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Pseudoenzymes are proteins that are evolutionarily related to active

enzymes, but lack relevant catalytic activity. As obligate intracellular patho-

gens, viruses complete their life cycle fully dependent on the cellular supplies

of macromolecule and energy. Traditionally, studies of viral proteins shar-

ing high homology with host counterparts reveal insightful mechanisms by

which host signaling pathways are delicately regulated. Recent investiga-

tions into the action of cellular pseudoenzymes elucidate diverse molecular

means how enzymes are differentially controlled under various physiological

conditions, hinting to the potential that pathogens may exploit these regula-

tory modalities. To date, there have been three types of viral pseudoen-

zymes reported and our understanding concerning their mechanism of

regulation is rudimentary at best. However, it is clear that viral pseudoen-

zymes are emerging with surprising functions in infection and immunity,

and we are only at the beginning to understand this new group of enzyme

regulators. In this review, we will summarize current knowledge in viral

pseudoenzymes and provide a perspective for future research.

Introduction

Pseudoenzymes are defined as catalytically deficient

proteins that are structurally similar to active enzymes,

but lack key amino acids that constitute the active site

required for enzyme catalysis [1]. Although pseudoen-

zymes are catalytically inert, they can retain functions

by (a) binding to other proteins, (b) competing for

either substrate binding or assembling with active

homologs of substrate, and (c) modulating the output

of signaling pathways through allosteric effects [2].

Among notable pseudoenzymes, a handful of viral

pseudoenzymes have been identified, but their regula-

tory actions remain poorly defined. Here, we summa-

rize the three families of viral pseudoenzymes reported

to date. The first family of viral pseudoenzymes from

Leporipoxvirus consists of Cu, Zn-superoxide dismu-

tase (SOD) homologs. These pseudodismutases were

shown to regulate superoxide decomposition and affect

cellular redox status during virus infection [3].

Recently, a poxvirus pseudokinase, B12, and a closely

related B1 kinase were reported to regulate the phos-

phorylation of the cellular antiviral barrier to autointe-

gration factor (BAF), thereby controlling DNA

replication [4]. More recent studies from our group

characterized several viral homologs of cellular glu-

tamine amidotransferases (GATs), thus referred to as

vGATs, from gamma herpesviruses that cause signifi-

cant morbidity and mortality in immune-deficient indi-

viduals. These herpesviral pseudoenzymes hijack

cellular phosphoribosylformylglycinamidine synthetase

(PFAS), a cellular GAT, to deamidate the cytosolic

double-stranded RNA (dsRNA) sensor RIG-I, and

impede antiviral cytokine production [5]. Here, we

review these three types of viral pseudoenzymes, in the

context of viral infection and host responses, to gain
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insight into their mechanism of regulation and biologi-

cal significance.

Glutamine amidotransferases (GATs)

Cellular GATs are remarkable metabolic molecules

that catalyze enzymatic incorporation of ammonia into

various metabolites of biosynthetic pathways, includ-

ing nucleotides, amino acids, amino sugars, and coen-

zymes [6,7]. These enzymes are key players in cellular

metabolism and provide essential building blocks for

cell proliferation and viral replication. Structurally,

these enzymes contain two to three enzymatic active

sites that are physically connected and functionally

coordinated via a so-called molecular tunnel for

ammonia transfer [8,9]. Biochemically, cellular GATs

extract ammonia from glutamine to synthesize inter-

mediates of the corresponding anabolic pathways. This

extraction process is mediated by an enzymatic active

site containing a catalytic triad consisting of cysteine,

histine, and glutamate/asparagine. Among these three

residues, the cysteine residue is essential for enzyme

catalysis in a way similar to that of cysteine proteases.

Alternatively, this reaction can be catalyzed by an N-

terminal cysteine residue, for example, in phosphoribo-

syl pyrophosphate amidotransferase (PPAT) that cat-

alyzes the rate-limiting step of the de novo purine

synthesis pathway. Owing to the highly conserved and

essential function of GATs across all kingdoms of life,

the mechanism and regulation of GAT enzymes have

been largely learned from prokaryotic, specifically bac-

terial, homologues.

Based on the catalytic cysteine residue used for the

amide bond cleavage, cellular GATs are classified into

class I subfamily-triad GATs and class II subfamily-N-

terminal nucleophile (Ntn) GATs [7,9,10]. For exam-

ple, the triad GATs, including cytidine triphosphate

synthetases 1 and 2 (CTPS1 and CTPS2), bacterial

carbamoyl phosphate synthetases (CPSs), guanosine

monophosphate synthetase (GMPS), and PFAS in

nucleotide metabolism, have a highly conserved cat-

alytic Cys-His-Glu/Asn triad that uses the thiol group

of the cysteine residue for catalysis [6,11,12,13]. In

contrast, the Ntn GATs, represented by PPAT in de

novo purine biosynthesis and asparagine synthetase in

amino acid synthesis, harbor the catalytic cysteine at

the very N terminus. The glutaminase domains of

most class I GATs share a common open a/b struc-

ture, with the catalytic triad consisting of three resi-

dues donated from distinct secondary structures.

However, those of the class II GATs are composed

mainly of antiparallel b sheets, presumably better

exposing the N-terminal free cysteine residue for

catalysis. In general, GATs are heteromeric enzyme

complexes made up of a glutaminase subunit and a

synthase subunit. The glutaminase subunit hydrolyzes

glutamine to glutamate and ammonia, and the latter is

subsequently incorporated into the substrate of the

synthase subunit [14]. In metazoans, GATs harbor

both glutaminase and synthetase domains within a sin-

gle polypeptide, for example, CAD and CPSs. These

GATs are likely resulted from gene fusion events that

may synchronize the expression of enzymes catalyzing

sequential metabolic reactions of the same pathway

[15], in analogy to the bacterial gene expression driven

by an operon that regulates a cluster of genes of a

biosynthetic pathway.

Phosphoribosylformylglycinamidine synthetase

(PFAS)

PFAS, also known as FGAMS or FGARAT, belongs

to the class I GAT family and is a highly conserved

core enzyme across all kingdoms of life. It catalyzes

the fourth step of the de novo purine synthesis, in

which N-formylglycinamidine ribonucleotide (FGAM)

is converted from the intermediate formylglycinamide

ribonucleotide (FGAR) [14,16,17]. PFAS is encoded

by the purL gene and exists in two forms known as

the large PurL and small PurL. The large PurL found

in most Gram-negative bacteria and eukaryotes con-

sists of a 140 kDa polypeptide chain and contains

three major domains, that is, the N-terminal domain,

the FGAM synthetase domain, and the C-terminal

glutaminase (GATase) domain [18]. The small PurL is

found in Gram-positive bacteria and archaea, and it

consists of a 66–80-kDa peptide chain that is homolo-

gous to the FGAM synthetase domain of the large

PurL. For glutamine-dependent activity, the small

PurL requires two additional gene products, PurQ and

PurS. PurQ has a molecular weight of 25 kDa and is

equivalent to the glutaminase domain responsible for

the generation of ammonia, whereas the structures of

the 10-kDa PurS dimer reveal homology to the N-ter-

minal domain of the large PurL [19,20,21]. Like other

cellular GATs that catalyze the synthesis of building

blocks of a cell, PFAS has been solely studied for its

activity in nucleotide synthesis. Remarkably, our

recent work that examines herpesvirus immune evasion

strategy showed that PFAS is hijacked to deamidate a

cytosolic pattern recognition receptor, the dsRNA

RIG-I sensor [5]. In doing so, these herpesviruses

effectively derail the RIG-I-MAVS pathway to mute

host innate immune activation and antiviral cytokine

production. This study uncovered new activity of a

metabolic enzyme in immune regulation via
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deamidating a key signaling molecule, potentially cou-

pling innate immune response to cellular metabolic sta-

tus.

Viral glutamine amidotransferases (vGATs)

Gamma herpesviruses establish life-long latent infec-

tion in lymphoid cells, although they are capable of

infecting other cell types and persisting in those cells.

Epstein–Barr virus (EBV) and KSHV are associated

with diverse malignancies and cancers of lymphoid,

endothelial, or epithelial cell origin, particularly in

individuals with immune-suppression, such as AIDS

patients and organ transplantation recipients. In addi-

tion to the set of genes dedicated to support viral

replication in infected cells, a large portion of these

herpesviral genomes is expressed to modulate host cel-

lular pathways, which collectively function to achieve

their persistence within host [22]. Viral mimicry of key

cellular signaling molecules is a common feature of

these viral proteins that are evolutionarily selected and

remarkably fine-tuned to achieve maximal efficiency in

choreographing cellular biological processes. Pseu-

doenzymes, perhaps, represent one example of those

proteins that are crafted by millions of years of virus–
host interaction.

vGAT proteins, encoded by the open reading frame

75 (ORF75), are highly conserved within all gamma

herpesviruses, including human EBV and KSHV, non-

human primate herpesvirus saimiri (HVS) and rhesus

monkey rhadinovirus (RRV), and murine herpesvirus

68 (MHV68) [23]. Interestingly, EBV and KSHV

encode one homolog of vGAT, the genome of HVS

and MHV68 contain two and three copies of vGAT,

respectively. vGAT proteins share limited, but signifi-

cant, homology with cellular PFAS. Thus, these vGAT

genes are likely pirated from their natural hosts and

undergo duplication during evolution. The fact that

these genes are amplified in gamma herpesviruses of

nonhuman primates and rodents implies their pivotal

roles during viral infection. Indeed, these vGAT pro-

teins are involved in viral capsid trafficking to the

nucleus and evasion of intrinsic nuclear immunity via

degrading the component of promyelocytic leukemia

(PML)-associated nuclear body (ND) [24,25]. vGAT

proteins are tightly associated with nucleocapsids and

are resistant to detergents that normally dissociate

tegument proteins. Such tight association with nucleo-

capsids may facilitate their delivery to the nucleus, per-

mitting the inactivation of the intrinsic immunity of

the nuclear PML-ND system. Packaged in the tegu-

ment compartment, vGAT proteins are released into

the cytosol immediately after virus–host cell fusion

occurs, enabling the evasion of host defense at the crit-

ical time when no viral polypeptides are newly synthe-

sized during de novo infection. Interestingly, our work

identified one of the vGAT homologs of MHV68,

namely that encoded by ORF75c, as a pseudoenzyme

to derail innate immune sensing by RIG-I [5] (Fig. 1).

The vGAT proteins, although sharing homology with

cellular PFAS, lack the residues constituting the cat-

alytic triad that is required for the glutamine-hydrolyz-

ing activity. Although three MHV68 ORF75 proteins

share homology with cellular PFAS, these viral homo-

logs failed to complement the enzyme function in pur-

ine synthesis in PFAS-deficient CHO cells [25]. These

observations support the conclusion that viral ORF75

homologs, at least those encoded by MHV68, are

pseudoenzymes in de novo purine synthesis, although

whether these viral proteins have other intrinsic enzy-

matic activity remains unknown. In a functional screen

to identify viral components that regulate the RIG-I

innate immune pathway, our group discovered that

vGAT encoded by ORF75c, but not ORF75a and

ORF75b, induced RIG-I deamidation to mute cellular

antiviral cytokine production [5]. In doing so, vGAT

recruits cellular PFAS to deamidate RIG-I and aber-

rantly activate RIG-I signaling, which is hijacked by

MHV68 to avoid cytokine production [5]. This study

uncovers an intrinsic enzyme activity of PFAS in

deamidating proteins, in addition to its previously rec-

ognized glutamine-hydrolyzing activity in purine syn-

thesis. The ability of vGAT to deflect cellular PFAS to

deamidate key signaling proteins implies a potentially

ubiquitous function of protein deamidation in meta-

zoans, as previous deamidation studies have involved

largely bacterial effectors that function as bona fide

deamidases [26,27,28]. Interestingly, PFAS appears to

deamidate both glutamine and asparagine residues of

RIG-I and there are three deamidation sites with

flanking sequences showing no apparent similarity. It

remains unknown how this cellular deamidase targets

specific residues for deamidation, since there are pre-

sumably a number of asparagines and glutamines on

the surface of RIG-I. Conceivably, a consensus

sequence may enable protein deamidation in ways sim-

ilar to kinases that target proteins for phosphorylation.

In addition to RIG-I, PFAS also deamidates the viral

replication and transcription activator (RTA, also

known as ORF50) that is crucial for gamma her-

pesvirus lytic replication [29]. Remarkably, deamida-

tion of two asparagine residues flanking the nuclear

localization signal (NLS) of RTA impedes its nuclear

import. The import of nuclear proteins is mediated by

the importin complex that serves as a receptor to deli-

ver proteins into the nucleus. Deamidation of RTA,
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indeed, diminishes its association with importin and

impedes its nuclear accumulation, thereby limiting

viral lytic replication. Furthermore, RTA homologs of

other gamma herpesviruses appear to be deamidated

and controlled for nuclear import by PFAS-mediated

deamidation, suggesting a conserved mechanism in

regulating gamma herpesvirus lytic gene expression

and replication. Additional investigation using viruses

of rodents and nonhuman primates is needed to deter-

mine the in vivo roles of PFAS-dependent deamida-

tion. While RIG-I deamidation requires a concerted

action of vGAT and PFAS, PFAS is sufficient to

deamidate KSHV RTA, demonstrating intrinsic

enzyme activity to deamidate proteins. These distinct

activities of PFAS, in nucleotide synthesis and protein

deamidation, suggest the dynamic regulation of PFAS

during the infection of KSHV and likely other gamma

herpesviruses, which calls for future investigation.

vGAT is shared within gamma Herpesviridae,

whereas a functional deamidase in alpha Herpesviridae

is the UL37 tegument protein. The vGAT and UL37

viral proteins share a similar repertoire of functions

during viral infection, including being inner tegument

proteins tightly associated with nucleocapsids and

required for nucleocapsid trafficking, deamidating

cytosolic sensors (e.g., RIG-I and/or cGAS), and

manipulating NF-jB activation [30,31,32,33,34]. How-

ever, UL37 of herpes simplex virus 1 (HSV-1), and

likely its homologs of HSV-2 and Varicella-Zoster

virus (VZV), is a bona fide deamidase that demon-

strates protein-deamidating activity in cells and in vitro

[32,33]. Comparing vGAT proteins to UL37 may

reveal new insight into how vGAT proteins activate

PFAS in deamidating distinct proteins to affect the

cellular environment and promote viral infection. It

remains unknown how vGAT alters the protein-deami-

dating and purine-synthesizing activities of PFAS. The

latter will explore a new function of vGAT proteins in

nucleotide synthesis and other metabolic pathways that

are essential for viral replication. Importantly, it is

clear that PFAS is sufficient to deamidate RTA

in vitro, indicating PFAS can be a bona fide deamidase

[29]. The deamidase activity of PFAS toward RTA

suppresses KSHV lytic replication suggests an adapta-

tion that KSHV remains latent in highly proliferative

cells, which presumably have high deamidase activity

of PFAS. However, PFAS deamidates RIG-I in

MHV68-infected cells, namely in the presence of

vGAT. Despite that these deamidation events are

examined in infection of two gamma herpesviruses,

Fig. 1. Pseudoglutamine amidotransferase

of herpesvirus. Glutamine

amidotransferases (GATs) deamidate

cellular glutamine and utilize the ammonia

for diverse metabolic activities. As a GAT,

phosphoribosylformylglycinamidine

synthetase (PFAS) possesses a signature

catalytic triad that deamidates glutamine for

de novo purine biosynthesis. During murine

gamma herpesvirus 68 (MHV68) infection,

the vGAT pseudoenzyme hijacks PFAS to

deamidate RIG-I, thereby avoiding antiviral

cytokine production to evade host immune

defense.
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these observations imply that PFAS is regulated to

deamidate distinct protein substrates during viral infec-

tion. How this is achieved is an open question. Never-

theless, these vGAT pseudoenzymes appear to

influence the catalytic functions of cellular PFAS and

related metabolic pathways, which collectively impinge

on key biological processes underpinning herpesvirus

productive infection, for example, innate immune

response and nucleotide synthesis.

Viral pseudokinase

Poxviruses contain the largest genome among all

viruses and encode a diverse array of factors that

modulate host signaling pathways during infection

[35]. A conserved family of viral Ser/Thr kinases,

known as cellular vaccinia-related kinases (VRKs), is

characterized by homology to the vaccinia virus B1

kinase [36]. The vaccinia B1 kinase can phosphorylate

cellular barrier to autointegration factor (BAF) to

suppress host immune defense, thereby promoting

productive viral infection [37,38]. Cellular BAF is a

highly conserved DNA-binding protein and is

involved in multiple fundamental biological processes,

such as mitosis, gene regulation, and genomic stabil-

ity [39]. During poxvirus infection, BAF binds to

viral DNA genome and inhibits DNA replication in

the cytoplasm (Fig. 2, left panel). The viral B1 kinase

or cellular VRK1 kinase predominantly phosphory-

lates Ser-4, and to much less extent Thr-2 and Thr-3,

of BAF [36,40–43]. Phosphorylation of BAF greatly

reduces its DNA-binding activity, thus inactivating

BAF to facilitate viral DNA replication [43,44]. Her-

pesviruses replicate their genomes in the nucleus, and

it was interesting that BAF also demonstrates antivi-

ral activity against HSV-1. It is important to note

that a phosphorylation-resistant mutant of BAF,

when over-expressed, inhibits HSV-1 lytic replication,

but wild-type BAF fails to do so. Upon HSV-1 infec-

tion, BAF is dephosphorylated and accumulates in

the nucleus, where BAF binds to viral genome to

impede DNA replication and gene expression [45].

Paradoxically, BAF was also reported to facilitate the

association of SETD1A methyltransferase with pro-

moters of viral immediately-early genes, which

increases viral lytic gene expression and replication

[46]. Although it is not clear what contribute to these

opposite findings, this apparent discrepancy may stem

from the approaches the antiviral activity of BAF

was examined. It is equally possible that the role of

BAF in HSV-1 infection is cell type-specific and tem-

porally dependent. Nevertheless, BAF can bind DNA

to interfere genome replication and gene expression,

whereas phosphorylation prevents its association with

DNA to release BAF-mediated inhibition.

The vaccinia B12 gene encodes a paralog of the B1

kinase and share 36% amino acid identity with the B1

kinase. Unlike B1, the B12 kinase lacks catalytic activ-

ity due to amino acid variations of key catalytic resi-

dues [47]. Specifically, the D167G substitution of the

active site in the subdomain VII of B1 disrupts a salt

bridge forming with Mg2+ ions that orient the c phos-

phate of the bound ATP molecule for phosphor trans-

fer. Furthermore, the vaccinia B12 protein

demonstrates a potent inhibitory activity to dampen

BAF phosphorylation, which can be antagonized by

B1 kinase. Although B1 kinase can phosphorylate

BAF, B12 reduces BAF phosphorylation in cells

infected with B1-deficient virus, suggesting that B12

acts in a B1-independent pathway [4]. Intriguingly,

B12 primarily localizes to the nucleus where dephos-

phorylated BAF and subsequent antiviral activity are

increased by B12, thereby extending the period of viral

production in susceptible cells. These results show that

B1 and B12 constitute a paired kinase–pseudokinase
system to regulate BAF phosphorylation and inhibi-

tion of viral DNA replication. However, the molecular

mechanism how B12 pseudokinase functions, either in

pair with B1 and VRKs or independent of any kinases,

to modulate the DNA-binding activity of BAF

remains unclear.

It is generally postulated that the vaccinia B12 gene

may have arisen via a gene duplication event of a B1-

like ancestor [47,48]. There are a few lines of evidence

supporting this postulate. First, B12 is restricted to

members of the Orthopoxvirus genus and only present

in viruses with the B1 kinase, suggesting potentially

paired function and inter-regulation [38]. Second, both

vaccinia B1 and B12 genes are expressed during early

viral infection, coinciding with BAF-mediated regula-

tion of DNA replication. Whether the BAF-mediated

binding to viral genome also impacts the expression of

viral genes remains a legitimate question. Finally, B1

and cellular VRK2 kinase inhibit viral pseudokinase

B12 in infected cells to restrict BAF’s antiviral func-

tion in a phosphorylation-dependent manner [49], pro-

viding direct biochemical evidence for the kinase–
pseudokinase pair in DNA replication. These results

offer compelling evidence that BAF-mediated restric-

tion of DNA replication is delicately coordinated by

the B1 kinase–B12 pseudokinase pair. Additionally,

B12 may function through a distinct and BAF-inde-

pendent pathway [4], although the nature of such a

pathway remains unknown. Thus, B1 kinase and B12

pseudokinase present an unprecedented example of a

pair of epistatic paralogues serving to enhance gene
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(B1) conservation during poxvirus evolution. Such

paired regulatory gene system may confer growth fit-

ness in analogy to the toxin–antitoxin (known as TA)

system in bacteria to cope with conditions of stress

[50].

Viral pseudodismutase

Cellular superoxide dismutases (SOD) are metalloen-

zymes that regulate cellular redox homeostasis by cat-

alyzing the dismutation of two molecules of

superoxide radicals into hydrogen peroxide and dioxy-

gen [51–53]. The Cu, Zn-SOD depends upon a zinc

atom to maintain the structural integrity and utilizes a

copper atom as a catalytic cofactor [52]. The copper

chaperone for SOD (CCS) delivers a copper atom

specifically to SOD through the formation of a SOD-

CCS heterodimer [54,55]. The poxviral Cu, Zn-SOD

homologs are catalytically inactive and cannot decom-

pose superoxide. On the contrary, the Cu, Zn-SOD

homologs of myxoma virus (MYX) and shope fibroma

virus (SFV) gradually reduce the activity of cellular

Cu, Zn-SOD during infection [3,56] (Fig. 2, right

panel). Mechanistically, these viral pseudodismutases

demonstrate a capacity to selectively sequester cellular

CCS, thus reducing the copper supply to cellular

SODs [57]. Such competition between viral and cellular

SODs for CCS results in the decreased level of intra-

cellular pool of metal-chelated Cu, Zn-SODs and a

decline in dismutase activity of cellular Cu, Zn-SODs.

Consequently, the intracellular concentrations of

superoxide increase, which suppresses Fas-mediated

apoptosis and fuels the proliferation of virus-infected

cells [56,58,59]. Evidently, these viral pseudodismutases

provide significant benefit to support Leporipoxvirus

replication, because highly proliferative cells offer

more metabolic intermediates for productive viral

infection. Considering MYX and SFV can cause

fibroxanthosarcoma-like tumors when infecting their

natural hosts, one might speculate that these pseu-

dodismutases may contribute to the tumorigenicity of

these two Leporipoxivureses [60]. Surprisingly, recom-

binant viruses lacking these SOD homologs demon-

strate no significant difference in virus replication or

virulence compared to wild-type virus, raising a ques-

tion concerning the physiological roles of these viral

pseudodismutases in Leporipoxvirus infection [3]. In

addition to poxvirus infection, tumor cells with differ-

ential levels of cellular SOD activity exhibit altered

rate of metastasis and growth, which support a

Fig. 2. Pseudokinase and pseudodismutase

of poxvirus. Vaccinia virus encodes an

active kinase B1 and a pseudokinase B12, a

paired kinase–pseudokinase system that

coordinates the phosphorylation of cellular

BAF to regulate viral replication.

Phosphorylation status of barrier to

autointegration factor (BAF) dictates its

DNA-binding activity that blocks viral DNA

replication (left). Leporipoxvirus encodes a

pseudo-Cu, Zn-superoxide dismutase (SOD),

which competes for intracellular copper

with its host counterparts, resulting in

decreased activity of cellular SODs that

degrade superoxide. The increased

intracellular superoxide promotes the

survival and proliferation of virus-infected

cells (right).
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positive role of superoxide in promoting the metastasis

and growth of tumor cells [61,62]. The intracellular

superoxide, regulated by cellular SODs and viral pseu-

dodismutases, may serve as an important metabolic

molecule to influence cell proliferation, transformation,

and metastasis by activating the mitogen-activated

protein kinases [63]. How intracellular superoxide

altered by these viral pseudodismutases is coupled to

other cellular processes remains to be further investi-

gated. However, these observations suggest that virus-

induced tumorigenesis may be due to the imbalanced

intracellular superoxide concentration/flux mediated by

viral pseudoenzymes. It also provides an example of

how viral pseudoenzymes can target cellular metabolic

pathways to enhance the survival of virus-infected cells

en route to tumor formation, if these viral pseudodis-

mutases, when ectopically expressed, are shown to

induce tumor formation. Nevertheless, these studies

collectively demonstrate that viral pseudodismutases

can manipulate intracellular levels of superoxide to

inhibit apoptosis and promote cell proliferation, imply-

ing their potential roles in tumorigenesis and tumor

metastasis.

Perspectives and concluding remarks

To date, there have been only a few viral pseudoen-

zymes reported and their functions are not well under-

stood. Viruses, even the largest DNA viruses such as

herpesviruses and poxviruses, have relatively small

genomes compared with those of their host cells. The

fact that both poxviruses and herpesviruses encode

pseudoenzymes within their genomes implies the

important regulatory role of pseudoenzymes in funda-

mental biological processes, as viruses do not spare

their genetic coding capacity. Thus, these viruses offer

a useful tool and system to investigate the function

and mechanism of pseudoenzymes in fundamental

biology. Studies involving viral pseudoenzymes of cel-

lular GATs, SODs, and VRKs reveal common themes

and distinct actions of pseudoenzymes in regulating

immune response, redox homeostasis, and DNA repli-

cation, respectively. However, the physiological roles

of these pseudoenzymes are incompletely understood,

particularly during in vivo infection. Although bona

fide cellular and viral enzymes targeted by these viral

pseudoenzymes are identified, mechanism of action of

these pseudoenzymes (e.g., vGATs and B12) is poorly

understood and additional cellular targets may exist.

Applying cutting-edge multi-omics analysis to model

animals infected with recombinant viruses may identify

new in vivo roles of and specific pathways regulated

by these viral pseudoenzymes, thus imparting life to

these seemingly dead enzymes and expanding their

functional repertoire. On the other hand, it is very

plausible that there are viral pseudoenzymes yet to be

identified. Sequenced viral genomes will enable their

identification, although requiring extensive down-

stream analysis and structural modeling. Needless to

say, that our understanding of viral pseudoenzymes is

rudimentary at best. With the importance of viral

infections testified by the ongoing COVID-19 pan-

demic, future effort investigating viral pseudoenzymes

in biology and medicine will be an even more fruitful

investment. Traditionally, therapeutic agents are

sought to target bona fide viral enzymes. The pivotal

regulatory roles of pseudoenzymes attest a new class

of molecules that can serve as targets of intervention

for antiviral therapy.
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