increase oxygen uptake [13]. Niclosamide may also interfere with glucose metabolism
[14,15]. Nevertheless, the underlying mechanism of niclosamide’s potent activity in killing
snails remains unclear even though its molluscicidal properties were revealed over sixty years
ago [7].

Given the concerns about the sustainability of chemotherapy-based control, potential emer-
gence of resistance to praziquantel, and lack of an anti-schistosome vaccine in the near future,
development of additional methods of snail control, including a new generation of highly spe-
cific, environmentally friendly molluscicides, is a high priority in light of WHO’s call for elimi-
nation of schistosomiasis where possible by 2025 [16]. As shown from a number of studies of
the effects of pesticides on insect disease vectors [17–19], understanding the toxicology of
niclosamide in snails would be helpful in developing effective new molluscicides, ultimately
benefiting schistosomiasis control.

In addition to its potent molluscicidal activity, niclosamide has also been used as an anthel-
mintic drug for treatment of adult tapeworm infection for decades [20]. Interference with mito-
chondrial oxidative phosphorylation is believed to play a role in niclosamide’s anthelmintic
effect [21–23]. However, no further validation or investigation of its effects on tapeworms has
been undertaken, despite the availability of new molecular-based biotechnologies. Recent stud-
ies have demonstrated that niclosamide has activity against a variety of cancer cells including
those of prostate, breast, ovarian, colon, lung, and head and neck cancers, in part by suppress-
ing various intracellular signaling pathways, including Wnt/beta-catenin, NOTCH, mTORC1,
and NF-κB [24, 25]. Niclosamide also has activity against rhinovirus and influenza viruses
[26]. It is also noteworthy to mention that niclosamide has an excellent safety profile in
humans [7, 27].

Documenting the impact of niclosamide by monitoring transcriptomic responses of target
species like snails can help reveal both the nature of the protective responses mounted and
yield clues to the underlying basis of its action. In this study, we employed an oligonucleotide
microarray to investigate the transcriptomic response of the schistosome-transmitting snail
Biomphalaria glabrata to a 24-hr exposure to water containing three different sublethal con-
centrations of niclosamide.

Materials and Methods

Snails
All snails used in this study were laboratory-reared Biomphalaria glabrata of the M-line strain
[28]. Snails were fed lettuce ad libitum and maintained on a 12 h light: 12 h dark schedule in
artificial spring water [29]. Snails of 8–11mm shell diameter were used.

Treatment of snails with niclosamide
Niclosamide was purchased from Sigma and dissolved in dimethyl sulfoxide (DMSO) (Sigma).
A volume of 2L of artificial spring water was added to each of four 3L plastic containers. Also,
each container also received a total of 32–34 snails. Three niclosamide concentrations, 0.15
mg/L, 0.10 mg/L, and 0.05 mg/L, were tested. DMSO vehicle alone was added to the fourth,
control container. The final DMSO concentration in each of the four containers was the same,
at 1/1000 (v/v). Snails were exposed to niclosamide for 24 hours at 26–28°C with aeration.
After the 24-hour exposure, twenty live snails from each container were collected and ran-
domly divided into four replicate groups, each with five snails, for subsequent RNA extraction.

Transcriptomic Responses of Snails to Niclosamide
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For each of the three treatment groups and the control, the four replicate groups (five snails
each) that were collected are considered to constitute valid biological replicates because each
replicate is comprised of a distinct set of five snails. Furthermore, our design ensured that expo-
sure conditions for a particular concentration were identical for each replicate.

We define the concentrations used as “sublethal” because the snails we sampled were alive
and responsive after the 24 hour period of niclosamide exposure. It is possible that some of the
snails selected for study would have died upon further observation, but had not done so at the
time of sampling.

Extraction, qualification and quantitation of RNA
For a particular treatment, whole bodies of five snails dissected from their shells were pooled as
a single sample, and ground in liquid nitrogen. Two sequential RNA extraction methods were
applied to each such sample, first using Trizol (Invitrogen) and then the PureLink RNA kit
(Ambion), following manufacturers’ instructions. Quality and quantity of RNA were checked
using an Agilent Bioanalyzer 1200 and NanoDrop spectrophotometer and quality was deter-
mined to be high (sharply focused rRNA bands and A260/A280 ratio: 1.9–2.1) for all samples.

Description of microarray
The microarray used for this study contains 60-mer oligonucleotide probes that were designed
using transcriptomic sequence data from B. glabrata from publically available databases in
2010. Sequences were computationally assembled to unique predicted transcripts using a
method described [30] and used to design probe sequences and a microarray (duplicate probes
were arranged in 8 X 60K layout) using the eArray facilities from Agilent. The details of probes,
target sequences and microarray design (eArray AMADID 033677) are available at Gene
Expression Omnibus (GEO) at Platform Access Number GPL20716 (www.ncbi.nih.gov/geo/).
Compared to recent microarray designs (i.e., arrays with 1.1K oligonucleotide probes [31] and
5K cDNA probes [32]), this 31K microarray design provides the most comprehensive coverage
of expressed sequences from B. glabrata to date.

Microarray hybridization
To provide a positive hybridization signal to as many elements of the array as possible, univer-
sal reference RNA (URR) consisted of 80% RNA from the control group and 20% RNA from
experimental groups exposed to the 3 concentrations of niclosamide. All experimental samples
contributed equally to the URR.

All procedures related to the microarray experiment were based on Agilent’s two-color
microarray-based gene expression analysis (Version 6.6). Unless otherwise mentioned below,
all reagents were purchased from Agilent Technologies and were used in accordance with the
manufacturer’s protocol.

A total of 200 ng RNA was used for each biological replicate of the four unknown groups
(control snails or snails exposed to the three different dilutions) to be examined. Spike A buffer
mix was added to the unknown RNA sample and Spike B buffer mix was added to 200 ng of
the URR. Complementary RNA (cRNA) amplification and labeling reactions with cyanine dye
Cy–3 in the unknown sample and cyanine dye Cy–5 in the URR were conducted at 42°C for 2
hours. The labeled cRNA was purified using the RNeasy Mini Kit (Qiagen). The cRNA was
quantified to determine the concentration and specific-labeling efficiency using a NanoDrop
spectrophotometer.

A total of 300 ng of both the purified Cy–3 and Cy–5 labeled cRNA was added to 5 μl of 10x
hybridization buffer and incubated at 60°C for 30 min to fragment RNA. A total of 40 μl of
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hybridization solution (representing a single replicate for a particular unknown sample) was
added to one of the eight gasket chambers. Each of the eight available gasket chambers was in
this way filled with a different sample. The gasket surrounding the eight chambers was then
covered with a microarray slide such that each of chambers contacted one of the eight different
identical arrays printed on that slide. Two slides were used for this study, each with eight iden-
tical arrays. The 16 arrays thereby accommodated the 16 different samples that needed to be
run (4 unknowns by 4 replicates per unknown). The assembled hybridization chamber was
placed in a hybridization oven at 65°C for 17 hours (rotating at 10xg).

After hybridization, the slides were washed in Agilent’s wash buffer I for 1 min (room tem-
perature), then in wash buffer II for 1 min (37°C). After stabilizing against ozone deterioration
in stabilization buffer, the slides were dried and shipped to the University of California San
Francisco’s Viral Diagnostics and Discovery Center, where they were scanned with Agilent’s
Microarray G2505C Scanner and extracted and normalized using Agilent’s Feature Extraction
software.

Microarray data analysis
Microarray data were analyzed using GeneSpring GX version 12.6.1 (Agilent). For quality con-
trol, the program called “Filter probsets on data” was used. After removing all control probes,
experimental probes were retained for further analyses only when they were expressed in at
least 75% of all replicates from at least one biological condition (experimental or control). The
features that were not positive, not significant, not above background noise, not uniform, not
saturated or that were population outliers were not analyzed further. The remaining features
were analyzed using volcano plots. Benjamin Hochberg FDR was applied to correct for multi-
ple testing. Corrected P-value cut-off and fold change cut-off were set at 0.05 and 2, respec-
tively. In accordance with MIAME guidelines, all relevant data were deposited in the GEO
database at NCBI (accession GSE71223).

Blast search, gene ontogeny (GO) and heatmap analyses
The features that passed the statistical criteria (2 fold change and P< 0.05) were selected for
subsequent analyses. The full-length transcripts associated with probes (see GEO platform
accession GPL20716) that showed differential expression were selected for Blastx search and
GO analysis (Blast2Go v.5; www.blast2go.com). The three GO term categories (biological pro-
cess, molecular function and cellular component), all at the level 2, were generated using the
program.

All heatmaps were done in R Studio version 0.98.953 [33–36]. The transcripts that were dif-
ferentially expressed were categorized according to GO terms (http://geneontology.org/) and
UniProtKB (http://www.uniprot.org/) functional descriptions. Many of the proteins shown
could be placed in multiple functional categories, but for simplicity we have included each pro-
tein in only one category.

Results
The primary objective of the study was to use microarray analysis to reveal differential gene
expression in response to 24-hr exposure to three sublethal concentrations of niclosamide. The
highest concentration (0.15 mg/L) resulted in 21% mortality whereas the two lower concentra-
tions (0.10 mg/L and 0.05 mg/L) did not cause any mortality. These results agreed with mortal-
ity data reported previously [37,38].

Of 30,647 probe features, 24,778 features (81%) were used for analysis after quality control
and filtration measures had been applied. The number of genes differentially expressed was

Transcriptomic Responses of Snails to Niclosamide

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004131 October 9, 2015 5 / 21

http://www.blast2go.com/
http://geneontology.org/
http://www.uniprot.org/


positively related to niclosamide concentration: 12 at 0.05 mg/L, 94 at 0.10 mg/L, and 243 at
0.15 mg/L (Fig 1 and S1 and S2 Tables). In combining the three concentrations, 272 genes were
differentially expressed, with 181 upregulated and 91 downregulated (all statistically signifi-
cant). Nine genes were responsive at all three concentrations, eight of which were upregulated
and one of which was consistently downregulated (Fig 2). BlastX search revealed that 43% (78
of 181) of upregulated genes and 29% (26 of 91) of downregulated genes have homologs with
putative functions in other animals (Fig 1).

Table 1 provides a list of genes with putative GenBank homologs that are either significantly
up- or downregulated, including an estimate of fold-change in expression, a significance level,
and a sequence description with a Blast score (see also S1 and S2 Tables). Fig 3 provides an
overview of known genes differentially expressed in the snails after exposure to the three con-
centrations. It is noteworthy that out of 78 transcripts with�2 fold over-expression, 9 were
cytochrome P450s (CYPs) and 6 were heat shock proteins (HSPs). Of the genes for which a

Fig 1. Numbers of sequences that were up- or down-regulated in snails after exposure to the three concentrations of niclosamide. For each
concentration, the total numbers of sequence changes in different folds are provided. In addition, the numbers of unknown sequences are also provided
(yellow color). Numbers in boxes at the top of the figure refer to fold change for each dose.

doi:10.1371/journal.pntd.0004131.g001
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reasonable inference could be made with respect to function, several are known to be involved
in biotransformation of xenobiotics and stress responses (see discussion below). Only 26 genes
with homologs in GenBank were downregulated after exposure to sublethal concentrations of
niclosamide.

With respect to unknown genes lacking similarities to known sequences, 103 were upregu-
lated and 66 downregulated (Fig 1). Among these sequences, several showed very high levels of
differential expression. For example, c17544_rc, c7670, and c454_ctg–0279 had up-regulated
expression levels of 14-, 13- and 9-fold, respectively (S1 and S2 Tables). Just as with array fea-
tures with GenBank homologs, for unknown transcripts, generally the fold-changes for down-
regulated genes were lower than for upregulated genes.

When considered with respect to the function (Fig 4), the most responsive genes were in
two categories: 1) oxidoreduction, and 2) cell motility, intracellular and transmembrane traf-
ficking. The GO analysis for the three general categories (biological process, molecular function
and cellular component), is presented in S3 and S4 Tables.

Discussion
This study interrogated the most comprehensive B. glabratamicroarray currently available,
one that includes enough features to provide a representative overview of the transcripts this
snail is capable of producing, including those in response to molluscicides. As such, the array
(and the results derived from its use) will provide an appropriate tool to help validate, and pro-
vide perspective for next-gen sequencing studies of the responses of B. glabrata and other schis-
tosome-transmitting snails to molluscicides. Furthermore, unlike next-gen sequencing
approaches, microarrays do not require application of assembly software that can introduce
errors and produce artifactual chimeric sequences. As the use of molluscicides will increase in
the near future, having as many sources of information as possible about their impact on snail
biology will be beneficial.

Lipophilic xenobiotics like niclosamide that are readily absorbed into the body are normally
eliminated in animals by biotransformation, a process that increases hydrophilicity [39]. Bio-
transformation includes chemical modification of the xenobiotic by oxidation; reduction or
hydrolysis reactions (phase I reactions); conjugation of the phase I metabolite (phase II reac-
tions); and transport of the phase II product (phase III reactions) across epithelial surfaces.

Fig 2. Diagram showing the number of sequences among the three experimental groups that were up-
or down-regulated.

doi:10.1371/journal.pntd.0004131.g002
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Table 1. List of differentially expressed transcripts that have putative homologs in GenBank.

UP REGULATION

Probe Fold changes P value Sequence description E value

c13901 27 3.02E-05 ADP ribosylation factor 1 (ARF1) 2.56E-52

contig_7431 14 5.71E-05 heat shock protein 20 (HSP20) 2.21E-24

BGC03909 12 9.59E-05 heat shock protein 70 b2-like 1.52E-84

c10823_rc 12 1.60E-05 cytochrome p450 3a24-like 1.01E-28

c12342_rc 12 5.38E-06 cytochrome p450 3a24-like isoform x2 4.82E-50

c17735 11 2.51E-05 RAS related protein RABD1 1.57E-46

c14547_rc 10 1.17E-04 cytochrome p450 3a24-like isoform x2 3.74E-18

BGC01389 10 1.98E-05 heat shock protein 70 b2 0

c28906 10 1.76E-04 small GTP binding protein 1.24E-09

c37491_rc 9 1.03E-05 RAS related protein RIC1 3.14E-10

BGC02292 8 1.86E-04 glutathione S-transferase 1.99E-41

c8814 7 2.47E-08 cytochrome p450 3a24-like isoform x2 1.58E-49

c27272 6 1.59E-05 solute carrier transporter family 28 member 3-like 1.39E-33

contig_6157_rc 5 1.37E-04 CREB3 regulatory factor-like isoform x3 7.01E-28

c11081 5 4.63E-04 tyramine beta-hydroxylase- 8.38E-96

c12683 5 4.38E-05 indoleamine dioxygenase 1.46E-13

contig_4627 5 3.13E-05 nuclear protein 1.72E-25

c25173_rc 5 2.92E-04 transcription factor sp8-like 2.41E-06

SmM_ND5 4 2.89E-04 NADH dehydrogenase subunit 5 0

c17676_rc 4 8.19E-05 Vitellogenin-like 9.87E-14

c16656_rc 4 2.63E-04 cytochrome p450 3a56 6.50E-13

c18374_rc 4 7.48E-04 indoleamine dioxygenase 6.10E-17

contig_3167 4 7.71E-05 cAMP responsive element binding 2 (CREB2) 6.34E-26

c38273 4 9.22E-04 ankyrin repeats containing protein 2.17E-20

BGC01683 4 2.44E-04 BPTI/ kunitz domain containing protein 4-like (antistasin-like) 7.40E-06

c15095_rc 4 8.89E-07 DNA polymerase delta subunit 2-like 6.94E-42

c36549_rc 4 4.31E-05 organic cation transporter 2.68E-18

contig_2362_rc 4 2.72E-06 heat shock protein 20 3.33E-12

c20736_rc 3 1.20E-04 threonine dehydrogenase—mitochondrial 1.11E-61

c11178 3 1.31E-05 ATP dependent RNA helicase DDX 4.32E-47

c2799 3 7.18E-05 protein FAM72A 8.10E-62

c14697 3 histidine ammonia lyase 1.43E-59

BGC03483 3 3.69E-04 phosphoenolpyruvate carboxykinase, cytosolic (GTP)-like 7.59E-155

c23966 3 9.91E-05 allene oxide synthase lipoxygenase 3.18E-13

lrc38066 3 2.43E-05 inhibitor of apoptosis 6.39E-21

c32475_rc 3 3.88E-04 threonine dehydratase catabolic-like 2.35E-33

contig_2849 3 8.80E-04 macrophage expressed protein 3.05E-85

contig_13314_rc 3 3.41E-05 cytochrome p450 12d1 mitochondrial 2.84E-24

BGC02302 3 1.11E-04 Sequestosome 1 4.02E-15

contig_2938 3 1.03E-04 RNA-directed DNA polymerase from mobile element jockey-like 3.71E-38

c1938 3 6.20E-04 sodium-dependent multivitamin transporter 4.10E-47

contig_2190_rc 3 4.69E-05 kruppel-like factor 9.37E-47

contig_12248 3 4.35E-05 cytochrome p450 3a24 2.12E-52

c36687 3 2.12E-04 cytochrome p450 3a24 isoform x2 2.34E-12

contig_14304 3 2.00E-05 multidrug resistance protein 1a 5.10E-11

c14675_rc 3 6.96E-05 DnaJ homolog subfamily B member 1 (HSP40) 5.54E-55

(Continued)
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Table 1. (Continued)

c12919 3 2.11E-04 FAD-dependent oxidoreductase domain-containing protein 2 3.76E-37

c10590 3 3.53E-05 Syntenin 1 5.78E-23

contig_13518 3 0.001129276 nuclear receptor 8.31E-62

contig_8438 3 1.57E-05 growth arrest and DNA damage inducible protein 2.96E-26

contig_10258 3 5.42E-04 chitinase-like 4.32E-23

contig_11777_rc 3 5.31E-04 guanine nucleotide-binding protein 3-like (G protein) 3.26E-05

contig_1050 3 8.66E-05 alpha-tubulin isotype H2 6.77E-19

c16185 3 3.89E-05 TBC domain containing protein 7.98E-20

c33610_rc 3 3.70E-04 cytochrome p450 3a24 2.54E-09

contig_11964 3 2.57E-05 coatomer subunit beta -like 2.58E-74

c32432 3 0.001228079 cystine glutamate transporter 3.37E-14

contig_5707 3 0.001217638 Ferric chelate reductase 52.20%

contig_15029 3 1.05E-04 RNA-directed DNA polymerase from mobile element jockey-like 3.59E-71

contig_13332_rc 2 1.49E-05 vitellogenin-1-like 1.08E-31

lrc20282 2 5.34E-04 G type lysozyme 5.77E-14

contig_5809_rc 2 7.40E-05 SRR1-like isoform 8.64E-56

c4615_rc 2 8.97E-04 hemagglutinin /amebocyte aggregation factor-like 7.38E-31

c25112 2 5.74E-04 adenosine deaminase 3.06E-26

contig_14423 2 8.34E-04 phosphatidate phosphatase LPIN2-like 7.17E-25

contig_7313 2 6.76E-04 alkylhydroperoxidase 5.45E-89

c31225 2 5.98E-04 peptide methionine sulfoxide reductase 1.73E-07

c14016_rc 2 2.09E-04 glycogen-binding subunit 76a 7.61E-46

contig_5719 2 1.05E-04 coatomer subunit beta-like 5.75E-56

c18590 2 3.59E-04 chromobox protein homolog 4 5.46E-14

c14368 2 0.001067669 DnaJ-like superfamily B member 4 (HSP40) 5.84E-40

contig_3899 2 4.77E-04 phosphoserine aminotransferase 1.39E-121

contig_14141 2 1.96E-04 fibrillin 3.95E-27

contig_12273 2 3.98E-04 amidophosphoribosyltransferase 7.83E-127

c31446 2 4.18E-04 E3 ubiquitin protein ligase 1.32E-05

bcscontig_0057 2 3.77E-05 signal-transducing adaptor protein 1 1.21E-35

lrc18012_rc 2 3.56E-05 UNC 93-like protein a 1.02E-39

contig_10799_rc 2 1.12E-04 luciferin- 4-monooxygenase 1.18E-17

DOWN REGULATION

BgMFREP4_1 6 9.61E-04 fibrinogen-related protein 4 0

contig_4813_rc 6 7.47E-05 gastric triacylglycerol lipase 4.24E-57

c40570 4 0.001065175 haemoglobin 3.57E-10

contig_11565 4 9.50E-04 Ferric chelate reductase 1.52E-11

c1870 4 1.37E-04 NAD(P)H quinone oxidoreductase 2.07E-57

c12601 3 2.17E-04 inhibitor of apoptosis protein 5.68E-12

c24614_rc 3 6.18E-04 amine sulfotransferase 3.85E-53

c454_ctg_0721 3 5.52E-04 cytochrome p450 II f2 1.42E-66

contig_7675 3 6.52E-04 pseudouridine-metabolizing bifunctional 1.55E-54

contig_7768_rc 3 0.001134365 bactericidal permeability-increasing isoform 2.95E-13

c16500 3 2.84E-04 N-sulphoglucosamine sulphohydrolase 4.11E-05

lcl|contig_10981 3 6.07E-04 thymidine cytosolic 8.61E-94

lcl|c1892 3 2.66E-04 glutamate receptor 2.02E-40

contig_6971 3 3.29E-04 neutral cholesterol ester hydrolase 3.08E-51

contig_7565 3 2.53E-04 filamin-A 1.01E-27

(Continued)
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When high levels of toxicant accumulate internally, as would be expected in snails continually
immersed in niclosamide solution, toxicity can result from interaction of the toxicant with a
critical molecule in a target cell. The toxicant or its metabolite may be a strong electrophile,
nucleophile, free radical, or redox-active reactant, and may damage the target molecule or
interfere with its normal function [40]. In addition to undergoing biotransformation by consti-
tutively-expressed proteins and having immediate toxic effects, a xenobiotic may also alter
gene expression. Affected genes may be involved in biotransformation, physiological adapta-
tion to stress, or repair of damage at the molecular, cellular or tissue level. These induced pro-
cesses are usually protective, e.g., by enhancing detoxification and elimination of the toxicant,
allowing compensatory physiological processes to maintain homeostasis, and effecting repair.
However, they can also enhance toxicity, e.g., by bioactivation of the xenobiotic to a toxic
metabolite, maladaptive physiological responses, or dysrepair, e.g., fibrosis. Consequently, a
systems approach provided by the interrogation of microarrays has the potential to provide
new insights into the general nature of the complex transcriptomic response to xenobiotics.

Phase I and phase II biotransformation
Based on studies with better-characterized mammalian models, cytochrome P450 (CYP)
enzymes are involved in the most important phase I reactions [35]. CYPs constitute a super-
family of structurally diverse and functionally versatile enzymes with more than 15,000 known
genes distributed across all biological kingdoms [41]. CYPs generally catalyze a monooxygena-
tion reaction, in which an atom of oxygen is added to the xenobiotic [39]. In insects, the associ-
ation of CYP expression with insecticide or drug resistance is well established [42–44]. For
example, high expression of a single CYP allele (CYP6G1) confers resistance to DDT in Dro-
sophila melanogaster [45] and to pyrethroids in Anopheles funestus [46]. Upregulation of CYP
expression can be induced by many different xenobiotics, which generally act by combining
with an intracellular receptor to form a transcription factor that then binds to xenobiotic
response elements of target genes, activating their transcription [39]. Interestingly, the induced
CYPs may not be involved in the metabolism of the xenobiotic that causes their upregulation.

In snails CYPs are expected to be diverse, and the array used for this study contains about
100 distinct features with similarity to CYP genes, but thus far, we know little of the overall
diversity of CYP genes in B. glabrata, and their full range of functions. In this study, 9 CYPs

Table 1. (Continued)

c3688 2 7.14E-04 major surface-labeled trophozoite antigen 417-like isoform

c42991 2 3.61E-04 peptidyl-prolyl cis-trans isomerase 3.50E-09

contig_11428 2 8.11E-04 BBsome-interacting protein 1 2.31E-13

c11321 2 1.63E-04 zygotic DNA replication licensing factor mcm6-b-like 5.36E-43

contig_6008 2 1.08E-04 migration and invasion enhancer 1 3.07E-14

c10293 2 2.14E-04 protein CEPU–1 1.47E-24

contig_3480 2 2.40E-04 thiamine biosynthesis protein

contig_213_rc 2 5.84E-05 troponin i-like 1.95E-43

c26878_rc 2 4.68E-04 taurine transporter

c21747_rc 3 2.15E-05 quinone oxidoreductase-like 2.51E-17

contig_15139 2 1.22E-04 ankyrin and armadillo repeat-containing protein 3.57E-37

Note: Genes described in the table were found to be expressed differentially in at least one concentration. If two or more concentrations resulted in

differential expression, the higher or highest fold change is given in the table.

doi:10.1371/journal.pntd.0004131.t001
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Fig 3. Hierarchical clustering of expression values from annotated genes significantly differentially expressed at all niclosamide concentrations
(0.05mg/L, 0.10mg/L, and 0.15mg/L).

doi:10.1371/journal.pntd.0004131.g003
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Fig 4. Hierarchical clustering of expression values from annotated genes significantly differentially expressed at all niclosamide concentrations
(0.05mg/L, 0.10mg/L, and 0.15mg/L). Transcript descriptions have been reorganized by general functional categories.

doi:10.1371/journal.pntd.0004131.g004
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were upregulated, and one was downregulated in niclosamide-exposed snails (Table 1 and Fig
4). Out of 16 transcripts with�5 fold upregulation, 4 were CYPs, indicating they are an impor-
tant component of the snail transcriptomic response following exposure to niclosamide. Only
one full-length cDNA of a CYP (AY922309) has been previously reported from B. glabrata,
and exposure of snails to S.mansoni resulted in downregulation of its expression [47]. Since
sequences of CYPs are highly diverse [41] and only partial sequences of the 10 differentially
expressed CYPs observed in the study are available, a phylogenetic analysis is unlikely to reveal
reliable relationships among the snail CYPs discussed. However, the complex expression pat-
tern of the 10 CYPs presented in this study as well as altered expression of one CYP
(AY922309) in response to S.mansoni suggest CYPs have diverse functions in B. glabrata.

Provision of additional functional information regarding the specific CYPs induced by
niclosamide or other molluscicides is important, because it will provide further needed details
regarding the detoxification process in snails, and could potentially lead to an ability to select
for compounds with higher specific activity for snails relative to other aquatic organisms. Also,
prior to widespread application of molluscicides, it would be of interest to identify the array of
CYPs present, to facilitate subsequent monitoring for the possible emergence of molluscicide-
resistant snails that might express mutated CYPs as has been documented in insects. Thus far
there has been no clear indication for the emergence in snails of resistance to niclosamide [48],
although Sullivan et al. (1984) reported an approximately two-fold higher tolerance to niclosa-
mide in a laboratory strain of B. glabrata after 5 generations of selection [49].

Relative to phase II (conjugation) proteins, our study revealed one glutatione S-transferase
(GST) that was 8-fold overexpressed following niclosamide exposure. Like CYPs, GSTs are also
markers of metabolism of xenobiotics and indicators of the presence of contaminants [50]. Based
on Illumina RNA-seq analysis, Zhao et al. (2015) described the responses of the amphibious
snail, Oncomelania hupensis, after challenge with two different niclosamide-based molluscicides.
They showed that two CYP genes and one GST gene were upregulated following molluscicide
exposure [51]. This observation coupled with our results suggests that both enzyme families are a
common component of the snail transcriptomic response to molluscicides. In contrast, GSTs but
not CYPs were shown to be highly expressed in a microarray study of the gills of the musselMyti-
lus galloprovincialis following exposure to salts of heavy metals [52]. This suggests that molluscs
can respond differently depending on the nature of the toxicant.

Phase III biotransformation
Drug transporters play a vital role in translocation of compounds such as nutrients, wastes,
toxins and xenobiotics into or out of cells [53–55]. The transporters work in conjunction with
drug metabolizing enzymes such as CYPs and phase II enzymes for drug elimination. They can
be classified as influx and efflux transporters, which are located either at the basolateral or api-
cal membranes.

Efflux transporters are ATP-binding cassette (ABC) transporters that belong to a superfam-
ily including multidrug resistance proteins (MRP). These efflux pumps determine bioavailabil-
ity and concentrations of many drugs. In our study, a highly expressed MRP was found
(contig_14304). MRPs preferentially transport anionic compounds and compounds detoxified
by cellular enzymes such as GST.

Influx transporters are members of the solute linked carriers (SLC) superfamily responsible
for transporting organic anions, organic cations or oligopeptides [56]. In this study, two tran-
scripts that encode solute carrier transporter family 28 (c27272) and organic cation transporter
(c36549_rc) have also been shown to be 6- and 4-fold upregulated, respectively, following
niclosamide exposure (Table 1).

Transcriptomic Responses of Snails to Niclosamide

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004131 October 9, 2015 13 / 21



In addition, we have noted that a sodium-dependent multivitamin transporter (c1938) and
a cystine-glutamate transporter (c32432), two additional influx transporters, were also highly
expressed. Sodium-dependent multivitamin transporter is an important transmembrane pro-
tein responsible for translocation of vitamins and other essential cofactors such as biotin. Vita-
mins are required for detoxification metabolism and vitamin E (α-tocopherol) is involved in
repair of peroxidized lipids [40]. Cystine-glutamate transporter mediates cystine entry in
exchange for intracellular glutamate in mammalian cells. Cystine is converted to cysteine,
which is required for synthesis of glutathione, an antioxidant that prevents damage due to reac-
tive electrophiles.

Transporters are well-known for their roles in drug efficacy and resistance [57]. ABC trans-
porters are upregulated in schistosomes in response to praziquantel [58,59]. Knockdown of
ABC transporters enhances susceptibility of adult and juvenile schistosomes to praziquantel
[60]. In addition, ABC transporters play a critical role in diverse physiological functions in
schistosomes including immune responses and reproduction [55]. The role of transporters in
the response of snails to molluscicides awaits further study.

In summary, genes encoding key molecules involved in all three phases of biotransforma-
tion in B. glabrata were responsive to molluscicide treatment and provide a basis for beginning
to understand the molecular basis of detoxification in freshwater snails.

Stress response
The stress response is characterized by the production of stress proteins which tend to be rela-
tively well-conserved across both prokaryotes and eukaryotes. Often it is the presence of dena-
tured proteins that triggers a stress response, including production of heat shock proteins
(HSP). HSPs, mainly acting as molecular chaperones, are involved in protein folding, assembly,
degradation, and intracellular localization. Under normal conditions, HSPs are constitutively
expressed. Heightened expression is triggered by various physiological perturbations or stress-
ors (e.g. elevated temperature, hypoxia, ischemia, heavy metals, radiation, calcium increase,
glucose deprivation, pollutants, drugs, cancer, and microbial infection) [61]. Functions within
the HSP superfamily are highly diverse. We found six HSPs belonging to three families
(HSP20, HSP40 and HSP70) to be upregulated upon exposure to niclosamide (Table 1 and
Fig 4). High molecular weight HSPs such as HSP90s were not differentially expressed.

HSP20s protect other proteins against heat-induced aggregation or denaturation. HSP20
was identified as a biomarker for environmental stress in the disk abalone,Haliotis discus dis-
cus, and its expression could be induced by extreme temperatures, salinities, heavy metals and
microbial infection [62]. HSP90, HSP70, HSP24.1 and sequestosome–1 were also highly
expressed in the marine bivalveMytilus galloprovincialis exposed to toxic metals [54]. The lat-
ter gene encodes a protein involved in ubiquitin binding and is therefore related to proteasome
degradation. We also found this gene to be upregulated in B. glabrata exposed to niclosamide.
HSP40s, also referred to as DnaJ/Hsp40, stimulate the ATPase activity of chaperone proteins,
HSP70s, by stabilizing their interactions with protein substrates [63].

In addition to stress responses, HSPs are also involved in detoxification, immune responses,
pathogenesis and cancer development [64,65]. In Biomphalaria, an increased expression of
HSPs has been linked to susceptibility of snails to schistosome parasites [66–68]. The relation-
ships between the HSPs discussed in these studies and the 6 HSPs presented in this study are
unclear because complete cDNA of the HSPs we studied are lacking. Eventual comparisons of
full-length HSP cDNAs will help resolve this matter.
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Intracellular and transmembrane trafficking
The most highly expressed gene we noted following niclosamide exposure was the gene encod-
ing ADP-ribosylation factor 1 (ARF1). ARF1 is a member of the family of GTPases, and a key
regulator of intracellular vesicle trafficking at the Golgi apparatus and endosomes. At the Golgi
complex, ARF1 facilitates membrane recruitment of many cytoplasmic coat proteins to allow
sorting of membrane proteins for transport. It also stimulates the activity of enzymes that mod-
ulate the lipid composition of the Golgi, and that assemble cytoskeletal scaffolds on the Golgi
[69–71]. A recent study demonstrated that ARF1 upregulation, apparently coupled to ARF4
downregulation, enables Golgi secretory pathway activity to continue even in the presence of
inhibitors [72]. This effect may involve an ARF-CREB signaling pathway, which may be
affected by a CREB3 regulatory factor-like isoform, which acts as a negative regulator of the ER
unfolded protein stress response. The upregulation of CREB3 regulatory factor-like isoform we
observed may then interfere with the production of some ARF molecules like ARF4, which
could be compensated for by the production of others, like ARF1 [72].

In eukaryotic cells membrane compartments are connected through cargo-selective vesicle
trafficking, thereby mediating the exchange of components between different organelles. This
exchange is essential to maintain structural integrity and specific composition [73]. A funda-
mental regulatory step in vesicle formation is the activation of small ARF GTPases by exchang-
ing their bound GDP for GTP, which is a prerequisite for ARF-mediated effector recruitment
[74]. In our study, in addition to ARF1, four additional GTPases (c17735, c28906, c37491_rc,
and BGC03483), all with a conserved ABC-ATPase domain, were over-expressed in niclosa-
mide-treated snails.

Other recent studies also suggest that ARF1 plays an important role in modulating the mor-
phology and function of mitochondria [75–76]. Mitochondria and ER are found in close prox-
imity to each other and it is thought that they maintain contact sites to facilitate exchange of
molecules. ARF1 is well known for its essential role in the generation of coatomer protein I-
coated vesicles in the Golgi complex, which are important for maintenance of mitochondrial
function, possibly at ER-mitochondrial contact sites. Indeed, our study has revealed that two
coatomer genes were over-expressed following niclosamide treatment (Table 1). Thus, the
upregulation of ARF1, coatomer, and GTPase genes may be an important compensatory
response to toxic damage, allowing maintenance of Golgi and mitochondrial function.

In contrast to a potential role in preserving organelle function, GTPases can be involved in a
process involving mitochondrial fragmentation. Mitochondria form a highly dynamic network
throughout the cell, which is maintained through constant fission and fusion of mitochondrial
tubules. These fission and fusion events are regulated by two types of GTPases in mammalian
cells [77]. Park et al. (2011) showed that niclosamide was a potent inducer of mitochondrial
fragmentation in human HeLa cells, resulting in the disruption of mitochondrial membrane
potential, reduction of adenosine triphosphate (ATP) levels, and cell death, and that this frag-
mentation was mediated by the GTPase Drp1 [78]. Whether the 4 GTPases upregulated in our
study have a protective or cytotoxic role requires further study.

Genes downregulated following niclosamide exposure
One of the most conspicuously downregulated genes with known homologs in GenBank was
FREP4. FREP4 is involved in immune responses to trematodes [79] as well as in ontogenesis
[80]. FREPs belong to a gene family with many members, and the functions of its members are
expected to be diverse [81–83]. Other studies have also noted underexpression of immune
genes in animals subjected to toxin or xenobiotic pressure. Varotto et al. (2013) found that sev-
eral transcripts associated with immunity including fibrinogen-containing protein gene 7 were
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under expressed inM. galloprovincialis exposed to toxic metals [52]. In strains of the mosquito
Aedes aegypti resistant to Bacillus thuringiensis israelensis toxins, genes involved in immune
responses were generally under-transcribed [84], and exposure of sphingid caterpillars to toxic
plant compounds was shown to weaken their melanization immune responses [85].

In planorbid snails like B. glabrata, hemoglobin plays the primary role in transporting oxy-
gen and is an abundant hemolymph protein, so it is noteworthy that a four-fold reduction in
hemoglobin gene expression was observed. It is clear that snails like lymnaeids that rely on
hemocyanin as a respiratory pigment are also affected by niclosamide [7], so it seems unlikely
that depressed hemoglobin synthesis per se could be the only mechanism of niclosamide toxic-
ity in B. glabrata. As noted above, early investigations demonstrated that niclosamide affects
oxygen uptake in B. glabrata, with higher concentrations resulting in the inhibition of oxygen
intake [13]. Downregulation of hemoglobin gene expression may be one reason for decreased
oxygen uptake noted in such studies, which in turn could contribute to toxicity.

Direct effects of niclosamide versus indirect toxic effects
Hypothetically, at the organismal level changes in gene expression following exposure to a toxi-
cant can result from direct as well as indirect mechanisms. Specifically, changes can occur in
target cells that directly interact with a toxicant, or can occur in cells that instead are respond-
ing to non-toxicant molecules (e.g., from necrotic, inflammatory, or neuroendocrine cells) or
to toxicant-altered physiological parameters (e.g., hemolymph pH, osmolarity, or O2 concen-
tration). If concentration increases to a level causing wholesale death of target cells, then we
would expect indirect mechanisms to become more pronounced. With increasing concentra-
tions of niclosamide, we observed an increase in the number of both upregulated and downre-
gulated genes, with a predominance of upregulated genes. Some of the changes noted at higher
concentrations may indeed be the result of indirect toxic effects However, the known functions
of responsive genes and the overall patterns observed are clearly suggestive of the involvement
of protective biological processes that are affected by niclosamide. The responsive genes com-
prise a list of candidate targets for niclosamide and offers leads for future development of novel
molluscicides.

Conclusion
Our data suggest that niclosamide alters expression of several genes involved in biotransforma-
tion, stress responses, intracellular organelle trafficking and oxygen transport. The aggregate
toxicological significance of these altered expression patterns is not clear, but it is reasonable to
speculate that some of these transcriptomic responses are adaptive, allowing enhanced elimina-
tion of niclosamide and perhaps maintenance of protein and organelle function and repair,
whereas others may lead to enhanced toxicity, e.g., by suppressing immune function, lowering
oxygen carrying capacity of hemolymph and contributing to mitochondrial damage. Future
studies of the effects of niclosamide on snails need to address which of the transcriptomic
responses are key to understanding its mechanism of toxicity. Such responses can then serve as
useful biomarkers for testing new candidate molluscicides. Also, it will be important to distin-
guish between direct effects of niclosamide on target cells and indirect effects, and to assess the
role of these effects in niclosamide toxicity at low and high concentrations. Finally, genes
expressed in snails during recovery from exposure may provide insights on protective detoxifi-
cation and repair mechanisms that can serve as future targets.

A long-term goal of molluscicide research is to develop chemicals that have more specific
effects on targeted snail species, without widespread toxicity to nontarget organisms such as
fish, which are killed by niclosamide. Previous studies have shown that mammalian and
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tapeworm mitochondria differ markedly in their responses to niclosamide, thereby accounting
for the selective toxicity of this drug against tapeworms and its low toxicity in mammals [86].
This observation raises the possibility that mitochondrial or other cellular functions in snails
might also be different and potentially more vulnerable to more specific molluscicides that
leave aquatic vertebrates unaffected. Deciphering such differences with the use of molecular
tools should help in the rational design of a next generation of highly specific molluscicides.
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function and cellular component.
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