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Abstract

The recently identified restriction factor tetherin/BST-2/CD317 is an interferon-inducible trans-membrane protein that
restricts HIV-1 particle release in the absence of the HIV-1 countermeasure viral protein U (Vpu). It is known that Tantalus
monkey CV1 cells can be rendered non-permissive to HIV-1 release upon stimulation with type 1 interferon, despite the
presence of Vpu, suggesting species-specific sensitivity of tetherin proteins to viral countermeasures such as Vpu. Here we
demonstrate that Tantalus monkey tetherin restricts HIV-1 by nearly two orders of magnitude, but in contrast to human
tetherin the Tantalus protein is insensitive to HIV-1 Vpu. We have investigated tetherin’s sensitivity to Vpu using positive
selection analyses, seeking evidence for evolutionary conflict between tetherin and viral countermeasures. We provide
evidence that tetherin has undergone positive selection during primate evolution. Mutation of a single amino acid (showing
evidence of positive selection) in the trans-membrane cap of human tetherin to that in Tantalus monkey (T45I) substantially
impacts on sensitivity to HIV-1 Vpu, but not on antiviral activity. Finally, we provide evidence that cellular steady state levels
of tetherin are substantially reduced by Vpu, and that the T45I mutation abrogates this effect. This study provides evidence
that tetherin is important in protecting mammals against viral infection, and that the HIV-1 Vpu–mediated countermeasure
is specifically adapted to act against human tetherin. It also emphasizes the power of selection analyses to illuminate the
molecular details of host–virus interactions. This work suggests that tetherin binding agents might protect it from viral
encoded countermeasures and thus make powerful antivirals.
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Introduction

Retroviruses are obligate cellular parasites and as such rely on a

wide variety of host proteins and pathways to complete their

lifecycle. Moreover, they are subject to a variety of cellular

antiviral activities that they must either overcome or avoid in order

to successfully infect a cell. Together these positive and negative

acting host factors combine to give primate lentiviruses narrow

host ranges. For example, HIV-1 can only replicate in humans,

chimpanzees and possibly gorillas [1]. A particular class of

interferon inducible, cellular, innate immune factors, active against

retroviruses, is referred to as restriction factors. These include

TRIM5a [2], APOBEC3G (A3G), APOBEC3F (A3F) [3,4] and

tetherin/BST2/CD317 [5,6]. Tetherin has been demonstrated to

tether nascent retroviral virions to the plasma membrane,

preventing their release from the infected cell. Instead, they are

recruited back into the cell in endosomes for eventual destruction

in the lysosome [5–8]. Tetherin has predicted trans-membrane

and coiled coil regions as well as a predicted GPI anchor site [9]. It

has also been shown to exist as a dimer and is glycosylated at two

sites in its extracellular domain [10] although glycosylation does

not appear to be important for restriction of Lassa or Marburg

virus [11]. In a striking parallel to the antagonistic relationship

between the antiviral A3G/F proteins and their HIV-1 encoded

countermeasure Vif, the HIV-1 viral protein U (Vpu) counteracts

the antiviral activity of tetherin [5,6]. Vpu is a 16 kilodalton

oligomeric type 1 trans-membrane protein encoded by an

alternative reading frame in the env gene [12].

The antagonistic relationship between innate antiviral proteins,

and the viruses that they restrict, is an excellent example of the

Red Queen hypothesis [13]. This hypothesis proposes that

pathogens and their hosts are locked in evolutionary conflict,

each subject to selective pressure from the other to gain the

advantage. This evolutionary arms race leads to alternate change

followed by advantage and an overall maintenance of the

relationship between host and pathogen. In support of this

hypothesis, proteins such as TRIM5a and APOBEC3G have been

shown to be under strong positive selection pressure throughout

primate evolution, presumably from viruses that they target

[14,15]. Indeed, the study of adaptive selection and the analysis of

species-specific restriction have illuminated details of the evolution

of antiviral proteins as they change in response to rapidly evolving

pathogens. Here we provide evidence for positive selection of

tetherin and demonstrate that positively selected residues impact
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on sensitivity to Vpu but not on tetherin’s anti HIV-1 activity.

Furthermore, we show that mutation of a single residue renders

human tetherin resistant to HIV-1 Vpu-mediated cellular

depletion.

Results

Tantalus monkey tetherin restricts HIV-1 release but is
not sensitive to HIV-1 Vpu

To measure tetherin antiviral activity and its abrogation by the

viral Vpu protein, we utilised HIV-1 YFP encoding vectors.

Transfection of 293T cells with HIV-1 vector plasmids leads to

production and release of HIV-1 virions containing a YFP

encoding genome. The efficiency of virion release can then be

measured by titration of the 293T supernatant on permissive

target cells. Expression of viral proteins and release of virions from

transfected cells was also assayed by western blot, detecting HIV-1

capsid in extracts from the transfected cells and the supernatant

respectively. Expression of HIV-1 vector plasmids in the absence

of tetherin or Vpu led to production of HIV-1 YFP with a titer of

around 56107 infectious units/ml. Co-expression of human

tetherin significantly reduced infectious HIV-1 vector production

and co-expression of HIV-1 Vpu completely rescued HIV-1 YFP

release (Figure 1A). These data, demonstrating restriction of HIV-

1 by human tetherin, and the ability of HIV-1 Vpu to act as

countermeasure to tetherin, are concordant with described

observations [5,6].

Tantalus monkey CV1 cells are able to release HIV-1 in a Vpu

insensitive way [8]. Furthermore, after interferon treatment these

cells support reduced HIV-1 release. We hypothesised that this

might be due to interferon induced expression of a tetherin protein

that was insensitive to HIV-1 Vpu. To test this we cloned the

Tantalus monkey tetherin from CV1 cells and co-expressed it with

HIV-1 vector plasmids as above. Indeed, expression of the

Tantalus tetherin protein restricted HIV-1 YFP release, by almost

2 orders of magnitude (Figure 1A). Importantly, and in

concordance with HIV-1 Vpu’s inability to stimulate HIV-1

release from CV1 cells [8], restriction by Tantalus tetherin was

insensitive to co-expression of HIV-1 Vpu. This observation

suggests that the Vpu mediated tetherin countermeasure is species-

specific and that the HIV-1 Vpu protein cannot counteract the

antiviral activity of the Tantalus tetherin protein. Measurement of

Gag levels in the supernatant and transfected cells by western blot

with a p24 CA antibody demonstrated that viral titers (Figure 1A)

reflect the amount of p24 released into the supernatant (Figure 1B)

and that tetherin expression did not impact on Gag expression

levels (Figure 1C). b actin was measured as a loading control

(Figure 1D). We note that there is evidence for increased levels of

protease cleaved Gag in the cell extracts in the presence of tetherin

restriction, consistent with the notion that maturing particles are

tethered to the surface of the restrictive cells.

It is possible that Tantalus tetherin is insensitive to Vpu because

it is expressed more efficiently than the human protein and it

therefore saturates the HIV-1 Vpu protein. To test this we titrated

both human (Figure 1E) and Tantalus tetherin (Figure 1F) against

a fixed dose of Vpu and measured the titer of the released virus. In

fact human tetherin was counteracted by Vpu at high or low doses

whereas Tantalus tetherin was not significantly counteracted by

HIV-1 Vpu, even when the dose of tetherin was low. These data

are consistent with the notion that Tantalus tetherin is insensitive

to the HIV-1 encoded tetherin countermeasure Vpu.

Selection analyses reveal positively selected tetherin
residues in the primate lineage

Species specificity of the tetherin/Vpu interaction is reminiscent

of the species specificity of HIV-1 Vif activity against primate

APOBEC3G proteins, as well as the species specificity of TRIM5a
against retroviruses. In both of these examples the determinants of

specificity can be revealed by analysis of positive selection in the

species-specific variants of each restriction factor [14–17]. We

therefore gathered tetherin sequences from a variety of primates

and aligned them to the Tantalus monkey tetherin sequence

(Figure 2A). The alignment revealed that primate tetherin

sequences are divergent (mean pairwise genetic difference of

0.116 nucleotide substitutions per site, standard deviation 0.085

substitutions/sites), yet 93 out of 180 amino acid sites are conserved

along the primate alignment, excluding positions with gaps.

We examined the alignment of primate tetherin sequences for

evidence of heterogeneity of synonymous (dN) and non-synonymous

(dS) substitution rates, indicative of adaptive selection. An excess of

non-synonymous substitutions, which lead to protein sequence

change, compared to synonymous substitutions, which do not, (dN/

dS.1) is traditionally regarded as indicative of positive (or adaptive)

selection. Conversely, a dN/dS,1 suggests negative (or purifying)

selection. Although the average rates of synonymous changes

exceeded rates of non-synonymous changes across the sequence

alignment, reflecting a predominance of purifying selection on the

tetherin genes (average dN/dS = 0.93; 95% Confidence Inter-

vals = 0.76; 1.11), evidence for positive selection was found when

maximum likelihood models allowing variable dN/dS ratios among

sites were applied to the data. The model allowing sites to evolve

under positive selection had a significantly better fit to the data than

the model assuming no positive selection (likelihood ratio test with

2 degrees of freedom; p = 0.018). Furthermore, analyses of codon-

specific positive selection in the primate lineage revealed fifteen

residues potentially under adaptive selection, five of which, positions

24, 26, 30, 36 and 45 in the human tetherin sequence, were found in

or bordering the predicted trans-membrane domain (Figure 2A,

Table 1). We note that the three selected trans-membrane residues

present in the central helix are predicted to be on the same side of the

helix and therefore in close proximity to one another (Figure 2B).

Additional sites showing evidence of positive selection were found in

Author Summary

Pathogenic viruses have been infecting mammals through-
out their evolution, exerting selective pressure to evolve
systems to limit or eliminate these parasites. For example,
intracellular proteins called restriction factors specifically
restrict viral infection by targeting important viral process-
es. The restriction factor tetherin tethers newly formed
HIV-1 virions to the surface of infected cells, preventing
egress and further infection. In order to counteract
tetherin, HIV-1 encodes a membrane-associated protein
called Vpu that abrogates tetherin activity. Here we show
that HIV-1 Vpu is inactive against tetherin from Tantalus
monkeys and that this is due to a single amino acid that
differs between human and tantalus monkey tetherin
sequences. Evidence for positive selection at this position
suggests that viral infections have provided the Darwinian
selective pressure leading to this change. We also show
that Vpu expression leads to a loss of tetherin protein in
cells. Mutation of human tetherin protects it from HIV-1
Vpu activity, allowing functional protein expression and
restriction of viral release. This study underlines the utility
of selection analyses to reveal determinants of antiviral
specificity and is strong evidence for the host–virus arms
race described by the Red Queen hypothesis.

Species Specificity of Tetherin Sensitivity to Vpu
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the predicted cytoplasmic and C terminal extra-cellular domains

(Table 1).

The positively selected tetherin trans-membrane region
residues impact on sensitivity to HIV-1 Vpu

Knowing that HIV-1 Vpu counteracts human tetherin we

hypothesised that the differences between primate tetherin sequences

might be due to selective pressure from pathogenic retroviruses

encoding tetherin countermeasures. We focused on the trans-

membrane domain as a likely site for Vpu interaction because both

tetherin and Vpu are integral membrane proteins and replacing the

Vpu trans-membrane domain with that from CD8 causes mis-

localisation and loss of Vpu activity [7]. Furthermore, a non-

functional Vpu with a scrambled trans-membrane region co-localised

less extensively with tetherin [6]. We hypothesised that changing the

trans-membrane region residues in the human tetherin protein to

those in the Tantalus monkey protein should impact on sensitivity to

HIV-1 Vpu. Of positions 24, 26, 30, 36 and 45, which are in or

bordering the predicted trans-membrane region (Figure 2), position

24 is conserved between human and Tantalus monkey. We therefore

made a human quadruple tetherin mutant I26V, V30G, I36L, T45I

and tested its antiviral activity and sensitivity to HIV-1 Vpu. The

wild-type human tetherin suppressed HIV-1 release reducing

infectious titer by 78 fold and release was completely rescued by

HIV-1 Vpu expression (Figure 3A). Conversely, the human tetherin

quadruple mutant (Quad) was able to potently suppress HIV-1

release but was only weakly rescued by co-expression of HIV-1 Vpu,

4 fold vs 78 fold rescue for the wild-type protein (Figure 3A–3D).

Importantly, the mutations did not significantly reduce tetherin’s

antiviral activity on HIV-1 release (Figure 3A, black bars). In order to

examine the contribution of each selected residue to Vpu sensitivity

we tested single mutants for antiviral activity and Vpu sensitivity. In

fact, mutating human residue 30 (V30G) moderately reduced its Vpu

sensitivity (from 78 to 15 fold) whereas mutating residue 45 (T45I)

had a similar impact as mutating all 4 residues (5 fold versus 4 fold

rescue on Vpu expression). Remarkably, it appears that human

tetherin can escape the HIV-1 encoded tetherin countermeasure Vpu

and restrict HIV-1 if a single tetherin amino acid is changed to reflect

the Tantalus monkey sequence. Indeed, the evidence for positive

selection suggests that the tetherin gene has been under pressure to

change at this position during primate evolution.

For all of the experiments in Figure 3A we measured Gag levels

by western blot in the cells and p24 levels in the supernatant

(Figure 3B–3D). In each case p24 levels in the supernatant

reflected the titer of the virus as plotted (Figure 3B) Furthermore,

Gag expression levels were similar in the cells and unaffected by

tetherin expression (Figure 3C). b actin levels in cell lysates were

measured as a loading control (Figure 3D).

HIV-1 Vpu expression leads to a loss of wild-type but not
mutant tetherin proteins

It is formally possible that the tetherin mutations responsible for

reduced sensitivity to Vpu impacted on its expression levels. In

Figure 1. Tantalus monkey tetherin restricts HIV-1 release but
is not sensitive to HIV-1 Vpu. (A) 293T cells were left untransfected
(arrow) or co-transfected with HIV-1 Gag-pol (250 ng), HIV-1 YFP vector
(375 ng), and VSV-G (250 ng) encoding plasmids alone (C) or along with
plasmids encoding for human (HuTHN) or Tantalus monkey (TanTHN)
tetherin (100 ng). Virus containing supernatants were titered on 293T
cells and infectious titers were calculated. Human tetherin reduces HIV-
1 release by 2 orders of magnitude and this is completely overcome by
co-expression of HIV-1 Vpu. Tantalus monkey tetherin restricts HIV-1
release and is insensitive to HIV-1 Vpu. Error bars represent standard
deviation of mean titers calculated from two independent experiments.
HIV-1 Gag p24 and p55 bands are shown. (B) Measurement of HIV-1 p24
in the supernatant of transfected 293T cells by western blot using an
anti p24 antibody demonstrates that p24 levels reflect infectious titers
of the released virus (Figure 1A). (C) Measurement of HIV-1 Gag levels in
extracts from transfected 293T cells demonstrates that tetherin
expression does not reduce viral protein expression. (D) Cell extract

blots in C were stripped and re-probed for b actin as a loading control.
(E) 293T cells were co-transfected with HIV-1 vector plasmids, 200 ng
Vpu plasmid and a titration of human tetherin plasmid (E) or Tantalus
monkey tetherin plasmid (F) as shown. Titration of human tetherin
demonstrates that Vpu counteracts human tetherin at high and low
tetherin doses whereas titration of Tantalus monkey tetherin demon-
strates that Vpu does not counteract Tantalus tetherin even when
tetherin doses are low.
doi:10.1371/journal.ppat.1000443.g001

Species Specificity of Tetherin Sensitivity to Vpu
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order to control for this possibility, and in the absence of a tetherin

antibody, we appended an N terminal epitope tag to the wild-type

and quadruple mutant human tetherin proteins and performed an

assay for tetherin function and Vpu sensitivity, as above.

Surprisingly, we found that the tag slightly reduced human

tetherin’s antiviral activity, compare Figure 4A to Figure 3A. Assay

of p24 in supernatant (Figure 4B) and cell lysate (Figure 4C)

confirmed this observation. Nonetheless, we measured the

expression levels of the tagged tetherin proteins by western blot,

reasoning that if expression levels were changed by the four

mutations then this would be evident in expression levels of the

tagged proteins, despite their reduced activity. In fact, the wild-

type and mutant unglycosylated proteins were expressed at similar

levels in the absence of Vpu (Figure 4D). Importantly, co-

transfection of Vpu led to reduction in the amount of tetherin

detected, both in a cleared RIPA cell lysate supernatant and the

associated pellet as described [18] (Figure 4D and 4F). b actin was

measured as a loading control in both supernatant and pellet

(Figure 4E and 4G). These observations are concordant with those

reported by Bartee et al who reported lower levels of tetherin

protein in the presence of Vpu [19]. We obtained similar results

when the experiment was carried out using the human single point

mutant of tetherin T45I demonstrating that this single mutation

can render tetherin insensitive to Vpu (Figure 5). These

experiments suggest that the steady state level of tetherin is

reduced by co-expression of HIV-1 Vpu, and that mutation at

positively selected sites leads to a persistence of the tetherin protein

presumably due to impaired interaction with the tetherin trans-

membrane region.

HIV-1 Vpu mediated loss of tetherin is partially rescued
by MG132

Next we considered whether inhibition of the proteasome

impacts on the Vpu mediated reduction of tetherin steady state

levels. We co-expressed HIV-1 vectors and N-terminally tagged

wild-type human tetherin, and examined the impact of HIV-1

Figure 2. Selection analyses reveal positively selected tetherin residues in the primate lineage. (A) Nucleotide alignment of nine primate
tetherin sequences. HoSa (Homo Sapiens), Popy (Pongo Pygmaeus (Orangutan)) Patr (Pan Trolodytes (Chimpanzee)), Tan (Tantalus monkey), Ver
(Vervet monkey), Mane (Macaque Nemestrina (pigtailed macaque)), Mafa (Macaque Fasicularis (cynomolgus monkey)), Mamu (Macaque Mulatta
(Rhesus macaque)) Caja (Callithrix jacchus (white tufted ear marmoset). Codon positions under positive selection are indicated by shaded boxes.
Secondary structure (SS) was predicted by PSIPRED [53] and is symbolised as (+) cytoplasmic domain; (I) trans-membrane domain inner cap; (X) trans-
membrane domain alpha helix; (O) trans-membrane domain outer cap; (2) extra-cellular domain. (B) Predicted structure of the trans-membrane helix
performed using helical wheel projection (http://rzlab.ucr.edu/scripts/wheel/wheel.cgi) suggests that residues 26, 30, and 36 are on the same side of
the protein. Closed circles indicate positively selected amino acids, dashed circles indicate residues that are different between human and Tantalus
monkey, but not positively selected. Human amino acids are shown in black and Tantalus monkey in grey italic.
doi:10.1371/journal.ppat.1000443.g002

Species Specificity of Tetherin Sensitivity to Vpu
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Vpu-HA co-expression in the presence and absence of the

proteasome inhibitor MG132 (Figure 6). Consistent with previous

observations, MG132 lowered infectious titres, a phenomenon

attributed to depletion of ubiquitin pools required for HIV-1

maturation and release [20] (Figure 6A). In addition, MG132

increased cellular levels of tetherin in the absence of Vpu,

consistent with the notion that tetherin (like many other cellular

proteins) is cycled within the host cell using ubiquitin dependent

pathways. MG132 also significantly increased levels of Vpu

(Figure 6C, compare left and right panels), consistent with

previous observations [21].

Vpu leads to a loss in tetherin expression levels and a rescue of

HIV-1 titre in the supernatant (Figure 4 and Figure 5). However,

treatment with the proteasome inhibitor MG132 reversed the

depletion of tetherin levels induced by Vpu. The drug reduced

tetherin antagonism by Vpu although tetherin continued to

partially inhibit the release of HIV-1, despite Vpu’s presence

(Figure 6B, compare left and right panels). This observation

suggests that the proteasome is involved in Vpu mediated

reduction of tetherin levels. Moreover, Vpu’s ability to partially

rescue HIV-1 release, despite being inhibited for tetherin

degradation, suggests that it can inhibit tetherin via sequestration

or mislocalisation. Indeed, Vpu has been demonstrated to reduce

tetherin’s cell surface expression and MG132 treatment did not

completely restore it to the surface levels seen in the absence of

Vpu, again suggesting sequestration or mislocalisation of tetherin

by Vpu [6]. Since inhibiting the proteasome impacts on the levels

of free ubiquitin it is also possible that tetherin is degraded by a

proteasome independent pathway such as trafficking to lysosomes

via endosomal sorting pathways, which are known to depend on

ubiquitination [22]. We also note that MG132 treatment increases

tetherin levels, raising the possibility of Vpu saturation. However,

the fact that we still see maximal Vpu activity when the Tetherin

plasmid dose is increased from 100 to 400 nanograms (Figure 1),

as well as increased levels of Vpu (Figure 6), suggests that increased

levels of tetherin protein are unlikely to explain the inhibition of

Vpu mediated tetherin depletion by MG132 treatment.

Discussion

Here we provide evidence that the tetherin/CD317/BST-2 host

restriction factor has been subject to positive selection during

mammalian evolution. We hypothesised that the selected changes

might impact on sensitivity to viral encoded tetherin countermea-

sures and in support of this human tetherin becomes largely

insensitive to the HIV-1 encoded countermeasure, the Vpu

protein, when it is mutated to represent the Tantalus monkey

sequence at a single position (T45I). A second positively selected

residue in the trans-membrane region V30 also impacts on

sensitivity to HIV-1 Vpu, although less dramatically than T45I,

when mutated to glycine. We also show that the single point

mutant T45I is able to render human tetherin resistant to Vpu-

mediated cellular depletion, and furthermore that the mechanism

involves the proteasome or a ubiquitin-dependent pathway. This is

consistent with the observation that Vpu recruits CD4 to the

bTrCP subunit of the SCF(bTrCP) ubiquitin ligase complex

Table 1. Positive selection in the tetherin gene.

Codon* Mean dS Mean dN P(dN.dS)** Bayes Factor

9 0.844 2.056 0.959 39.20

10 0.802 2.055 0.969 51.30

14 0.832 2.066 0.967 49.22

24 0.771 2.004 0.949 30.73

26 0.789 2.057 0.972 57.62

30 0.805 2.004 0.941 26.65

36 0.747 2.059 0.983 95.47

45 0.800 2.007 0.944 28.01

89 0.772 1.985 0.938 25.38

100 0.746 1.996 0.950 31.59

139 0.763 1.992 0.944 28.05

146 0.802 1.991 0.935 24.03

153 0.873 2.005 0.927 21.14

167 0.817 1.994 0.933 23.30

169 0.790 2.011 0.948 30.31

Codon-specific rates of synonymous (dS) and non-synonymous (dN) nucleotide
substitutions were estimated by Random Effect Likelihood methods under the
MG94xHKY85 model of evolution. The Bayesian posterior probability for
positive selection is given for each codon position. A Bayes factor of greater
than 20 at a given site was considered to be strong support for positive
selection.
*Codon positions according to the human tetherin sequence (NM004335).
Codons in the trans-membrane region are indicated in bold.

**Posterior probability for positive selection (dN.dS) at the site.
doi:10.1371/journal.ppat.1000443.t001

Figure 3. The positively selected tetherin trans-membrane
region residues impact on sensitivity to HIV-1 Vpu. (A) Co-
expression of HIV-1 plasmids alone (C) with wild-type human tetherin
(WT) and measurement of HIV-1 release in the absence of HIV-1 Vpu
(white bar) or presence (black bar). Mutation of positively selected
residues I26V, V30G, I36L, T45I (Quad) in the trans-membrane region of
human tetherin results in reduced sensitivity to Vpu whilst maintaining
similar antiviral activity. The effect of single mutations are also shown.
Errors are standard error of the mean of 2 experiments. Equal amounts
of tetherin plasmids were used (100 ng) (B) Measurement of HIV-1 p24
in the supernatant of transfected 293T cells by western blot (C)
Measurement of HIV-1 Gag levels in extracts from transfected 293T cells.
(D) Cell extract blots in C were stripped and re-probed for b actin as a
loading control.
doi:10.1371/journal.ppat.1000443.g003

Species Specificity of Tetherin Sensitivity to Vpu

PLoS Pathogens | www.plospathogens.org 5 May 2009 | Volume 5 | Issue 5 | e1000443



leading to degradation via the proteasome [23]. Concordantly,

Goffinet and colleagues have recently reported that HIV-1 Vpu

mediates proteasomal degradation of human but not rodent

tetherin proteins and that this is abrogated by inhibition of the

proteasome with ALLN or clasto-lactacysteine [24].

In the final stages of preparation of this manuscript, McNatt

and colleagues reported the findings of a similar study on species-

specificity of tetherin’s responsiveness to HIV-1 Vpu [25]. In

contrast to our approach these investigators used chimeric

constructs to show that the TM region conferred sensitivity to

HIV-1 Vpu, before locating specific sensitivity determinants using

Figure 4. Vpu expression leads to a loss of wild-type but not a
quadruple mutant tetherin protein steady state levels. (A) Co-
expression of HIV-1 plasmids and wild-type (WT) N terminally tagged
human tetherin and measurement of HIV-1 release in the absence of
HIV-1 Vpu (black bar), or presence (white bar). Mutation of positively
selected residues I26V, V30G, I36L, T45I (DTHN) in the trans-membrane
region of human tetherin results in reduced sensitivity to Vpu whilst
maintaining antiviral activity. The effect of co-transfection of HIV-1
plasmids and untagged human tetherin is shown for comparison (Lane
C). The titre of the unrestricted HIV-1 was 107 infectious units/ml. Errors
are standard error of the mean of 2 experiments. (B) Measurement of
HIV-1 p24 in the supernatant of transfected 293T cells by western blot
(C) Measurement of HIV-1 Gag levels in extracts from transfected 293T
cells. Cell extract lysates (D) or pellets (F) were blotted for the Xpress tag
to detect tetherin. Sizes of molecular weight markers are shown in
kilodaltons. Blots in D (E) or F (G) were stripped and re-probed for b
actin as a loading control. Data are representative of 3 independent
experiments and similar results were seen with an N terminal HA tag.
doi:10.1371/journal.ppat.1000443.g004

Figure 5. Mutation of a single amino acid (T45I) leads to
insensitivity to Vpu and persistence of tetherin protein. (A) Co-
expression of HIV-1 plasmids and wild-type (WT) N terminally tagged
human tetherin and measurement of HIV-1 release in the absence of
HIV-1 Vpu (black bar), or presence (white bar). Mutation T45I in the
trans-membrane region of human tetherin results in insensitivity to Vpu
whilst maintaining antiviral activity. The titre of the unrestricted HIV-1
was 107 infectious units/ml. Errors are standard error of the mean of 2
experiments. (B) Measurement of HIV-1 p24 in the supernatant of
transfected 293T cells by western blot (C) Measurement of HIV-1 Gag
levels in cleared RIPA extracts from transfected 293T cells. Tetherin was
detected by western blot of N-terminal Xpress tag in the cleared RIPA
extract supernatants (D) and pellets (F) as shown. Sizes of molecular
weight markers are shown in kilodaltons. Blots in (E) and (G) have been
stripped and re-probed for b actin as a loading control. Data are
representative of 2 independent experiments.
doi:10.1371/journal.ppat.1000443.g005

Species Specificity of Tetherin Sensitivity to Vpu
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systematic mutagenesis. Subsequent positive selection analysis was

consistent with our findings concluding that tetherin has been

under positive selection in primates.

The observation that a single mutation (T45I) can render

tetherin largely insensitive to HIV-1 Vpu mediated degradation is

reminiscent of point mutations impacting on APOBEC3G’s

sensitivity to HIV-1 Vif [26] as well as point mutations in either

capsid [27,28], TRIM5 [29], TRIMCyp [30], or Fv1 [31,32],

which strongly impact on sensitivity to restriction. Indeed, it

appears to be a common theme of the interaction between

restriction factors and viral proteins that only one or two amino

acids dictate the difference between replication and restricted

infection.

In this study we have focused on the trans-membrane domain of

tetherin. It seems likely that other tetherin sensitive viruses and

their countermeasures may have caused selection at the positions

outside of the trans-membrane domain. Vpu has been shown to

facilitate the release of distantly related viruses including the

gamma retrovirus murine leukaemia virus, as well as the sheep

lentivirus maedi-visna virus [5,33]. Vpu has also been shown to

improve release of VLPs derived from the filovirus ebola [8] and

Marburg and Lassa viruses [11]. These viruses do not appear to

encode Vpu homologues and it is unclear whether they encode

tetherin countermeasures. However, there is evidence that certain

viruses have tetherin countermeasures unrelated to HIV-1 Vpu.

For example, Kaposi’s sarcoma associated herpes virus (KSHV)

encodes a protein K5, known to reduce tetherin cell surface

expression [19]. Moreover, some primate lentiviruses, such as

HIV-2, are thought to have anti-tetherin function mediated by

their envelope protein [34–36]. Moreover, Ebola virus glycopro-

tein has recently been shown to counteract tetherin antiviral

activity [37]. We therefore speculate that viruses with counter-

measures unrelated to HIV-1 Vpu are responsible for the positive

selection of tetherin outside of the trans-membrane region.

Our observations are evidence for a dynamic evolutionary arms

race, as described by the Red Queen hypothesis, between tetherin

and virus encoded countermeasures such as Vpu. They are strong

evidence for tetherin having a critical role in innate immunity

against retroviral infection throughout mammalian evolutionary

history and underline the utility of seeking evidence for positive

selection to reveal details of host virus interactions. The details of

the antiviral mechanism of tetherin have been partially uncovered.

Tetherin restricted viruses are prevented from leaving the surface

of infected cells and are subsequently endocytosed in a Rab5a

dependent way [5–8]. The restricted viruses achieve a very late

stage of viral budding and can be released by proteolytic cleavage

from infected cells [5,7]. Vpu appears to counteract tetherin by

sequestering it from the cell surface [5,6] and our data support

recent findings that Vpu causes tetherin degradation via the

proteasome. This observation suggests that Vpu may work in the

same way as Vif and act as an adapter protein that recruits

tetherin to be degraded [38,39].

Future work will include identification of countermeasures from

other viruses, which are likely to have independent mechanisms

for antagonising tetherin. The potential for translational applica-

tion of these findings is substantial. Identification of inhibitors for

Vpu, or indeed other virus-encoded countermeasures, could have

powerful therapeutic potential. The multifunctional nature of

Vpu, for example its ability to reduce CD4 surface expression [40],

will presumably improve potency of Vpu inhibition. We also

envisage tetherin binding drugs that protect it from multiple viral

encoded counter measures and are therefore broadly active against

different classes of enveloped viruses.

Materials and Methods

Sequences and cloning
Primate tetherin sequences were retrieved using BLAST [41]

and manually aligned. Sequences used were Homo sapiens human

(NM004335), Pan troglodytes chimpanzee (XM_512491), Macaca

fascicularis cynomolgus macaque (CJ479048), Macaca nemestrina

pigtailed macaque (DY743778), Macaca mulatta rhesus macaque

(CB554098), Chlorocebus pygerythrus vervet monkey. Tetherin

sequences from orangutan and marmoset were inferred using

BLAT (http://genome-mirror.duhs.duke.edu/cgi-bin/hgBlat) on

the Pongo pygmaeus abelii orangutan genome and Callithrix jacchus

marmoset genome. Orangutan sequence was confirmed by PCR

cloning individual exons and sequencing.

Tantalus monkey and pig tetherin cDNAs were PCR cloned

from the Chlorocebus tantalus (Tantalus monkey) CV1 cell line or the

porcine cell line ST IOWA respectively, as described [42] using

Tantalus monkey primers Fwd 59 - CGATGCGGCCGCCCAC-

CATGGCACCTATTTTGTATG Rev 59 – GCCGATCTC-

GAGTCACAGCAGCAGAGCGCTCAAGC and pig primers

Fwd 59-ATGTCACCTAGTTTGTATTCC-39 and Rev 59-

Figure 6. HIV-1 Vpu–mediated loss of tetherin is partially
abrogated by MG132. (A) Co-expression of HIV-1 plasmids and wild-
type (WT) N terminally tagged human tetherin and measurement of
HIV-1 release in the presence or absence of HIV-1 Vpu-HA co-expression
and proteasome inhibitor MG132 (0.8 mM for 12 hours) as shown. Errors
are standard error of the mean of 2 experiments. (B) Tetherin was
detected by western blot of Xpress tag in cleared RIPA extract
supernatants and pellets as shown. Sizes of molecular weight markers
are shown in kilodaltons. (C) Vpu-HA was detected in sonicated RIPA
extract as shown (D) Blots in B have been stripped and re-probed for b
actin as a loading control. (E) Measurement of HIV-1 p24 in the
supernatant of transfected cells by western blot. Data are representa-
tive of 2 independent experiments.
doi:10.1371/journal.ppat.1000443.g006
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ACACCTCAGGTCAGCAG-39 and inserted into pcDNA3.1

(Clontech). Cv1 cells are assumed to be derived from Tantalus

monkey due to characteristic polymorphism in the CCR5 gene

[43]. Four independent clones of each cDNA were sequenced.

Tetherin sequences have accession numbers FJ345303 Tantalus

monkey and FJ527910 pig. Site directed mutagenesis was

performed using QuikChange (Stratagene). Human wild-type

and mutant tetherin proteins were epitope tagged by cloning into

the pCDNA4 vector encoding an N terminal Xpress epitope tag

(Invitrogen) between the Not1 and Xho1 sites.

Phylogenetic and selection analyses
Pairwise genetic distances between the nine primate tetherin

sequences were calculated under the General Time Reversible

model of nucleotide substitutions with proportion of invariable

sites and gamma-distributed rate heterogeneity, using the program

Paup* [44].

Evidence for positive selection in the tetherin gene along the

primate lineage was sought by comparison of synonymous (dS) and

non-synonymous (dN) substitution rates using the program codeML

from the PAML package [45] and the Random Effect Likelihood

(REL) [46] method implemented by the Datamonkey web-based

facility [47].

An excess of non-synonymous substitutions compared to

synonymous substitutions (i.e. dN/dS.1) is thought to be indicative

of positive (or diversifying) selection, whereas dN/dS,1 suggests

negative (or purifying) selection.

In codeML, the sequence alignment and a corresponding

neighbor-joining phylogeny were successively submitted to a

model in which sites are distributed into categories where dN/dS

is beta-distributed between 0 and 1 (M7) and to a model in which

sites are distributed into categories where dN/dS is beta-distributed

between 0 and 1, with an extra category where dN/dS is freely

estimated (M8). A significant better fit of M8 than M7, as indicated

by a likelihood ratio test with 2 degrees of freedom, was taken as

an evidence of positive selection.

The REL algorithm was used to identify potential codon

positions evolving under positive selection. After estimating branch

lengths and substitution rates under the Hasegawa-Kishino-Yano

(HKY85) model of evolution, the MG94xHKY85 codon model

[48] was fitted to the data to obtain independent rate distributions

for dN and dS. For each codon, Bayes Factors for the events that

dN,dS (indicative of negative selection) and that dN.dS (indicative

of positive selection) at that site were estimated. A Bayes Factor of

20 or more in favor of dN.dS was considered strong support for

adaptive selection at that site.

Viral infection assays
Preparation of VSV-G pseudotyped, YFP encoding HIV-1 has

been described [49]. Briefly 106 293T cells per well were

cotransfected in six well plates using 6 ml Fugene-6 (Roche) with

the gag-pol expression vector p8.91 (250 ng) [50], pMDG encoding

the Vesticular Stomatis Virus G glycoprotein (VSV-G) (250 ng)

[51] and HIV-1 vector encoding YFP (375 ng) [52]. 100 ng of

tetherin constructs were co-transfected along with either 200 ng of

HIV-1 Vpu or empty vector (pCDNA3.1, Invitrogen). After

48 hours the supernatant was harvested, filtered and titered on

293T cells as described [49].

Western blots
HIV-1 p24 was measured in supernatants or cell pellets by

western blot as described [18] using HIV-1 p24 monoclonal

antibody (183-H12-5C), a gift from the NIH AIDS Research and

Reference Reagent Programme. Membranes were then stripped

and reprobed for b actin as a loading control. Tetherin extracts were

made by lysing cells in RIPA buffer. Cleared lysate was added to

laemmli buffer and the pellet was solubilised in laemmli buffer by

sonication. Samples were then boiled before separation by SDS

PAGE, all as previously described [18]. Xpress epitope tag was

detected using mouse anti-Xpress antibody (Invitrogen). HA

epitope tag was detected using mouse anti-HA antibody (Covance).
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