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Abstract

Enzyme recruitment is a fundamental evolutionary driver of modern metabolism. We see

evidence of recruitment at work in the metabolic Molecular Ancestry Networks (MANET)

database, an online resource that integrates data from KEGG, SCOP and structural phylo-

genomic reconstruction. The database, which was introduced in 2006, traces the deep his-

tory of the structural domains of enzymes in metabolic pathways. Here we release version

3.0 of MANET, which updates data from KEGG and SCOP, links enzyme and PDB informa-

tion with PDBsum, and traces evolutionary information of domains defined at fold family

level of SCOP classification in metabolic subnetwork diagrams. Compared to SCOP folds

used in the previous versions, fold families are cohesive units of functional similarity that are

highly conserved at sequence level and offer a 10-fold increase of data entries. We sur-

veyed enzymatic, functional and catalytic site distributions among superkingdoms showing

that ancient enzymatic innovations followed a biphasic temporal pattern of diversification

typical of module innovation. We grouped enzymatic activities of MANET into a hierarchical

system of subnetworks and mesonetworks matching KEGG classification. The evolutionary

growth of these modules of metabolic activity was studied using bipartite networks and their

one-mode projections at enzyme, subnetwork and mesonetwork levels of organization.

Evolving metabolic networks revealed patterns of enzyme sharing that transcended meso-

network boundaries and supported the patchwork model of metabolic evolution. We also

explored the scale-freeness, randomness and small-world properties of evolving networks

as possible organizing principles of network growth and diversification. The network struc-

ture shows an increase in hierarchical modularity and scale-free behavior as metabolic net-

works unfold in evolutionary time. Remarkably, this evolutionary constraint on structure was

stronger at lower levels of metabolic organization. Evolving metabolic structure reveals a

‘principle of granularity’, an evolutionary increase of the cohesiveness of lower-level parts of

a hierarchical system. MANET is available at http://manet.illinois.edu.
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Introduction

Enzyme recruitment is believed to play a central role in metabolic evolution [1]. Under this

evolutionary scenario, genes spread by duplication in genomes while variants of the encoded

enzymes, which were originally multifunctional, are coopted into different metabolic path-

ways. These variants are consequently tailored by specialization to meet the specific functional

demands of those pathways. Here we delve deeper into the origins and evolution of modern

metabolism, exploring if the recruitment of enzymes in metabolic networks is currently at

work. We also study the emergent properties of the structure of evolving networks.

There is significant evidence supporting the early evolutionary role of enzyme recruitment.

Phylogenomic analysis revealed that some of the early protein structural domains comprise

3-dimensional fold structures that are widely present in metabolic enzymes [2,3]. These struc-

tures were part of proteins responsible for nucleotide synthesis, indicating ancient domains

were instrumental in providing the molecular functions for a developing primordial RNA

world [4]. Collectively, findings suggest a “metabolism-first” model of protein evolution, which

finds its basis at a strongly linked evolutionary level of protein structure, the fold family [5].

The metabolic Molecular Ancestry Network (MANET) database is a useful resource to

investigate the evolution of protein domains in modern metabolism [6]. The evolutionary age

of the domains is directly derived from phylogenetic trees reconstructed from a census of pro-

tein domain structures in genomes [2,7–9]. The age of these domain structures is then

“painted” onto the enzymes of metabolic pathways defined by the Kyoto Encyclopedia of

Genes and Genomes (KEGG) [10]. The metabolic MANET database has facilitated the retro-

diction of ancient enzyme functions describing “metaconsensus enzymes” [11]. In addition, it

has bolstered support for the existence of protein evolution prior to the inception of the mod-

ern translation system, challenging the traditional view that RNA molecules appeared before

proteins [12,13]. Most of the ancestral fold domains identified are at the heart of metabolism

[4]. By using “subnetwork wheels”, ‘Purine metabolism’ and ‘Pyrimidine metabolism’ were

found to represent the most ancestral subnetworks of metabolism [4].

There is however a need to update metabolic MANET, which was originally designed to

trace domain evolution at fold level of the Structural Classification of Proteins (SCOP), one of

the two gold standards of protein taxonomy [6]. In contrast with SCOP folds and the embed-

ded fold superfamilies, the evolutionary relatedness of fold families can be derived directly

from protein sequences, sometimes without invoking the structure and function of the mole-

cules [9]. In addition, fold families reflect a clear embodiment of domain functionality, which

helps in the assignment of features of sequence, structure and function to domains when these

are traced along the evolutionary timeline of protein history. Thus, fold families reap the bene-

fits of protein structure by encompassing deep evolutionary views and the benefits of protein

sequence by enabling unequivocal assignments of molecular functions [9]. Here we update

metabolic MANET by tracing fold family history in metabolic networks. This solves the poten-

tial problems of the relatively loose link that exits between folds and evolution and offer better

ways to explore enzymatic recruitment in metabolic networks. The benefit of using fold fami-

lies has been recently highlighted by the evolutionary study of purine metabolism [5], which

uncovered the origin of metabolism by gradual replacement of biotic chemistries with catalytic

proteinaceous counterparts. The study revealed strong underlying phylogenetic signal in meta-

bolic enzymes. The new release of MANET also links to data in the PDBsum database [14,15],

bridging enzymatic and structural information. Using MANET, we now show that network

analyses of the wiring diagrams of metabolic organization reveal evolutionary patterns in the

structure of metabolic networks and ongoing metabolic growth through pervasive enzymatic

recruitment.

Enzyme recruitment in metabolic networks
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Results

Dissecting enzyme recruitment and metabolic network structure

Release 3.0 of the metabolic MANET database (February 2019) now provides an evolutionary

visualization of metabolic pathways at fold family level of SCOP. First, structural domains are

mapped onto PDB entries using SCOP, followed by mapping of PDB entries onto EC numbers

via PDBsum (Fig 1A). The evolution of metabolic networks is made explicit by color-coding

the age of families of structural domains in the enzymes of the metabolic pathway diagrams of

KEGG. The ages of these domain structures are denoted by ‘ancestry’ values, measures of node

distance (nd) derived directly from phylogenomic trees that range from 0 (the most ancient

domains) to 1 (the most recent). Enzymatic activities showing multiple colorings (ancestry val-

ues) result from taxonomical differences in domain makeup or simply the existence of multiple

domains in enzymes. KEGG is a computational view of the wiring diagrams of biochemical

reactions and molecular interactions that make up the metabolic system. These diagrams

group enzymes responsible for functionally related metabolic pathways into reference network

maps, which we call ‘subnetworks’ [6]. Subnetworks that have similar functional capacities are

further grouped into ‘mesonetworks’, which can be considered upper level categorizations of

the metabolic network [6]. For example, the ‘Purine metabolism’ and ‘Pyrimidine metabolism’

subnetworks, which are mainly responsible for the synthesis, degradation and salvage of

purine and pyrimidine metabolites (and related compounds), respectively, are members of the

Nucleotide metabolism (NUC) mesonetwork. Fig 1B illustrates the evolutionary mappings

with the color tracings of the ‘Pyrimidine metabolism’ subnetwork of MANET.

The functionality of MANET’s search engine makes it searchable in terms of enzymes, PDB

entries, SCOP domains and subnetworks. The output is presented in a tabulated form includ-

ing the domain and corresponding nd values of individual enzymes. Compared to its predeces-

sor, MANET 3.0 shows a 10-fold increase of data entries (Table 1), with 97.4% subnetwork

coverage (S1 Table) and increased painting efficiency (S1 Fig and S2 Table).

Mapping the age of enzymes onto mesonetworks and corresponding subnetworks in

MANET uncovered evolutionary patterns of enzymatic recruitment. Fig 2A shows a diagram

describing how enzymes, subnetworks and mesonetworks form a hierarchical system of

Fig 1. Metabolic MANET 3.0. (A) Entity relationship model of the updated version of metabolic MANET linking ancestries, SCOP, PDBsum and KEGG. (B)

Screenshot of a representative subnetwork diagram describing the ‘Pyrimidine metabolism’ subnetwork of MANET. A color scale is used to assign binned ancestry

values to enzyme nodes named with EC numbers.

https://doi.org/10.1371/journal.pone.0224201.g001
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functional metabolic modules defined at different levels of organization, which are tightly

wired to each other through the common activities of enzymes. To better study the evolving

network structure of this hierarchy of modules, we generated undirected bipartite networks

that link mesonetwork and subnetwork levels of KEGG pathway classification to enzymes (Fig

2B and 2C). We then focused on one-mode projections of these bipartite networks to visualize

how the individual levels of network organization contribute to overall network structure.

Note that three possible bipartite networks arise from the hierarchy of enzymes, subnetworks

and mesonetworks (Fig 2B, 2C and 2D). Networks describing the relationship of neighboring

hierarchical levels are linked more densely the lower in the hierarchy. Non-neighbor relation-

ships also result in density increase. We do not study the bipartite network that links mesonet-

works to subnetworks because it provides little information (Fig 2D).

A bipartite network of mesonetworks and enzymes

We first constructed an undirected bipartite network linking the 11 mesonetworks to their

corresponding enzymes, which were indexed with the evolutionary age of their structural

domains (Fig 3). The mesonetwork nodes were connected to each other through common

enzyme nodes. The evolution of connections among the mesonetworks were unfolded at each

step of the timeline by tracing the age of enzymes on the bipartite network (Fig 3A). Carbohy-

drate (CAR) and Amino Acid (AAC) mesonetworks showed the largest number of enzyme

connections in the bipartite network while the rest exhibited moderate connectivity (Fig 3B).

In these analyses, the age of an enzyme was considered to be the age of its second oldest struc-

tural domain, if multiple domains were present in the enzyme. Applying the age criterion to

the bipartite network permitted to build a series of bipartite networks that were evolving in

time. Note that while the age of a cooption is necessarily determined by the age of the youngest

domain of an enzyme, i.e. the age of the acceptor of older domains, the actual age of the

enzyme is determined by the oldest component domain, i.e. the oldest donor in the cooption,

without which the cooption would not be possible. In this regard, the global evolutionary pat-

terns we here report for the bipartite networks were consistent to those obtained when the age

of a multidomain enzyme was considered to be the age of its oldest structural domain [16].

These additional results are provided in S4–S6 Figs, confirming that the strategy to assign ages

to multidomain enzymes does not affect the overall conclusions of our study.

When studying evolving networks, we identified two distinct peaks in the appearance of

domains used by the enzymes along the timeline, at age nd = 0.0–0.1 and later at nd = 0.6–0.7,

Table 1. MANET 3.0 database statistics.

Database entities Version 3.0 Version 2.0 [6]

Total entries 240,348 23,217

Metabolic pathway enzymes 1,925

(out of 2,867 KEGG

enzymes)

1,255

(out of 2,015 KEGG

enzymes)

PDB entries 21,980 6,552

SCOP entries 1,610

(out of 3,513 families)

784

(out of 2,493 families/887

folds)

KEGG metabolic pathways in MANET that have

associated enzymes

148 (out of 151 pathways) 132 (out of 137 pathways)

Enzymes with crystallographic information 919 758

HMM assignments at e-value = 0.0001 1,006 584

Average painting coverage 72.68% 71.8%

https://doi.org/10.1371/journal.pone.0224201.t001
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with a period of gradual decline in between (Fig 4). This biphasic behavior is typical of domain

innovation [17]. Second, a one-mode network projection for mesonetworks (Fig 5) extracted

from the bipartite network (Fig 3), which follows the criteria described in Fig 2B, highlights

the dominant sharing patterns unfolded by the Amino acid (AAC) mesonetwork earlier in the

timeline (nd = 0.1–0.2). At nd = 0.2, the carbohydrate and energy metabolism mesonetworks

established a strong sharing bond, which strengthened throughout the timeline. The Glycan

biosynthesis and metabolism (GLY) mesonetwork initiates sharing of enzymes at nd = 0.3,

starting with the Carbohydrate (CAR) mesonetwork and then proceeding to share enzymes

with the Other amino acids (AA2), Amino acid (AAC), Lipid (LIP), Secondary metabolites

(SEC), Cofactors and vitamin (COF) and Xenobiotics (XEN) mesonetworks at nd values of

0.4, 0.6, and 0.9. Interestingly, the Glycan biosynthesis and metabolism (GLY) mesonetwork

did not participate in sharing enzymes with Energy (NRG), Terpenoids and polyketides (POL)

and Nucleotide metabolism (NUC) mesonetworks.

A bipartite network of subnetworks and enzymes

In order to explore the processes of enzyme recruitment, we also constructed undirected

bipartite networks at the subnetwork level, which consisted of two disjoint sets of nodes, one

describing subnetworks and the other describing enzymes (following entity and relationship

criteria defined in Fig 2C). In these networks, each metabolic subnetwork node connects to

each other through a common enzyme node shared by subnetworks. We also decomposed

each bipartite graph into its two one-mode projections, a ‘subnetwork’ network and an

Fig 2. A network view of metabolism. (A) The enzymatic activities (E) of the metabolic network can be dissected into a hierarchical system of subnetworks (S)

and mesonetworks (M), which act as modules of metabolic activity. (B) A bipartite network describing the relationship between mesonetworks and enzymes

can be dissected into its two one-mode projections, one describing how enzymes link mesonetworks to each other, the other describing how mesonetworks

link enzymes to each other. (C) A bipartite network of subnetworks and enzymes can be dissected into its two one-mode projections, one describing how

enzymes link subnetworks to each other, the other describing how subnetworks link enzymes to each other. (D) A bipartite network of mesonetworks and

subnetworks can be dissected into its two one-mode projections, one describing how subnetworks link mesonetworks to each other, the other describing how

mesonetworks link subnetworks to each other.

https://doi.org/10.1371/journal.pone.0224201.g002
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‘enzyme’ network. We explored the scale-freeness, randomness and small-world properties of

the bipartite graph and those of the one-mode projections to uncover patterns in the evolution

of network structure.

Kolmogorov-Smirnov tests for each of these three graphs at all nd levels showed consistent

patterns of scale-freeness in the bipartite graphs but their absence in derived one-mode projec-

tions. Log-log plots were created using a fitting function [18] that applies the Kolmogorov-

Smirnov test to the data (S2 Fig). A good fit is indicated by lower values of the Kolmogorov-

Smirnov test statistic (KS.stat) and higher p-values. The hypothesis that a distribution follows a

power law is rejected when the p-value is less than 0.05. The log likelihood (logLik) for the fit-

ted parameters is computed and its value ranges from 0 to 1, with 0 indicating that the parame-

ters are a better fit for the data set being analyzed. In order for the networks to be truly scale-

Fig 3. Evolution of the mesonetwork-enzyme bipartite network. (A) Tracing enzyme ages on the bipartite networks, facilitates studying

patterns of sharing and show the evolution of networks in time (B) A bipartite graph of mesonetworks and enzymes (nd = 1.0) showing

enzymes by nd distribution on a scale of red to violet representing ancestral to recent fold family domain assignments. Mesonetworks are

shown as vertices in black while colored nodes denote enzymes.

https://doi.org/10.1371/journal.pone.0224201.g003
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free, the power law exponent value (alpha) must lie between 2 and 3. In accordance with these

values of power law exponent, our subnetwork-enzyme bipartite graph exhibited power law

distribution tendencies at all stages of the timeline, with acceptable Kolmogorov-Smirnov test

statistic and p-values (Table 2). In contrast, analyses of one-mode network projections rejected

power law behavior and showed networks lacked significant scale-freeness (Table 2). The Bar-

tels’ rank test of randomness [19] for each graph revealed significant randomicity when com-

pared to a corresponding Erdős–Rényi (ER) random graphs, but no significant trends across

the timeline. In all cases, the null hypothesis that network data had been drawn from a random

distribution was rejected for the three types of graphs (Table 3). In terms of small-world behav-

ior, the bipartite graphs retained constant diameter throughout the timeline (Fig 6), in accor-

dance with previous studies of metabolic networks [20]. However, while the enzyme one-

mode projection retained the constant diameter property, the subnetwork one-mode projec-

tion increased diameter with time, reaching a peak at nd = 0.8–0.9 (Fig 6A). The maximum

Fig 4. Run chart of enzymes in mesonetworks appearing in each nd era. Eras are defined as nd bins of ages; the first nd bin includes enzymes appearing between

nd = 0 and nd = 0.1. The inset describes the distribution of enzymes along the evolutionary timeline.

https://doi.org/10.1371/journal.pone.0224201.g004
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modularity scores recorded for the bipartite graph at all nd values also corresponded to behav-

ior observed in metabolic networks [21]. They increased steadily with evolutionary time (Fig

6). Similar tendencies were clear for one-mode projections, with the exception that the modu-

larity scores of the subnetwork one-mode projections decreased after peaking at nd = 0.6–0.7.

Note however that overall modularity levels of the enzyme and subnetwork one-mode projec-

tions decreased ~10% and ~50%, respectively, relative to the bipartite network. This is

expected since the bipartite network describes the cohesiveness between two levels of meta-

bolic organization, while the one-mode projections describe the individual contribution of the

levels to modular behavior. Finally, hierarchy in networks can be enumerated by the relation-

ship of the clustering coefficient of a node with k edges, C(k), which must follow a scaling law

C(k)~k−1 [21]. We computed the C(k) function for the one-mode projections at each nd value

(Fig 7). The C(k) power law scaling relationship increased in strength with evolutionary time

(Fig 7), but was significantly weaker for the subnetwork one-mode projection. Analysis of net-

works annotated with the age of the most ancestral enzyme domain in a multi-domain enzyme

revealed the same topological behaviors and evolutionary trends observed when networks

Fig 5. Connectivity patterns among mesonetworks at different stages of the evolutionary timeline. Mesonetworks are represented by vertices while edge

thickness shows the number of enzymes shared. AAC, Amino acid metabolism; SEC, Biosynthesis of other secondary metabolites; CAR, Carbohydrate

metabolism; NRG, Energy metabolism; GLY, Glycan biosynthesis and metabolism; LIP, Lipid metabolism; COF, Metabolism of cofactors and vitamins; POL,

Metabolism of terpenoids and polyketides; NUC, Nucleotide metabolism; AA2, Metabolism of other amino acids; XEN, Xenobiotics biodegradation and

metabolism.

https://doi.org/10.1371/journal.pone.0224201.g005
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were annotated with the age of the second oldest domain (S7, S8 and S13 Figs, S4 and S5

Tables). Since the clustering coefficient cannot be trivially calculated for a bipartite network,

we performed calculations to assess small-world behavior only for the one-mode projection

graphs, which we now discuss.

Subnetwork one-mode projections

Cohesion metrics help assess network topology by establishing whether evolutionary forces

shaping metabolic relationships possess either the random, small-world or scale-free tenden-

cies [22–24]. While the subnetwork one-mode projections did not seem to exhibit significant

scale-free behavior (Table 2) or heterogeneities in the randomicity of network topology

(Table 3), they displayed a significant small-world trend (Fig 8), albeit a decreasing one along

the evolutionary timeline. A similar decreasing trend holds even when the age of the most

ancestral domain is considered as the age of the enzyme (S9 Fig).

Table 2. Parameters for the power law fitting function in R for the bipartite network corresponding to the plots in S2 Fig at different nd values. alpha: exponent for

the fitted power law distribution, xmin: lower bound for the power law fitting, logLik: log-likelihood of fitted parameters, KS.stat: test statistic for the Kolmogorov-Smirnov

test between fitted and sample distribution and KS.p: p-value for the Kolmogorov-Smirnov test between fitted and sample distribution. The null hypothesis is that the orig-

inal data has been drawn from a fitted power-law distribution. p-values less than 0.05 imply that the null hypothesis is rejected).

Network nd Value alpha xmin logLik KS.stat KS.p

Bipartite 0.1 2.036126 1 -759.4186 0.049686 0.1849861

0.2 2.050221 1 -1041.634 0.0332531 0.4482009

0.3 2.09732 1 -1294.618 0.0190888 0.9069918

0.4 2.110523 1 -1455.256 0.0199788 0.8205487

0.5 2.127836 1 -1550.445 0.0197397 0.7930782

0.6 2.140443 1 -1641.388 0.0199515 0.7449955

0.7 2.18352 1 -2031.524 0.0209772 0.5249036

0.8 2.192613 1 -2244.833 0.0220464 0.3914344

0.9 2.212848 1 -2525.648 0.0223349 0.294738

1 2.222591 1 -2707.187 0.0227664 0.2328535

Subnetwork one-mode 0.1 1.428476 1 -320.807 0.2497108 0.0000388

0.2 1.770404 1 -400.6262 0.4805927 0

0.3 1.703825 1 -428.3908 0.4520308 0

0.4 1.665948 1 -436.6208 0.4466223 0

0.5 1.403904 1 -423.5062 0.2688292 0.0000003

0.6 1.670431 1 -464.616 0.455313 0

0.7 1.394778 1 -499.3063 0.294384 0

0.8 1.376154 1 -525.1268 0.2953485 0

0.9 1.370872 1 -544.0731 0.2951147 0

1 1.364435 1 -565.1191 0.3160804 0

Enzyme

one-mode

0.1 1.722109 1 -1699.593 0.5721901 0

0.2 2 1 -3218.503 0.763262 0

0.3 2 1 -4700.475 0.7858296 0

0.4 2 1 -5670.544 0.811858 0

0.5 2 1 -6374.768 0.8179033 0

0.6 2 1 -7037.294 0.819453 0

0.7 2 1 -9623.439 0.8377243 0

0.8 2 1 -11144.61 0.845592 0

0.9 2 1 -13429.85 0.8642292 0

1 2 1 -14726.7 0.8716912 0

https://doi.org/10.1371/journal.pone.0224201.t002
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Fig 9 describes the number of enzyme nodes per subnetwork, organized by mesonetwork,

and plotted as function of evolutionary time with heat diagrams. The connectivity patterns of

the subnetwork one-mode projection can be observed in a reduced representation (Fig 10).

The nodes represent subnetworks and edges between nodes denote sharing of enzymes. The

thickness of these edges as well as their greyscale color is determined by the numbers of

enzymes that are shared, with black colored edges describing the highest and white colored

edges the lowest levels of sharing. The reduced network representation improves the readabil-

ity of the actual one-mode network (Fig 10 with labels fully explained in S2 Table and S3

Table). Significant ‘highways’ of enzyme sharing connected subnetworks of mesonetworks,

supporting the hierarchical organization of KEGG. The highest connectivity levels were estab-

lished between the two subnetworks of Nucleotide Metabolism (NUC), three subnetworks

(map00051, map00520 and map0050) of Carbohydrate metabolism (CAR), three subnetworks

of Amino acid metabolism (AAC), and two subnetworks (map00720 and map00680) of

Energy metabolism (NRG). In contrast, only selected groups of subnetworks were cohesively

Table 3. Results of the Bartels’ test for randomness performed on each type of network at each time-point (0.1 nd interval) as well as for an equivalent Erdős–Rényi

(ER) random graph. The null hypothesis is that the underlying data has been drawn from a random distribution. p-values less than 0.05 indicate that the null hypothesis

is rejected.

Network nd Value Bartels’ Statistic Bartels’ p-value ER Bartels’ Statistic ER Bartels’ p-value

Bipartite 0.1 -9.26579 2.81E-22 0.19949 0.8421185

0.2 -11.41278 2.82E-33 -0.0718005 0.9428243

0.3 -13.01884 8.64E-43 1.433994 0.1516841

0.4 -13.73945 2.38E-47 1.093474 0.2744027

0.5 -14.10472 1.16E-49 0.7152102 0.474733

0.6 -14.06547 4.97E-49 0.6531845 0.5138707

0.7 -14.76641 3.97E-53 -1.240499 0.2149025

0.8 -15.4329 8.90E-58 -1.035672 0.3004946

0.9 -15.70583 2.50E-59 0.08607462 0.9314338

1 -16.4897 2.66E-65 1.266439 0.2054321

Subnetwork one-mode 0.1 -2.395901 1.59E-02 -0.3585369 0.7217074

0.2 -3.198736 1.15E-03 -1.789701 0.07336275

0.3 -4.588882 1.82E-06 0.6698046 0.5051637

0.4 -4.505029 2.93E-06 -0.0746503 0.9408455

0.5 -4.612485 1.60E-06 0.08810647 0.9302074

0.6 -4.077341 2.75E-05 -0.1756853 0.8613286

0.7 -4.8855 3.81E-07 -0.7944839 0.4287919

0.8 -4.659426 1.42E-06 -0.3000515 0.7652778

0.9 -4.774271 7.34E-07 -1.059524 0.2909151

1 -4.646165 1.55E-06 0.01763957 0.9859971

Enzyme one-mode 0.1 -9.427427 9.11E-24 -0.0042724 0.9965979

0.2 -9.716918 3.07E-24 0.5071284 0.6125028

0.3 -11.17966 1.64E-31 3.444245 0.00055136

0.4 -11.8135 7.06E-35 -1.607051 0.1080852

0.5 -11.91661 3.04E-35 0.712586 0.4763889

0.6 -12.10103 3.61E-36 -0.519697 0.6035144

0.7 -12.6368 8.49E-39 -1.865451 0.06209498

0.8 -14.16609 1.15E-48 1.044054 0.2966115

0.9 -15.06327 1.07E-54 -0.3197554 0.7492529

1 -16.41173 5.20E-65 -0.0146644 0.9883044

https://doi.org/10.1371/journal.pone.0224201.t003
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grouped in the mesonetworks of Lipid metabolism (LIP), Metabolism of other amino acids

(AA2), Metabolism of cofactors and vitamins (COF), Glycan biosynthesis and metabolism

(GLY), Secondary metabolites (SEC) and Xenobiotics biodegradation and metabolism (XEN).

When considering the age of an enzyme as that of its most ancestral domain, similar sharing

patterns are observed (S10 and S11 Figs). The growth of the subnetwork one-mode projection

reveals the gradual addition and strengthening of links between central subnetworks of the

mesonetworks (Fig 10).

A significant number of enzymes appear at nd = 0.1 populating the subnetworks associated

with the amino acid (AAC), carbohydrate (CAR), energy (NRG), lipid (LIP), cofactor and vita-

mins (COF), and nucleotide (NUC) metabolic mesonetworks (Fig 9), supporting observations

Fig 6. Average node degrees (average number of links), diameter and maximum modularity scores for each type of network (largest connected component) at each

time point (0.1 nd interval). Network sizes (total number of nodes and nodes in the largest connected component) are given in S3 Fig.

https://doi.org/10.1371/journal.pone.0224201.g006

Fig 7. Log-log plot of C(k) vs k for the one-mode enzyme (A) and subnetwork (B) projections at nd value intervals of 0.1.

https://doi.org/10.1371/journal.pone.0224201.g007
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of Fig 3. The general biphasic trend of domain sharing can also be observed in most of the

matrices of the mesonetworks, particularly those corresponding to secondary metabolite

(SEC), glycan biosynthesis and metabolism (GLY), terpenoids and polyketides (POL), other

amino acids (AA2), and xenobiotics (XEN), with high enzyme numbers in the beginning fol-

lowed by a gradual decrease and then an increase at around nd = 0.7. The sharing of enzymes

related to subnetworks for ‘Lysine biosynthesis’ and ‘Valine, leucine, and isoleucine biosynthe-

sis’ slows down at around nd = 0.7, while the sharing of enzymes by their corresponding degra-

dation subnetworks increases. The patterns of connectivity shown in the dendrogram (Fig 11)

accompanied by its modularity matrix (Fig 12) indicate ‘disassortative mixing across modules’,

i.e. network nodes tend to connect with other dissimilar nodes [25]. Interestingly, only the

nucleotide metabolism mesonetwork (NUC) and a few subnetworks from the carbohydrate

(CAR), glycan biosynthesis (GLY) and xenobiotics (XEN) mesonetworks exhibit this propen-

sity, while the bulk of the subnetworks cluster in a heterogeneous manner.

Enzyme one-mode projections

The enzyme one-mode networks describe subnetwork-mediated connections of enzymes.

Nodes represent enzymes and edges depict enzyme sharing between subnetworks. Given the

large number of nodes in this network it was difficult to visually inspect the graph for mean-

ingful relationships. We therefore calculated cohesion and centrality metrics to uncover the

Fig 8. Testing for small-world behavior in the subnetwork and enzyme one-mode networks. (A) Comparison of clustering coefficient and average path

length of the subnetwork one-mode network to that of an Erdős–Rényi (ER) network. The small-world coefficients decrease with the passage of time. (B)

Comparison of clustering coefficient and average path length of the enzyme one-mode network to that of an Erdős–Rényi (ER) network. The resulting small-

world coefficient increase along the evolutionary timeline.

https://doi.org/10.1371/journal.pone.0224201.g008

Enzyme recruitment in metabolic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0224201 October 24, 2019 12 / 33

https://doi.org/10.1371/journal.pone.0224201.g008
https://doi.org/10.1371/journal.pone.0224201


existence of underlying patterns of network connectivity. To measure the propensity toward

small-world properties we compared average clustering coefficients with average path lengths

of the largest connected component of graphs along the timeline (Fig 8). The diameter of the

network remained constant at a value of 7 throughout all the phases of the chronology (Fig 6).

A small world network possesses higher clustering coefficient and a lower path length in com-

parison with a random network of the same size. As shown in Fig 8, the clustering coefficient

steadily increased with evolutionary time with a gradual drop in average path length and a

small-world coefficient that increased with time. This increasing tendency of the small-world

coefficient of the enzyme projection is opposite to that of the subnetwork projection, suggest-

ing that the two levels of metabolic organization exhibit opposing small-world trends. Like the

other two networks, the behavior of the enzyme one-mode projection departs from that of the

Erdős–Rényi random graph model (Table 3).

Distribution of enzyme structures and functions among superkingdoms of

life and viruses

Fold superfamilies are disproportionately distributed among the three cellular superkingdoms,

Archaea (A), Bacteria (B), and Eukarya (E), and viruses (V)[26]. Certain superfamilies are

present exclusively in each taxonomic group (A, B, E, or V), or are found in two (AB, AE, AV,

BE, BV, EV), three (ABE, ABV, AEV, BEV) or all four (ABEV) Venn taxonomic groups. The

enzymes in our analysis belong to 13 out of the possible 15 Venn groups (Fig 13A). The bulk

Fig 9. Matrix representation of subnetwork one-mode graphs by evolutionary age. Rows represent nodes (subnetworks) with each cell indicating the number of

enzymes (edges) per subnetwork in each nd interval.

https://doi.org/10.1371/journal.pone.0224201.g009
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of the enzymes contain domains that are present in the BE group. The evolutionary landscape

is dominated by oxidoreductases at nd = 0.1 (Fig 13B), the first peak of the biphasic “curve”,

and this dominance is subsequently shared with hydrolases when reaching the second peak

(nd = 0.7) of the timeline. Among the six enzyme categories at level 1 of Enzyme Classification

Fig 10. Evolution of metabolic networks visualized through the subnetwork one-mode projection of the

subnetwork-enzyme bipartite network. A reduced representation of the extant subnetwork one-mode projection

(nd = 1.0) is shown in the middle. The reduced network projection shows major nodes (subnetworks) connecting to

each other through links (shared enzymes). Greyscale values of links indicate the number of enzymes shared among

the subnetworks. A full description of KEGG subnetwork labels can be found in S2 Table and S3 Table. The circle of

networks describes a timeline of network growth for the subnetwork projection.

https://doi.org/10.1371/journal.pone.0224201.g010
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(EC), the enzymes with domains of the BE group had the largest share in four categories, while

sharing the top spot with bacterial (B) domains among isomerases and outnumbered by

domains found belonging to the ABE group. Transferases cover most Venn groups while lyases
were represented in the least number of them.

Using the functional annotation scheme of Vogel and Chothia [27], we assigned molecular

functions to the superfamilies that make up the enzymes of metabolism. In this classification,

molecular functions are divided into 7 ‘general’ categories, namely, Metabolism, Information,

Intracellular processes (Processes_IC), Extracellular processes (Processes_EC), Regulation, Gen-
eral and Other, which are further subdivided into 50 ‘detailed’ categories. The functional anno-

tation, which is specific to SCOP domains, has been extensively used to trace molecular

functions along the timelines of domain innovation (e.g. Caetano-Anollés et al. 2011, 2012

[28,29]). As expected, the majority of the enzymes had domains that were associated with

Metabolism (Fig 14A). The BE group dominated six general function categories in terms of

number of enzymes, while having the same number of enzymes as eukaryotes (E) for Extracel-

lular Processes. With a few exceptions, the domains annotated with Extracellular Processes and

Regulation functions showed they were recruited relatively late in the timeline (Fig 14A inset).

With one exception, domains belonging to DNA-binding of Regulation (Fig 14B) appeared to

be recruited close to the second peak of the biphasic curve (Fig 3). The domains belonging to

Transcription were preceded in recruitment by those belonging to Translation (Fig 14B). Next,

we used the nomenclature put forth by Ribeiro and colleagues[30] to annotate enzymes with

their reaction mechanisms and catalytic sites and study the distribution of these mechanisms

and sites across the Venn taxonomic groups (Fig 15A). We found that enzymes with electri-

cally charged amino acid residues tend to dominate the distribution of catalytic residues and

do so early during the evolutionary timeline (Fig 15B), with most of them being present in

domains of the ABE and BE groups (Fig 15C).

Identifying central enzymes in metabolic networks

In order to identify some of the central nodes in the enzyme one-mode network, we calculated

network metrics such as degree, closeness and betweenness centralities (Table 4). Degree cen-

trality measures the popularity of the node with respect to how many connections it possesses.

Betweenness centrality measures the “brokerage” power a node commands over the network,

being present on the greatest number of shortest paths. Closeness centrality indicates how

well-connected are the neighbors of a particular node, which helps in exerting power at a local

level in comparison with betweenness centrality. The enzyme EC 2.3.1.9 appears to be the

Fig 11. Dendrogram of the subnetwork one-mode network (at nd = 1.0) resulting from hierarchical clustering.

https://doi.org/10.1371/journal.pone.0224201.g011
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most well-connected and influential node in the network for degree and betweenness centrali-

ties. EC 2.3.1.9 is an acetyl-CoA C-acetyltransferase, belonging to the transferases class of

enzymes, containing the thiolase-related (c.95.1.1) fold family. It catalyzes the reaction of

Fig 12. A “tapestry” of enzyme recruitment. A heatmap based on the modularity matrix was coupled to the dendrogram obtained from hierarchical clustering of the

metabolic subnetworks one-mode network (shown in Fig 11).

https://doi.org/10.1371/journal.pone.0224201.g012
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converting two molecules of acetyl-CoA to yield acetoacetyl-CoA and CoA. Other enzymes

with higher degree centralities include: aldehyde dehydrogenase (EC 1.2.1.3), aspartate trans-

aminase (EC 2.6.1.1), alcohol dehydrogenase (EC 1.1.1.1), aldehyde reductase (EC 1.1.1.21),

and enoyl-CoA hydratase (EC 4.2.1.17). The majority of the fold families of these enzymes

belong to alpha and beta proteins (class c) in SCOP (Table 5).

Discussion

MANET 3.0 dissects metabolic history at fold family level

The new release of metabolic MANET significantly expands the number of indexed enzymatic

entries (Table 1). This can be attributed to increases in SCOP and KEGG records, links

between enzyme and PDB information provided by inclusion of a fourth data source, PDBsum

indexing, and improvements in hidden Markov model (HMMs) methodologies for predicting

protein domain structures. More importantly, MANET 3.0 now traces evolution of structural

domains at fold family level enhancing the evolutionary tracings of previous versions, which

originally focused on structure defined at fold level of SCOP classification. In comparison with

Fig 13. Enzyme distribution by superkingdom at EC level 1 (N = 1924 enzymes). (A) Enzyme distribution by superkingdom. (B).

Enzymatic functions mapped along the evolutionary timeline. (C) EC level 1 breakdown by superkingdom. A, Archaea; B, Bacteria; E,

Eukaryota; V, Viruses.

https://doi.org/10.1371/journal.pone.0224201.g013
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folds, SCOP families are highly conserved at sequence level and represent cohesive units of

functional similarity. They describe molecular functions in more detail than folds and their

evolutionary relatedness can better dissect evolutionary recruitment. For example, the use of

fold families improved the evaluation of domain gain and loss in proteomes, revealing the pri-

macy of domain gain in evolution and pervasive tendencies of proteomic growth [31]. There-

fore, fold families are better equipped for studying evolution of proteins and corresponding

molecular functions, which are deeply embedded in protein structure [32].

The timelines of structural domains and the validity of age assignments have been tested in

a number of studies. Known transformation pathways describing evolutionary changes in fold

structure [33] support the domain timeline [2]. Examples include the gradual effect of inser-

tions/deletions (indels) and substitutions in the Rossmann-like fold structure of synapsin or

the transformation of an all-α 3-helical bundle into an all-β barrel-like structure involving the

C-terminal CAP domain. The age of domains has been shown to be proportional to geological

time for SCOP folds and fold superfamilies [34] and for fold families [5,29], provided fold fam-

ilies were the most ancient in each fold superfamily. The strong correlations define a universal

molecular clock of protein structure capable of tracing the early history of aerobic metabolism

Fig 14. Functional distribution of enzymes. (A) Superkingdom makeup Distribution of each general functional category in superkingdoms and viruses. (B)

Distribution of detailed functional categories along the evolutionary timeline.

https://doi.org/10.1371/journal.pone.0224201.g014
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and planet oxygenation [34] or the early and concurrent origin of cysteine biosynthesis and

iron-sulfur proteins [35] Similarly, a strong correlation between the history of domains and

the history of RNA structural components of the ribosome mutually validated age assign-

ments, supporting the ancient co-evolution of ribosomal proteins and RNA [36]. Furthermore,

the elaboration of an evolutionary model of early biochemistry that is firmly grounded in phy-

logenomic information and biochemical, biophysical, and structural knowledge provided

additional validation support [29]. Finally, modeling and simulations made explicit the link of

phylogenomic tree imbalance and protein structural innovation, which suggests that explora-

tion of the space of protein structure occurs through coarse-grained discoveries that undergo

fine-grained elaboration [37].

Evolutionary patterns of enzyme recruitment in metabolic networks

An initial coarse-grained analysis of MANET 3.0 provided significant insights into the origins

and evolution of metabolic networks. The analysis assigned evolutionary age to a multidomain

Fig 15. Survey of catalytic sites in all 543 enzymes of the M-CSA database that were mapped to a domain with an nd value. (A) Distribution of role groups of the

catalytic site residues in Venn taxonomic groups of superkingdoms and viruses. (B) Distribution of catalytic residues according to when enzymes possessing these

residues appeared along the evolutionary timeline. (C) Distribution of catalytic residues based on association of parent enzymes to the superkingdoms. Highlighted

background indicates the group to which the amino acids belong to: purple, basic amino acids; pink, acidic amino acids; green, polar uncharged amino acids; yellow,

nonpolar amino acids.

https://doi.org/10.1371/journal.pone.0224201.g015
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enzyme based on the second most ancient domain it contains. However, age assignments

based on the most ancient domain of the enzyme [16] (which can be found in S4–S13 Figs and

S4–S6 Tables) did not change evolutionary trends and conclusions. These age assignments

assume that proteins evolve by mutation, duplication, amplification, recombination, and de
novo creation of genes and that accretion of domains in multidomain proteins occurs funda-

mentally by fusions of domains to already functional structural units [31]. Both assumptions

are well supported, especially because a careful mechanistic study of domain fusions and fis-

sions in the proteins of hundreds of proteomes showed that fusions override fissions through-

out the timeline and that fissions occurred relatively late in protein evolution [38].

On a global level, the burst of enzymatic innovation observed in our analysis of enzyme dis-

tributions along the evolutionary timeline (Fig 4) matches previous reports suggesting the exis-

tence of a ‘big bang’ of functional innovation in metabolism [4,39]. In this regard, we find that

“ancestral” enzymes (nd = 0.1, S5 Fig) are prevalent when these are defined by the age of the

oldest domains and despite the decline of this initial burst with evolutionary time (S5 Fig). We

Table 4. Network centrality metrics for the enzyme one-mode network extracted from the subnetwork-enzyme bipartite network.

nd value

Metric Rank 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Degree 1 EC 4.2.1.17 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 1.2.1.3 EC 1.2.1.3 EC 1.2.1.3

2 EC 2.3.1.9 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 2.6.1.1 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17

3 EC 1.1.1.35 EC 2.6.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 4.2.1.17 EC 2.6.1.1 EC 2.6.1.1 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9

4 EC 2.6.1.1 EC 1.1.1.35 EC 1.1.1.37 EC 1.1.1.37 EC 1.1.1.37 EC 1.1.1.37 EC 2.7.1.69 EC 2.6.1.1 EC 5.4.2.2 EC 5.4.2.2

5 EC 2.6.1.19 EC 1.2.7.1 EC 1.2.7.1 EC 1.2.7.1 EC 1.2.7.1 EC 2.7.1.69 EC 1.1.1.37 EC 2.7.1.69 EC 2.6.1.1 EC 2.6.1.1

6 EC 1.1.1.1 EC 3.5.1.4 EC 1.1.1.35 EC 1.1.1.35 EC 2.7.1.69 EC 1.2.7.1 EC 2.4.1.17 EC 1.1.1.37 EC 2.7.1.69 EC 2.7.1.69

7 EC 6.3.4.16 EC 2.6.1.21 EC 1.8.1.4 EC 1.8.1.4 EC 1.1.1.35 EC 2.4.1.17 EC 1.2.7.1 EC 2.4.1.17 EC 1.4.3.4 EC 1.4.3.4

8 EC 1.4.1.4 EC 6.2.1.1 EC 2.4.1.17 EC 2.4.1.17 EC 2.4.1.17 EC 1.1.1.35 EC 1.1.1.35 EC 1.2.7.1 EC 1.1.1.37 EC 2.4.1.17

9 EC 2.6.1.57 EC 2.6.1.19 EC 6.2.1.1 EC 6.3.1.2 EC 1.8.1.4 EC 1.1.1.21 EC 3.6.1.9 EC 3.6.1.9 EC 2.4.1.17 EC 1.4.3.2

10 EC 1.1.1.157 EC 2.6.1.57 EC 4.1.2.13 EC 1.1.1.27 EC 6.3.1.2 EC 1.8.1.4 EC 2.7.2.2 EC 1.1.1.35 EC 1.4.3.2 EC 1.1.1.37

Betweenness 1 EC 1.1.1.21 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 2.3.1.9 EC 1.2.1.3 EC 1.2.1.3 EC 1.2.1.3

2 EC 1.1.1.1 EC 1.1.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 5.4.2.2 EC 4.2.1.17

3 EC 2.3.1.9 EC 2.6.1.1 EC 2.4.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 2.6.1.1 EC 2.4.1.17 EC 2.4.1.17 EC 4.2.1.17 EC 5.4.2.2

4 EC 4.2.1.17 EC 4.2.1.17 EC 4.2.1.17 EC 2.4.1.17 EC 2.4.1.17 EC 2.4.1.17 EC 2.6.1.1 EC 2.6.1.1 EC 2.3.1.9 EC 2.3.1.9

5 EC 1.1.1.35 EC 2.3.1.37 EC 1.1.1.21 EC 1.1.1.21 EC 1.1.1.21 EC 1.1.1.21 EC 3.6.1.9 EC 3.6.1.9 EC 2.4.1.17 EC 2.4.1.17

6 EC 2.6.1.1 EC 1.1.1.21 EC 1.1.1.1 EC 1.1.1.1 EC 1.1.1.1 EC 2.3.1.37 EC 1.1.1.21 EC 2.3.1.9 EC 3.6.1.9 EC 3.2.1.31

7 EC 2.6.1.19 EC 1.1.1.35 EC 1.1.1.35 EC 2.3.1.37 EC 2.3.1.37 EC 1.1.1.1 EC 1.1.1.1 EC 2.3.1.37 EC 2.6.1.1 EC 3.6.1.9

8 EC 6.4.1.2 EC 6.3.5.5 EC 2.3.1.37 EC 5.3.1.1 EC 5.3.1.1 EC 2.7.1.69 EC 2.3.1.37 EC 1.1.1.1 EC 1.2.3.1 EC 3.2.1.52

9 EC 2.3.1.37 EC 2.6.1.16 EC 5.3.1.1 EC 1.1.1.35 EC 1.1.1.35 EC 5.3.1.1 EC 1.1.1.35 EC 5.3.1.1 EC 3.2.1.31 EC 2.6.1.1

10 EC 1.1.1.2 EC 5.3.1.1 EC 2.1.2.1 EC 1.8.1.4 EC 2.7.1.69 EC 2.6.1.16 EC 2.7.1.69 EC 1.2.3.1 EC 1.1.1.1 EC 1.1.1.1

Closeness 1 EC 1.1.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 2.6.1.1 EC 1.1.1.1 EC 1.2.1.3 EC 1.2.1.3 EC 1.2.1.3

2 EC 4.2.1.17 EC 1.1.1.1 EC 1.1.1.1 EC 1.8.1.4 EC 1.8.1.4 EC 1.8.1.4 EC 2.6.1.1 EC 2.6.1.1 EC 1.8.1.4 EC 5.4.2.2

3 EC 1.1.1.35 EC 2.3.1.9 EC 1.8.1.4 EC 1.1.1.1 EC 1.1.1.1 EC 1.1.1.1 EC 1.8.1.4 EC 1.8.1.4 EC 5.4.2.2 EC 1.1.1.1

4 EC 2.3.1.9 EC 2.6.1.19 EC 2.1.2.1 EC 4.2.1.17 EC 4.2.1.17 EC 1.1.1.27 EC 4.2.1.17 EC 1.1.1.1 EC 2.6.1.1 EC 1.8.1.4

5 EC 2.6.1.19 EC 2.6.1.96 EC 2.3.1.9 EC 1.1.1.27 EC 1.1.1.27 EC 2.1.2.1 EC 2.1.2.1 EC 4.2.1.17 EC 1.1.1.1 EC 2.6.1.1

6 EC 2.6.1.1 EC 1.2.1.24 EC 1.1.1.37 EC 1.1.1.37 EC 1.1.1.37 EC 4.2.1.17 EC 1.1.1.21 EC 2.1.2.1 EC 1.4.3.4 EC 1.4.3.4

7 EC 2.6.1.96 EC 4.2.1.17 EC 2.6.1.19 EC 2.1.2.1 EC 2.1.2.1 EC 1.1.1.37 EC 1.1.1.27 EC 5.3.1.9 EC 2.7.1.40 EC 2.7.1.40

8 EC 1.2.1.24 EC 2.1.2.1 EC 1.1.1.27 EC 2.3.1.9 EC 2.3.1.9 EC 1.1.1.21 EC 2.7.1.31 EC 2.7.1.31 EC 1.1.1.27 EC 2.3.1.9

9 EC 6.2.1.1 EC 6.2.1.1 EC 2.6.1.96 EC 2.6.1.19 EC 1.1.1.21 EC 2.3.1.9 EC 2.3.1.9 EC 2.7.1.165 EC 2.3.1.9 EC 2.7.1.1

10 EC 2.1.2.1 EC 1.2.7.1 EC 1.2.1.24 EC 1.1.1.21 EC 2.7.1.31 EC 1.2.1.16 EC 1.1.1.37 EC 1.4.3.21 EC 1.4.3.2 EC 1.4.3.2

https://doi.org/10.1371/journal.pone.0224201.t004
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also find there was no clear sequential pattern of evolution of enzymes in metabolic pathways

of the bipartite networks that describe the sharing of enzymes between mesonetworks and sub-

networks. Instead, pathways in metabolic subnetworks revealed a ‘patchwork’ of enzymes, i.e.

a heterogeneous ensemble of enzymes of different age (Fig 11 and Fig 12). These observations

provide strong support to the patchwork model of metabolic evolution. Our observation of

high levels of sharing of enzymes in the carbohydrate and amino acid metabolism mesonet-

works is supported by earlier studies in which nd values of domains defined at fold superfamily

level were used [6,39].

We find that the majority of the domains recruited by the enzymes of nucleotide metabolic

pathways were ancestral, appearing early in the timeline (nd = 0.1 and nd = 0.2). This is sup-

portive of other studies that suggest enzymatic metabolism originated in the pathways of

nucleotide interconversion of the purine metabolism subnetwork [5] as part of the repertoire

of ancient mesonetworks of metabolism [4]. This early seeding of enzymes of the nucleotide

metabolism mesonetwork was followed by gradual build-up of pathways of biosynthesis,

catabolism and salvage of nucleotides. This is also supported by the majority of domains

involved in RNA processing and Transcription recruiting other domains later along the time-

line (Fig 14B). These results suggest a protein world of emergent structural domains preceding

an RNA world in an origin of life scenario informed by phylogenomics that has considerable

explanatory power [5]. Another notable result is the significant number of enzymes arising

from the lipid metabolism mesonetwork (nd = 0.1), in comparison with the entire cohort of

enzymes (Fig 3). These evolutionary tracings suggest the centrality of the cellular makeup dur-

ing the early evolutionary stages of metabolism development, which is in line with the concept

of metabolic ‘shells’ put forth by Morowitz [40]. According to this hypothesis, the most ancient

metabolic shell consists of a catalytic “energy amphiphile” core encompassing chemical reac-

tions from the glycolysis, citric acid cycle, and fatty acid biosynthesis subnetworks. This initial

core was followed by the inception of a second layer comprising metabolic pathways of amino

acid synthesis. This follows Hartman’s speculation that the citric acid cycle appeared earlier

than amino acid metabolism during evolution, which preceded the development of nucleotide

biosynthesis [41]. Morowitz’s third and fourth shells endowed metabolism with the capabilities

for transfer of sulfur to sulfur-containing amino acids (cysteine and methionine) and ring

Table 5. Enzymes with high network centrality metrics in the enzyme one-mode network that were extracted and their corresponding SCOP concise classification

strings (ccs).

EC Number SCOP ccs SCOP Fold Family Description nd value

EC 1.1.1.1 b.35.1.2 Alcohol dehydrogenase-like, N-terminal domain 0.0985401

c.2.1.1 Alcohol dehydrogenase-like, C-terminal domain 0.0985401

c.2.1.2 Tyrosine-dependent oxidoreductases 0.00364964

EC 1.1.1.21 c.1.7.1 Aldo-keto reductases (NADP) domain 0.0985401

EC 1.2.1.3 a.23.4.1 Mitochondrial import receptor subunit Tom20 0.781022

c.82.1.1 ALDH-like domain 0.0291971

EC 2.3.1.9 c.95.1.1 Thiolase-related domain 0.0912409

EC 2.6.1.1 c.67.1.1 AAT-like domain 0.0364963

c.67.1.3 Cystathionine synthase-like domain 0.0364963

EC 4.2.1.17 a.100.1.3 HCDH C-domain-like domain 0.791971

c.14.1.3 Crotonase-like domain 0.0912409

c.2.1.6 6-phosphogluconate dehydrogenase-like, N-terminal domain 0.080292

c.95.1.1 Thiolase-related domain 0.0912409

d.38.1.4 MaoC-like domain 0.813869

https://doi.org/10.1371/journal.pone.0224201.t005
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formation processes required for the biosynthesis of purine and pyrimidine bases. The early

accumulation of enzymes in the carbohydrate, amino acid and lipid mesonetworks (Fig 3) and

the late development of biosynthetic pathways of nucleotide metabolism [5] are in accordance

with the metabolic shell hypothesis. The hypothesis also draws support from the analysis of the

metabolic subnetwork wheel for the P-loop hydrolase fold, which is suggestive of the citric

acid cycle being ancestral among all the metabolic subnetworks [4]. This pattern is evident in

the grouping of subnetworks in the metabolic subnetwork wheel for the TIM β/α-barrel fold

[39]. It is remarkable how the modern evolutionary patterns of metabolism are reflective of

those from the prebiotic world, especially when considering that Morowitz’s concept of shells

was put forth to explain a prebiotic world without enzymes. Thus, modern metabolism should

be considered a “palimpsest” of ancient (perhaps global) prebiotic metabolisms.

The pyrimidine metabolism subnetwork appears to have recruited enzymes from the more

primordial purine metabolic pathway [5]. This early pattern of recruitment of the nucleotide

metabolism mesonetwork manifests in significant sharing of enzymes between these two sub-

networks when compared to any two other subnetworks (Figs 9 and 10). This initial evolution-

ary patchwork of sharing that appears for example in patterns of hierarchical clustering (Fig

11), entails enzyme recruitment occurring in very early metabolic pathways of modern metab-

olism (Fig 12). These early patterns later on manifested into a dense “tapestry” of enzymatic

sharing mediated by recruitment. The distribution of enzymes, as seen in the clustering results,

also underpins the conclusions drawn from our network visualizations. The noticeable

exchange of enzymes among carbohydrate, amino acid and energy metabolic pathways forms

a separate cluster (Fig 11). This cluster is largely composed of ‘core enzymes’, shared largely

between amino acid metabolism (AAC) and carbohydrate metabolism (CAR). These enzymes

have been previously found to be conserved and produce a wide range of substrates [42].

Unlike ‘core enzymes’, enzymes and pathways related to Xenobiotics biodegradation and

metabolism (XEN) and Glycan biosynthesis and metabolism (GLY) clustered at the periphery

of the network (illustrated in S14 Fig). In contrast, the nucleotide metabolism mesonetwork

(NUC) clustered within the core. Peripheral pathways and enzymes reflect innovation at the

organismal level and do not possess flexibility in production of substrates [42]. Interestingly,

clustering of xenobiotic degradation pathways into a cohesive group transcends mesonetwork

boundaries by sharing with other pathways at a relatively higher level in the hierarchy. It also

indicates how clusters may be acting in concert for specific functions [43]. Additionally, the

hierarchical clustering patterns we observe define a modular hierarchical community structure

with foundations in functionality [21].

Intriguingly, 7 out of the 21 subnetworks from the secondary metabolites mesonetwork

(SEC) covered in MANET 3.0 appear relatively recently in evolution. Secondary metabolism is

believed to have originated from primary metabolism to equip organisms with a “selective

advantage” for survival, such as providing capabilities for antibiotic resistance in bacteria or

chemical idiosyncrasies in plants [44]. These adaptation-driven pathways, which become

active upon the availability of requisite substrates [45], explain the lack of connectivity of sub-

networks developing late in evolution. The absence or limited sharing of enzymes with other

subnetworks likely stems from biochemical specialization as the modern unfolding pathways

confer individual beneficial properties to specific groups of organisms.

Finally, enzymatic, functional and catalytic site distributions among superkingdoms (Figs

13A and 14A) suggest that the common ancestor of life had a complex repertoire of metabolic

domains and a complete set of functions [46][4]. The ancient innovation in enzymatic func-

tions show the biphasic pattern of diversification at the beginning of the timeline, followed by

a decrease in diversity with time (Fig 13B and Fig 14)[17].
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Evolution of metabolic network structure

MANET embeds enzymes into subnetworks and subnetworks into mesonetworks according

to the knowledge-based classification scheme of KEGG. To study the evolutionary emergence

of this hierarchical structure, we traced the evolutionary growth of bipartite networks and

their one-mode projections. Bipartite networks are uniquely fit to study the evolutionary struc-

turing of metabolism. They can provide remarkable insights into network connectivity. For

example, the enzyme projection of the bipartite network of enzymes and subnetworks shows

how subnetworks are capable of structuring the emerging world of metabolic enzymes. In

turn, the subnetwork projection reveals how the world of subnetworks is structured by the

sharing of enzymes. In other words, network projections make explicit how hierarchy and

modularity unfold at each level of metabolic organization (Fig 2).

The evolving structure of our metabolic networks revealed hierarchy and modularity

unfolding at each organization level. Patterns of enzyme sharing along the evolutionary time-

line displayed a tendency toward power law in the bipartite networks (Table 2). Such a ten-

dency has been previously described [20,47]. However, both subnetwork and enzyme one-

mode network projections showed small world-like behavior. This behavior is congruent with

metabolic studies that highlight the small world properties of the metabolite and reaction rela-

tionship [48]. Many biological networks exhibit high clustering coefficients, an observation

that suggests their modularity is hierarchically structured [49]. As expected, the mean cluster-

ing coefficients for subnetwork and enzyme one-mode projections ranged 0.5–0.6 (Fig 8A), in

congruence with previous analyses of metabolic networks [21]. While hierarchical modularity

has been observed in scale-free networks and does not entail a cause-and-effect relationship

between them [50], the gradual rise of the clustering coefficient in the enzyme one-mode net-

works provides strong support to the gradual evolutionary development of hierarchical modu-

larity in metabolic networks. Strikingly, the clustering coefficients of the enzyme one-mode

network projections scaled with connectivity according to a power law (Fig 7), which consti-

tutes a hallmark of the hierarchical modularity property of complex systems (e.g. metabolism;

[21,51]). This power law scaling relationship strengthened with time. In contrast, the scaling

relationship of the subnetwork one-mode projections was weaker, suggesting evolutionary

constraints loosen at higher metabolic hierarchy levels. Thus, hierarchy and modularity

emerge more strongly at lower levels of network organization, while at the same time provid-

ing the higher organization levels with ample room for metabolic innovation.

Hierarchical modularity has been shown to increase with time in evolving biological net-

works at different timescales, from nanosecond-scale dynamics of the folding of loop regions

in proteins to a scale of billions of years of history protein structure and function [52]. The rise

of hierarchical modularity embodies a biphasic model that explains the origin and evolution of

modules [17]. At first, parts (nodes) of a network describing a system such as metabolism are

weakly linked. This lack of interaction between parts enables their diversification when parts

are subjected to mutation, recruitment and reassortment. Diversification results in parts com-

peting with each other through competitive optimization, which leads to a decrease in overall

diversity and a hierarchical structuring of emerging modules. The modules that arise from the

optimization process are resilient to change and increase linkage, contributing higher and

higher levels of structure to the evolving system. MANET data is compatible with a similar

biphasic model of diversification and unification. The model is at work in metabolism in the

form of: (i) steadily low-high fluctuating diameter and high modularity scores in the enzyme

and subnetwork projections (Fig 6), and (ii) the rise of a strong scaling signal of hierarchical

structure operating at the lowest enzyme level of metabolic organization (Fig 7). The subnet-

work projections are the source of noise in the metabolic system while the enzyme projections
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constrain these effects at the evolutionary level. This antagonistic effect on structure confers

both flexibility and robustness to the evolving bipartite network. ‘Messiness’ is a source of nov-

elty in evolution [53]. While evolution does not explicitly foster messiness, it exploits it for bio-

logical innovation. In metabolism, the noisy patterns we observe in the subnetwork

projections suggest that noise acts as a source of innovation in metabolism that mirrors the

buffering effect of the enzyme projection on the emergent subnetwork-enzyme structure of

the bipartite network.

Metabolic centralities

We found that transferase activity EC 2.3.1.9 was the most prevalent enzyme function based

on degree and betweenness centrality measures of the enzyme one-mode network projections.

The enzymes with this enzymatic function comprise the thiolase-related fold family (c.95.1.1;

nd = 0.091). These acetoacetyl-CoA C-acetyltransferase enzymes participate in a reaction that

catalyzes the formation of acetoacetyl-CoA from two molecules of acetyl-CoA, which is central

for lipid metabolism. Other enzymes of significant centrality include aspartate transaminase

(EC 2.6.1.1), which holds the cystathionine synthase-like family (c.67.1.3) and AAT-like family

(c.67.1.1) domains, both of an age of nd = 0.036. The enzyme catalyzes reactions that result in

the production of the hub metabolite glutamate. Similarly, an oxidoreductase yielding the hub

metabolite NADH as one of the reaction products (EC 1.1.1.1), with its tyrosine-dependent

oxidoreductase family domain (c.2.1.2, nd = 0.004), was also among the top nodes with high

centralities. In the most ancient enzyme one-mode projections (S7 Table), centrality measures

revealed that oxidoreductase activity EC 1.2.1.3 was the most prevalent enzymatic function,

while also being one of the top nodes based on the second most ancestral age criterion. The

enzymes with this enzymatic function comprise two domains, one being the aldehyde reduc-

tase fold family (c.82.1.1; nd = 0.029). The c.82.1.1 family is found in enzymes responsible for

energy interconversion pathways of purine metabolism and is the most ancestral among the

domains of this subnetwork, which is the oldest of metabolism [5]. One of the reactions it cata-

lyzes yields as one of its by-products the hub metabolite NADH. Hub metabolites may be key

to evolution of the most recent metabolic pathways by promoting recruitment of enzymes

[54]. Along with evidence of patchy recruitment of metabolic enzymes throughout evolution,

our findings also account for the high connectivity of these enzymes in our network. The nd
values of the central enzymes, majorly EC 2.3.1.9, suggest that CoA acting as a hub metabolite

is more ancestral in terms of recruitment ages. Additionally, other findings from our enzyme

one-mode networks corroborate results from a previous study that show common metabolic

substrates are highly connected in the networks [20]. Nonetheless, it may be significant to

investigate enzymes with higher betweenness centrality that may have relatively lesser connec-

tions with other enzymes within the same network but more across the networks and modules,

since such enzymes have been found to be evolutionarily conserved [43].

The challenges of metabolic retrodiction

The deep molecular exploration of the past is challenging. Its accuracy rests on the validity of

structural and functional knowledge. The accuracy of the metabolic tracings of MANET 3.0

depends on the accuracy of the SCOP, KEGG and PDBsum databases that form the bulk of its

foundational elements, including biases in sampling and the definitions of fold families,

enzyme activities, subnetworks and mesonetworks [2]. These possible limitations may be illus-

trated by the observation that folds, often treated as discrete units, may exist in a continuum in

sequence space [55]. In this regard, MANET relies on the monophyletic nature of domains

defined at some higher abstraction level of SCOP, i.e. the structural classification and
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structural variant categorization that place domains into discrete structural and evolutionary

units [55]. This can be affected by the “continuous” nature of some regions of protein sequence

space. Similarly, artifacts and experimental biases introduced by crystallography and molecular

biology operations can also be important. The majority of the protein enzymatic entries

addressed by metabolic MANET are globular in nature. Therefore, membrane proteins and

other proteins that pose difficulty in experimental resolution of structures will likely be under-

represented in the databases and HMM libraries. Finally, HMM predictions are robust despite

not being based on experimental data due to their satisfactory performance in comparison

with structural methods [6]. Finally, caution needs to be exercised when interpreting results

from phylogenomic methods. While phylogenomics is a powerful tool in the evolutionary bio-

informatics arsenal [8], phylogenetic features (characters) that are studied are structural prop-

erties of present-day molecules [5]. These characters are not molecular features that existed in

the distant past, but rather a representation of living molecular fossils. Despite all of these pos-

sible limitations, biases may not drastically affect the historical signal that is present in phylo-

genomic data [3]. Instead, increases in knowledge and database depositions with time will

improve the accuracy of data, findings and conclusions.

MANET 3.0 supplements existing data-mining and other exploratory strategies that address

questions and theories supporting the study of both the origin and evolution of modern metab-

olism and life. Potentially, MANET could be used to solve intricate questions such as the cen-

trality of the reductive (reverse) citric acid cycle (rTCA) at the heart of the prebiotic metabolism

leading to primordial amino acid and nucleotide biosynthesis pathways [56], the origin of meta-

bolic pathways responsible for photosynthesis [57], the role of ATP synthesis behind the exis-

tence of chloroplast and mitochondrial genomes [58], the rise of planetary oxygen on Earth

[59], or the presence of modularity in metabolism as design of function [43]. The classification

of substrates and their relationship to metabolites of enzymes [21] could be investigated from

an evolutionary perspective. Additionally, there may be merit in studying evolutionary patterns

of metabolism at the fold superfamily level and how these relate to those of folds (MANET 1.0

and 2.0) and fold families (MANET 3.0). The degree of conservation offered at the superfamily

level may provide the right resolution to dissect other important drivers of metabolic evolution.

Investigating these evolutionary drivers in organisms representative of the three superkingdoms

[20,43] could indicate whether such processes are ubiquitous across the major superkingdoms

of life. Lastly, extending the metabolic MANET to cover signaling networks could enhance our

understanding of evolutionary patterns in biological communication.

A principle of increasing granularity in hierarchical structure

We have dissected the interface of different levels of hierarchical organization that are typical

of complex molecular systems. The main take home message of our study of metabolic evolu-

tion is the likely existence of a ‘principle of granularity’, an increase of the cohesiveness of

lower-level parts of a system. The evolutionary trends in modularity (Fig 6), power law scaling

of network clustering (Fig 7), and small-world coefficient (Fig 8) confirm Herbert A. Simon’s

prediction: “Each of the parts of a nearly-decomposable system has strong internal links among
its sub-parts, but the several top-level parts are bound together with each other only by compara-
tively weak linkages”[60]. Indeed, the evolutionary constraints on metabolic structure are

stronger at the ‘enzyme’ lower level and weaker at the ‘subnetwork’ higher level of metabolic

organization. The lower level structure is maintained tightly knit by a set of enzymes with sig-

nificant centralities in the metabolic network (Tables 4 and 5). Such ‘tela vitae’ increases the

granularity of the metabolic system by fostering interactions mediated by enzymatic recruit-

ments that are evolutionarily entrenched by catalytic functionalities. In contrast, upper levels
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of network structure are bound together by linkages that are weak and more chaotic, as exem-

plified by our tests of network randomness (Table 3). This looseness in the establishment of

pathways of chemical reactions manifests in significant heterogeneities of enzyme sharing

across superkingdoms and viruses (Fig 13), diverse mapping of enzymatic functionalities (Fig

14), and cooption of catalytic site diversity (Fig 15) along the evolutionary timeline.

Simon [61] was inspired by theoretical analysis of economic, physical and biological sys-

tems. His prediction about the ‘parts-within-parts’ structure of systems justified the widely

adopted assumption that most systems are near-decomposable, i.e. they have parts that mostly

act independently from each other. Our principle of granularity now explains near-decompos-

ability as the result of a trend of the system’s lower levels to become increasingly more granu-

larly entrenched with time. We find that high granularity levels endow systems with an

architecture of parts acting almost independently from each other.

Methods

The data for the metabolic MANET 3.0 update comprises four sources. The first source,

KEGG (69 version), is a compendium of metabolic network information [10]. It was used to

borrow pathway and enzyme-related information. SCOP, the second source, includes a hierar-

chical classification of protein domains [62]. The latest SCOP release (1.75 version) provided

PDB information linked to the corresponding fold families used in MANET. Kim et al. [63]

reconstructed a phylogenomic timeline of fold families based on 989 proteomes, which was

used to determine domain age of the respective enzymes containing these structural units of

proteins. The underlying assumption of this phylogenomic timeline is that the most ancient

domains are the ones that are most abundant and spread in nature (found in most of the prote-

omes). The age of the domains is expressed in terms of a ‘node distance’ (nd) value on a con-

tinuous scale of 0 to 1 that establishes the relative age of individual domains, from ancient to

recent. Finally, the PDBsum repository of 3D structural information of metabolic enzymes

[14], was used in addition to the three sources used in the previous version of MANET. The

Enzyme Structure Database, which is part of PDBsum (release September 21, 2013), provided

PDB information linked to enzymes. This information is not supplied anymore by the relevant

enzyme flat file of the KEGG database.

The massive amount of data obtained from these sources was parsed to extract relevant

information with Python scripts. Database management was implemented with MySQL. Join

operations in MySQL helped integrate the core of MANET comprising of pathways, enzymes,

PDB structure entries and fold family classification (Fig 1). A separate relation containing

amino acid sequences of the enzymes was derived from the KEGG Genes data file. These

amino acid sequences were used as input for generating fold family or PDB assignments via

Hidden Markov Models (HMMs) of enzymes that lacked this information in the KEGG data

files. The SUPERFAMILY database was scanned using HMMER, using an e-value of 0.0001

[64,65]. This annotated information facilitated an increased enzyme coverage with a median

painting efficiency of 77.53% [6], which was added to the core database relation of MANET.

Finally, the ancestry of the enzymes was literally painted onto the KEGG metabolic maps for

visualization of the data contained in MANET, using the Python Imaging Library (PIL) [66].

The spectrum of colors, representative of ancestry, complied with the coloring scheme in the

previous database version, with red to blue indicating ancient to recent, respectively. The inter-

face design of the website in PHP of the previous version was retained, rendering the maps as

interactive entities.

Network analysis of this dataset was performed by constructing bipartite networks at the

mesonetwork and metabolic subnetwork level. The respective bipartite networks showcased
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the global patterns of connectivity existing in our data. The network construction, analysis of

metrics of connectivity, and hierarchical clustering was performed using ‘igraph’ in R[18]. The

power law fit was evaluated using the respective function in ‘igraph’ using the ‘plfit’ implemen-

tation that applies the Kolmogorov-Smirnov test to the data. The Bartels’ ranked test for ran-

domness was performed using the R package ‘randtests’ using ‘two.sided’ as the alternative

hypothesis and ‘beta’ p-values [67]. To assess small-world behavior, we calculated the small-

world coefficient, SΔ, by comparing it with an equivalent Erdös-Rényi random graph generated

using igraph’s ‘erdos.renyi.game’ function. Using igraph’s inbuilt functions to calculate the

average clustering coefficient, CD
g , of the graph (bipartite network or either of the one-mode

projections) and average path length, Lg, as well as the average clustering coefficient, CD
rand, and

average path length, Lrand, of an equivalent Erdös-Rényi random graph [68] we calculated the

small-world coefficient, SΔ, by:

SD ¼
gDg

lg

where

gDg ¼
CD
g

CD
rand

lg ¼
Lg
Lrand

The patterns of connectivity shown in dendrograms (Fig 11) and associated modularity matri-

ces (Fig 12) were created by computing dissimilarities via squared Euclidean distances. They

were hierarchically clustered with Ward’s algorithm [69]. The heatmap was generated using a

modularity matrix calculated by the Fast Greedy Community method and scaled to range

between -1 and 1.

Superkingdom and viral annotations of enzymes were obtained by mapping EC numbers

to species data from BRENDA release 2018.2 (available at www.brenda-enzymes.org) [70],

which were traced onto superkingdom data from the NCBI taxonomy database [71]. In order

to identify catalytic sites, we mapped EC numbers to all catalytic sites of the 543 enzymes cov-

ered in the M-CSA that was mapped to a domain with an nd value [30]. Functional annota-

tions of enzymes were derived by mapping SCOP FSF IDs onto SUPERFAMILY functional

categories [27]. Note that EC numbers have been revised after the creation of MANET. Anno-

tations associated with the revised names were used while retaining the old names to maintain

correspondence with maps on MANET (and data associated with the KEGG 2014 release) (S4

Table). In the case of an EC number being transferred to multiple revised EC numbers, the

superkingdom annotations were only used if there were an absolute consensus among the

annotations of all the revised EC numbers. This resulted in EC 1.7.99.4 being excluded from

superkingdom annotation analysis.

Supporting information

S1 Fig. Painting efficiency of the subnetworks from MANET and KEGG. The x-axis repre-

sents the subnetwork number, while the y-axis (left) denotes number of enzymes per subnet-

work. The y-axis (right) indicates percentage trend of the coverage.

(TIF)
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S2 Fig. Log-log plots for the bipartite network derived from subnetwork-enzyme connec-

tions at different nd values (nd age of multidomain enzymes using the age of the 2nd most

ancient domain).

(TIF)

S3 Fig. Number of nodes in each network type at 0.1 nd intervals (nd age of multidomain

enzymes using the age of the 2nd most ancient domain).

(TIF)

S4 Fig. A bipartite graph of mesonetworks and enzymes that are extant (nd = 1.0) showing

enzymes by nd distribution (nd age of enzymes using the age of the most ancient domain),

on a scale of red to violet representing ancestral to recent fold family domains assignments

respectively. Mesonetwork are shown as open circles while colored nodes denote enzymes.

(TIF)

S5 Fig. Run chart of enzymes in mesonetworks appearing in each nd era (nd age of

enzymes using the age of the most ancient domain). Eras are defined as nd bins of ages; the

first nd bin includes enzymes appearing between nd = 0 and nd = 0.1. The inset describes the

distribution of enzymes along the evolutionary timeline.

(TIF)

S6 Fig. Connectivity patterns among mesonetworks at different stages of the evolutionary

timeline (nd age of enzymes using the age of the most ancient domain). Mesonetworks are

represented by vertices while edge thickness shows the number of enzymes shared. AAC,

Amino acid metabolism; SEC, Biosynthesis of other secondary metabolites; CAR, Carbohy-

drate metabolism; NRG, Energy metabolism; GLY, Glycan biosynthesis and metabolism; LIP,

Lipid metabolism; COF, Metabolism of cofactors and vitamins; POL, Metabolism of terpe-

noids and polyketides; NUC, Nucleotide metabolism; AA2, Metabolism of other amino acids;

XEN, Xenobiotics biodegradation and metabolism.

(TIF)

S7 Fig. Average node degrees (average number of links), diameter and maximum modular-

ity scores for each type of network (largest connected component) at each time point (0.1

nd interval; nd age of enzymes using the age of the most ancient domain). Network sizes

(total number of nodes and nodes in the largest connected component) are given in S12 Fig.

(TIF)

S8 Fig. Log-log plot of C(k) vs k for the one-mode enzyme projections at nd value intervals

of 0.1 (nd age of enzymes using the age of the most ancient domain).

(TIF)

S9 Fig. Testing for small-world behavior in Enzyme and Subnetwork one-mode networks.

(A) Comparison of clustering coefficient and average path length of the enzyme one-mode

network to that of an Erdős–Rényi network. The resulting small-world coefficient seems to

increase along the evolutionary timeline (nd age of enzymes using the age of the most ancient

domain). (B) Comparison of clustering coefficient and average path length of the subnetwork

one-mode network to that of an Erdős–Rényi network. Small-world coefficient decreases with

the passage of time (nd age of enzymes using the age of the most ancient domain).

(TIF)

S10 Fig. Matrix representation of subnetwork one-mode graphs by evolutionary age (nd
age of enzymes using the age of the most ancient domain). Rows represent nodes (subnet-

works) with each cell indicating the number of enzymes (edges) per subnetwork in each nd
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interval.

(TIF)

S11 Fig. A reduced representation of the subnetwork-enzyme bipartite network at nd = 1.0

(nd age of enzymes using the age of the most ancient domain). It shows major vertices in

metabolic subnetwork one-mode graph. The edge connectivity represents enzyme sharing

with greyscale values indicating the number of enzymes among the subnetworks. A full

description of KEGG subnetwork labels can be found in S2 Table.

(TIF)

S12 Fig. Number of nodes in each network type at 0.1 nd intervals (nd age of enzymes

using the age of the most ancient domain).

(TIF)

S13 Fig. Log-log plots for the bipartite network derived from subnetwork-enzyme connec-

tions at 0.1 nd interval (nd age of enzymes using the age of the most ancient domain).

(TIF)

S14 Fig. Full subnetwork one-mode projection (nd = 1.0) of the reduced representation of

Fig 10. The network projection shows nodes (subnetworks) colored according to mesonet-

works they belong to. The nodes are connected to each other through links based on sharing

of enzymes. Link widths are proportional to the number of enzymes shared among the subnet-

works. A full description of KEGG subnetwork labels can be found in S2 Table and S3 Table.

(TIF)

S1 Table. Number of subnetworks associated with enzymes in KEGG and MANET

expressed per mesonetwork.

(XLSX)

S2 Table. Painting efficiency of metabolic MANET compared to total number of nodes in

KEGG metabolic pathways.

(XLSX)

S3 Table. Pathway names with their associated map numbers.

(XLSX)

S4 Table. EC name revisions for superkingdom annotations. EC numbers have been revised

after the creation of MANET. This table includes changes after February, 2014 and before

October, 2018. In order to conform to the EC numbers associated with the maps available on

MANET, older EC numbers have been used in analysis. However, the superkingdom annota-

tions used are derived from the revised EC numbers, if there was a clear consensus, in case of

multiple EC annotations after revision.

(XLSX)

S5 Table. Parameters for the power law fitting function in R for the bipartite network cor-

responding to the ancestral age networks at different nd values (nd age of enzymes using

the age of the most ancient domain). alpha: exponent for the fitted power law distribution,

xmin: lower bound for the power law fitting, logLik: log-likelihood of fitted parameters, KS.

stat: test statistic for the Kolmogorov Smirnov test between fitted and sample distribution and

KS.p: p-value for the Kolmogorov Smirnov test between fitted and sample distribution.

(XLSX)

S6 Table. Results of the Bartels’ test for randomness performed on each type of network at

each time-point (0.1 nd interval; nd age of enzymes using the age of the most ancient
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domain). The null hypothesis is that the underlying data has been drawn from a random dis-

tribution. p-values less than 0.05 indicate that the null hypothesis is rejected.

(XLSX)

S7 Table. Network centrality metrics for the enzyme one-mode network extracted from

the subnetwork-enzyme bipartite network by nd Values (nd age of enzymes using the age

of the most ancient domain).

(XLSX)
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