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A B S T R A C T   

Immunotherapy has improved the prognosis for many melanoma patients; however, our capacity to predict patient responses and to understand the biological 
differences between patients who will or will not respond is limited. Gene expression profiling of tumors from patients who respond to immunotherapy has focused 
on deriving primarily immune-related signatures; however, these have shown limited predictive power. Recent studies have highlighted the role of RNA editing in 
modulating resistance to immunotherapy. To evaluate the utility of RNA editing activity as a discriminative tool in predicting immunotherapy response, we con-
ducted a retrospective analysis of RNA-sequencing data from melanoma patients treated with Pembrolizumab or Nivolumab. Here, we developed RNA editing 
signatures that can identify patients who will respond to immunotherapy with very high accuracy and confidence. Our analysis demonstrates that RNA editing is a 
strong discriminative tool for examining sensitivity of melanoma patients to immunotherapy.   

Introduction 

Melanoma is a highly aggressive and frequently lethal cancer that 
develops from the oncogenic transformation of melanocytes. Each year, 
over 300,000 people are diagnosed with melanoma [1], and this number 
continues to increase. The advent of immunotherapy as a frontline 
therapy has significantly improved the prognosis for a significant pro-
portion of melanoma patients [2,3]. However, our understanding of 
which patients will or will not respond to these treatments is limited and 
represents a significant clinical hurdle [2–5]. A number of groups have 
profiled the tumors of melanoma patients on immunotherapy in clinical 
trials by utilizing RNA-sequencing (RNA-Seq) in an attempt to identify 
gene expression signatures associated with patient response [2,3,5]. 
Each of these studies have provided important biological insights into 
the genomic and transcriptional changes that drive melanoma; however, 
the discriminative power of these signatures is limited. These data are a 
rich resource for investigating potential biomarkers in patients. 

Recent studies in a number of cancer types have identified RNA 
editing as an important regulator of the interferon response of cells, 
which is critical for effective immune killing. Much of this research has 
focused on the role of the adenosine deaminase acting on RNA (ADAR) 
family of proteins. These proteins have established functions in modu-
lating RNA editing events that enable cells to distinguish between 
endogenous RNA structures and viral RNAs. In this role, the ADAR 
proteins are important for the immune response and T-cell activation 

[6–10]. The ADAR protein family (ADAR1-3 (ADAR3: is enzymatically 
inactive)) catalyzes the deamination of Adenines (A) within 
double-stranded regions of RNA (dsRNA) into Inosines (I), in a process 
known as A to I editing [11]. The resulting I-U base-pair is significantly 
less stable than the replaced A-U interaction, resulting in destabilization 
of dsRNA regions [11]. These modifications have central roles in cellular 
homeostasis, as unedited dsRNA regions are recognized by human cells 
as viral contaminants and trigger strong immune responses [8,11]. 
Importantly, for our study, the Inosine (I) base is recognized as a Gua-
nine (G) during RNA-Seq library construction. This enables the identi-
fication of A-I editing sites from RNA-Seq data by using specialized 
computational tools [12–14]. 

Based on the real clinical need to identify patients who may respond 
to immunotherapy and to establish a strong link between RNA editing 
and the immune response, we tested the utility of RNA editing as a 
predictive biomarker of response by mining publicly available RNA-Seq 
datasets [2,3,12]. 

Methods 

Datasets 

The primarily Pembrolizumab-treated cohort (GSE78220) consisted 
of 15 responders and 13 nonresponders with response assignments 
based on Immune-related Response Evaluation Criteria In Solid Tumors 
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(irRECIST) criteria[2]. The Nivolumab-treated cohort (GSE91061) 
consisted of 23 nonresponders, 10 responders, and 16 stable disease by 
RECIST criteria [3] with an additional 2 patients being of unknown 
response designation [3]. In addition to the immunotherapy-treated 
cohorts, we sampled 50 skin cutaneous melanoma from The Cancer 
Genome Atlas (TCGA-SKCM cohort) [15,16]. 

Bioinformatics and statistical analysis 

RNA editing sites pipeline: RNA-Seq files for the Pembrolizumab and 
Nivolumab cohorts were imported from Gene Expression Omnibus 
(GSE78220 and GSE91061) by using SRAToolkit 2.9.0. TrimGalore 
0.6.0 was used to perform adaptor and quality trimming of RNA-Seq 
reads with the additional specification of 6 bases removed from the 
5’-end of each read [17]. Bowtie2 was used to remove contaminating 
rRNA and tRNA reads [18]. STAR 2.5.2a was used to align the reads to 
the GRCh38 p12 genome release 31 and for obtaining gene counts and 
BAM alignment files [19,20]. The gene counts were imported into the R 
environment using DESeq2, a Bioconductor package for differential 
expression analysis, and the resulting data were log-regularized [21]. 
Additionally, a differential expression analysis was conducted between 
responders and nonresponders. 

SNP-free RNA editing IdeNtification Toolkit (Sprint) was used on the 
resulting BAM alignment files to identify RNA editing sites (RES) de novo 
[12]. The changesammapq.py script from Sprint was used to convert the 
BAM files to the correct format for Sprint [12]. The sprint_from_bam.py 
script was used to identify regular RES sites from the resulting BAM file 
using the GRCh8 p12 genome release 31 [20] and Sprint-provided hg38 
repeat annotations. Annotating of the resulting RES positions for genes, 
genomic regions, and repeats was done using functions and hg38 an-
notations from annotatr, a Bioconductor package for investigating 
intersecting genomic annotations [22]. Sprint-provided hg38 repeat 
annotations were also used in annotating the RES sites. 

For the TCGA-SKCM dataset, BAM files were downloaded through 
the GDC Data Transfer Tool Client. Samtools bam2fq was used to convert 
the BAM files to FASTQ files [23]. The FASTQ files were processed 
through the main Sprint pipeline to identify RNA editing sites [12]. The 
resulting RNA editing sites were annotated and processed in a similar 
manner to the Pembrolizumab and Nivolumab cohorts. 

Identifying differential and response specific RNA editing: For each gene, 
we developed an RNA editing score defined as the number of RNA 
editing sites per gene [24]. For our RES scores, we only focused on A to G 
or T to C transitions for a gene. The RES scores were log2-transformed 
with a pseudo-count of 1 to normalize the data. A two-tailed t-test was 
performed on genes that contained non-zero RES scores for >20% 
samples to determine differential RNA editing scores for each gene be-
tween responding and nonresponding patients with significance criteria 
being two-tailed p-value < 0.05 and log2-fold change > 0.3785. Addi-
tionally, we overlapped the significant genes with DESeq2 results and 
removed genes that were differentially expressed at the nominal level of 
significance (Wald’s Test two-tailed p-values < 0.05). 

In addition to differential editing, we also identified responder- 
specific and nonresponder-specific genes for each cohort that had RNA 
editing within one response group and not in the other. We overlapped 
results from both cohorts to identify common responder and non- 
responder specific genes. Additionally, we overlapped differential edit-
ing and response specific results to develop a common RNA editing 
signature. A functional enrichment analysis using ToppFun from the 
ToppGene suite [25] was conducted on genes from the common editing 
gene signature with significant annotations having FDR-adjusted 
p-value < 0.20. 

RNA editing signatures: The mean RES score of the signature upre-
gulated and downregulated genes was used as a measure of the RNA 
editing signatures for each patient sample. Two-tailed pairwise t-tests 
were conducted between responders and nonresponders to determine 
how significantly each signature discriminated between response 

groups. Additionally, a t-test was also conducted on the corresponding 
log-regularized transcript levels to determine how the transcript levels 
of the signature genes significantly discriminated between patient 
response groups. The mean RES and transcript signature was calculated 
for the upregulated and downregulated genes signature for each cohort 
as well as the common RNA editing signature. 

Logistic regression modeling: The means of the significant log2- 
tranformed RNA editing scores from cohort-specific upregulated and 
downregulated genes as well as the common editing signature were used 
as input to a set of logistic regression models using the glm functions in R 
where response ~ mean RNA editing score. Two-tailed p-values of the 
mean RNA editing score coefficient were used to assess significance and 
model accuracy was calculated for correctly classified patient samples. 
The pROC R package was used for receiver operating characteristic 
(ROC) analysis [26]. 

Recurrent RNA editing sites: AG/TC RNA editing sites from all samples 
in each cohort were stratified into sites identified in only responders, 
sites identified in only nonresponders, and those identified in both re-
sponders and nonresponders. A two-tailed Fisher’s Exact test was per-
formed to determine the contingency of RNA editing sites being 
enriched in responders or nonresponders. Significant recurrent RNA 
editing sites had a two-tailed p-value < 0.05 and were only annotated to 
genes with DESeq2 nominal Wald’s Test p-values > 0.05. Significant 
sites whose contingency odds ratio favored responders were responder- 
enriched and significant sites whose odds ratios favored non-responders 
were non-responder enriched. For the responder and nonresponder 
enriched RES, we determined the annotated genes for these sites using 
functions derived from annotatr [22]. The responder and nonresponder 
enriched RES and their annotated genes were compared across cohorts. 

Survival analysis: Survival analyses were performed to determine the 
effects of RNA editing signatures and recurrent RNA editing sites on 
patient survival. Analyses were performed on all patient samples within 
a cohort. The survival and survminer R packages were used [27]. A sur-
vival object or response variable was created from survival data using 
the Surv function. Kaplan-Meier curves were created for visualization 
using the survfit function, and Cox proportional hazards regression 
modeling was performed via the coxph function [28]. The ggsurvplot 
function was used for visualizing survival curves. 

Results 

RNA editing or ADAR levels do not predict patient sensitivity to 
immunotherapy 

By using published data from patients treated with Pembrolizumab 
and Nivolumab [2], (PEM cohort), we tested whether the levels of 
interferon response or ADAR genes correlated with patient response to 
immunotherapy. These results showed no association between inter-
feron (Fig. 1A) and ADAR gene expression (Fig. 1B) and patient outcome 
(Non-Responder (NR) vs. Responder (R)). We next investigated 
ADAR-mediated RNA editing levels in each tumor using A-I calling 
software, Sprint [12]. This analysis revealed that the overall levels of 
RNA A-I editing events, as measured by AG/TC transitions in RNA-Seq 
data, do not correlate with patient response (Fig. 1C, Supp Table 1). 
To evaluate whether these results were also present in additional co-
horts, we conducted the same analysis on independent data from 
Nivolumab (NIV cohort) treated melanoma patients. In agreement with 
our initial findings, an interferon response signature (Fig. 1D), ADAR 
levels (Fig. 1E), and gross A-I editing sites (Fig. 1F, Supp Table 2) were 
not discriminative. 

RNA editing signatures can retrospectively identify patients who respond to 
immunotherapy 

We next investigated whether RNA editing sites (RES) in indepen-
dent genes, rather than global levels, were associated with patient 
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response. Our analysis of RES levels identified significant variations in 
the number of RES sites per tumor and cohort (Supp. Fig. 1) primarily 
due to differences in sequencing coverage, with only a fraction of A-I 
editing sites being identified in most patients (Supp. Figs. 2, 3). As a 
result, we focused on editing events within each gene rather than those 
at a particular site. For this, we tabulated the number of RES identified 
within each gene to generate a gene-specific RES score [24]. By using 
this approach, we identified genes with RES scores that were signifi-
cantly associated with response (t-test p < 0.05) and were not differ-
entially expressed (Wald p > 0.05) [21,29]. By excluding genes with 
altered gene expression, we focused on RES changes that were due 
specifically to alterations in A-I editing levels. From this analysis, we 

identified 13 upregulated (Figs. 2A, Supp Fig. 4A) and 248 down-
regulated RES scores (Figs. 2B, Supp 4B) that correlated with patient 
response to Pembrolizumab (Supp Tables 3, 4). This approach enabled 
immunotherapy response to be identified independent of driver muta-
tion, as equal levels of BRAF and RAS mutations were found in both 
responders and nonresponders (Supp Fig. 4C, D). Downregulated RES 
events provided the cleanest clustering of patients based on outcome 
(Fig. 2B). To evaluate the heterogeneity between patients, we compared 
the means of the signature RES scores and found a striking and statis-
tically significant difference between nonresponding vs responding pa-
tients (Fig. 2C). These findings suggest that RES scores may provide the 
basis for more accurately discriminating patients by their response to 

Fig. 1. Interferon-related genes and global 
RNA editing are unable to segregate patients by 
response. (A) Heat map of interferon and 
interferon-related gene expression changes in 
nonresponder (NR) and responder (R) patients 
treated with Pembrolizumab. (B) ADAR1, 
ADAR2, and ADAR3 gene expression levels in 
nonresponder and responder patients from pa-
tients treated with Pembrolizumab. (C) Total 
AG/TC RNA editing sites vs. total spots in 
nonresponder (red) and responder (blue) pa-
tients. (D) Heat map of interferon and 
interferon-related gene expression changes in 
nonresponder (NR), responder (R), stable dis-
ease (SB), and unknown (UNK) patients treated 
with Nivolumab. (E) ADAR1, ADAR2 and 
ADAR3 gene expression levels in nonresponder 
and responder patients treated with Nivolumab. 
(F) Total AG/TC RNA editing sites vs. total 
spots in nonresponder (red), responder (blue), 
and stable disease (orange) patients (For inter-

pretation of the references to color in this figure legend, the reader is referred to the web version of this article.).   

Table 1 
Common RES sites.  

Chromosome Start End Strand Transition Genes Regions 

chr1 155733924 155733925 + AG DAP3 Intron 
chr2 151477764 151477765 + AG RIF1 3UTR 
chr2 24002029 24002030 + AG UBXN2A 3UTR 
chr22 42383507 42383508 - TC NFAM1 3UTR 
chr7 92200451 92200452 - TC KRIT1 3UTR  

Fig. 2. RES scores can be used across datasets 
to sub-classify immunotherapy response. (A) 
Heat map of 13 upregulated RES scores in genes 
in nonresponder (NR) and responder (R) 
Pembrolizumab-treated patients. (B) Heat map 
of 248 downregulated RES scores in genes in 
non-responder (NR) and responder (R) 
Pembrolizumab-treated patients. (C) Means of 
RES scores of up-regulated and downregulated 
genes from nonresponder (NR) and responder 
(R) Pembrolizumab-treated patients. (D) Heat 
map of 29 upregulated RES scores in genes in 
nonresponder, responder, stable disease, and 
unknown Nivolumab-treated patients. (E) Heat 
map of 41 downregulated RES scores in genes 
in nonresponder (NR), responder (R), stable 
disease, (SB) and unknown (UNK) Nivolumab- 
treated patients. (F) Means of RES scores of 
upregulated and downregulated genes from 
nonresponder (NR) and responder (R) 
Nivolumab-treated patients. ***p < 0.001.   
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immunotherapy. 
The utility of the RES score to segregate patients by response in our 

PEM dataset compelled us to investigate whether RNA editing signatures 
could stratify patients from an additional patient cohort. For this, we 
used a dataset that included RNA-Seq for melanoma patients treated 
with Nivolumab from the following groups: responder (R), nonre-
sponder (NR), and stable disease (SD) patients [3]. By using our RES 
criteria, we identified 29 upregulated and 41 downregulated gene RES 
scores that correlated with patient sensitivity to immunotherapy in this 
independent NIV melanoma cohort and is not driver mutation depen-
dent (Figs. 2D, E, Supp 4E–H, Supp Table 5). We again found that 
downregulated RES sites enable the best clustering of patients who 
respond to NIV therapy (Fig. 2E). The mean RES scores across these 
patient groups also showed strong separation in responding patients 
(Fig. 2F, Supp Table 6). Importantly, patients with stable disease pri-
marily clustered with RES scores of nonresponders (Fig. 2D, E) and show 
similar RES means. 

Logistic regression modeling of RES score correlates with response and 
patient outcome 

Because our RES scores correlate well with patient response to 
immunotherapy, we next investigated the discriminative potential of 
this pipeline for patients. For this, we used logistic regression models 
from upregulated and downregulated mean RES scores from each 
cohort. In the PEM-treated patients, we found that upregulated RES 
scores had a ~85% capacity to retrospectively predict patient response 
to immunotherapy (Figs. 3A, S5A). In accordance, the downregulated 
RES scores have a ~93% predictive capacity and clearly segregate 
responding patients (Figs. 3B, S5B). The sole responding patient that our 
model does not segregate (blue dot below 0.2 in Fig. 3B) is patient 38 
(Pt38), who had very high AG/TC levels and is an outlier in Fig. 1C. In 
the independent NIV-treated cohort, our logistic regression model of 
RES scores accurately segregates patients based on response. Both the 
upregulated (91%) (Figs. 3C, Supp 5C) and downregulated (88%) RES 
genes have a very strong predictive capacity (Figs. 3D, Supp 5D). Based 
on these analyses, we find that the downregulated RES scores represent 
the most accurate model for determining patient sensitivity to either 
treatment. These results highlight the discriminative power of this 
approach for identifying patients who are likely to respond to 
immunotherapy. 

We next evaluated whether these RES scores correlated with patient 
survival. Cox proportional hazards modeling was used for this analysis 

as it enables assessment of how continuous mean RES scores influenced 
patient survival. Kaplan-Meier curves, which dichotomized mean RES 
scores by their medians, were used for visualization. For patients with 
elevated RES scores in the upregulated group, we found improved sur-
vival periods for patients from the PEM cohort (Fig. 3E). In agreement, 
patients with elevated RES score means within the NIV dataset also 
showed significant survival differences to those with lower means 
(Fig. 3F). Although each of these models strongly support the discrimi-
native power of our assay, the downregulated RES score means show the 
most significant differences in patient survival (Fig. 3G–H). To ensure 
that there were no cohort-specific differences in survival, we performed 
a survival analysis between all patients in PEM and NIV cohorts and 
found that they had comparable survival (Supp Fig. 5E). To determine 
whether RES scores could also identify patient sensitivity to other 
treatments, we analyzed melanoma TCGA data and found that RES score 
does not correlate with patient survival (Supp Fig. 5F). These data show 
that RES scores can be used to identify patients who may have improved 
survival and benefit from immunotherapy treatments. 

In summary, based on the logistic regression model and survival 
analysis of these patients, the downregulated RES score enables the most 
accurate sub-classification of melanoma patients across cohorts. These 
data highlight the discriminative nature of RES scores for understanding 
the clinical benefit for patients on immunotherapy. 

RNA editing can be used to segregate patients 

Based on our results, the downregulated RNA editing levels show 
promise as a resource for determining sensitivity to immunotherapy. 
While the downregulated RES genes are highly predictive in each 
cohort, the overlap between cohorts was limited. Many of these effects 
are due to differences in RNA sequencing coverage between tumors and 
cohorts. To determine whether RNA A-I editing events could cluster in 
patients based on their sensitivity to immunotherapy, we identified all 
RES gene sites that were only present in responders or nonresponders. 
From this approach, we identified 1023 and 147 responder specific 
commonly annotated RES modified genes. Of these shared gene sites, 42 
were found in both cohorts (Fig. 4A). We then evaluated whether these 
genes could subclassify patients, based on their sensitivity to immuno-
therapy. As shown in Fig. 4B, and C, responder specific signatures 
accurately divide patients. We next conducted this analysis on nonre-
sponder specific genes and identified 109 shared genes (Fig. 4D). Uti-
lizing these sites, the RES genes identified in non-responders can also 
segregate patients (Fig. 4E, F). This unfiltered approach highlights the 

Fig. 3. RES scores accurately predict response 
and survival of melanoma patients to immuno-
therapy. (A) Logistic regression models from 
Pembrolizumab-treated patients for 13 upregu-
lated RES score means and responding predic-
tion for responder (R, blue) and non-responder 
(NR, red) patients. (B) Logistic regression 
models from Pembrolizumab-treated patients 
for 248 downregulated RES score means and 
responding prediction for responder (R, blue) 
and nonresponder (NR, red) patients. (C) Lo-
gistic regression models from Nivolumab- 
treated patients for 29 upregulated RES score 
means and responding prediction for responder 
(R, blue) and non-responder (NR, red) patients. 
(D) Logistic regression models from Nivolumab- 
treated patients for 41 downregulated RES 

score means and responding prediction for responder (R, blue) and non-responder (NR, red) patients. (E) Survival analysis of patients stratified by upper 50% (red) 
and lower 50% (blue) means of upregulated RES scores for genes in the Pembrolizumab cohort. (F) Survival analysis of patients stratified by upper 50% (red) and 
lower 50% (blue) means of upregulated RES scores for genes in the Nivolumab cohort. (G) Survival analysis of patients stratified by upper 50% (purple) and lower 
50% (green) means of downregulated RES scores for genes in the Pembrolizumab cohort. (H) Survival analysis of patients stratified by upper 50% (purple) and lower 
50% (green) means of downregulated RES scores for genes in the Nivolumab cohort (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.).   
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utility and accuracy of this analysis for separating patients according to 
their sensitivity to immunotherapy. 

A shared gene editing signature can sub-classify patients 

By cross-referencing gene lists, we found that 51 nonresponder 
specific genes in the NIV dataset were also found in the 248 down- 
regulated genes in PEM patients. We then filtered out differentially 
expressed genes, which resulted in a signature of 46 shared genes (Supp 
Table S7). These genes were then used as a gene editing signature for 
evaluating the responders and non-responders across the independent 
datasets. By measuring the RES levels in these shared 46 genes, we could 
separate patients who will respond to PEM (Fig. 5A, Supp Table 8). 
When we examine the mean RES scores (Fig. 5B, Supp Table 8) and 
logistic regression predictions of these genes (Figs. 5A–C, Supp 6A, B), 
responders have a reduced mean signature score and are clearly sepa-
rated from nonresponders. In addition, patients with low RES gene 
signatures show extended overall survival (Fig. 5D), and the RES gene 
signature is associated with an elevated hazard ratio. Importantly, the 
overall transcript levels of the genes within this signature cannot sepa-
rate patients by response (Supp Fig. 6C). We next investigated how this 
RES gene signature worked in patients treated with NIV. Again, this 
approach can accurately separate patients (Figs. 5E–G, Supp Table 8, 
Supp 6D–F) with responders having no detectable RNA editing events 
within these genes. In contrast, non-responding patients show varying 
levels of RNA editing. In agreement with our data from the PEM cohort, 
we found improved survival for patients who have no RNA editing 

(Fig. 5H), and RNA editing is associated with a higher hazard ratio in 
nonresponders. These data show that this approach may provide a 
platform for understanding the drivers of immune response and in 
predicting patient response to immunotherapy. 

While processing these data, we found significant differences in 
sequencing coverage between tumors and cohorts that limits our ca-
pacity to conduct multiple comparison analysis. To evaluate the accu-
racy of our approach, we tested the capacity of random sets of RES genes 
to separate patient response in each cohort. For this, we selected 1000 
groups of 46 random genes (equal size of RNA editing signature) and 
examined their ability to segregate patient sensitivity to immuno-
therapy. From this analysis, none of the datasets (0/1000) were able to 
significantly separate patients based on their response to immuno-
therapy in either cohort. These controls support our approach and 
strongly suggest that A-I editing events can be used to segregate patients 
based on their response to immunotherapy. Gene Ontology profiling of 
these common signature genes identified genes with “nucleotide bind-
ing” function as enriched [25]. The 46 genes within our profile were 
found to have a number of interactions within key DNA damage and 
oncogenic proteins including p53, EGFR, and FANCD2 (Supp Table 9). 

Logistic regression modeling predicts stable disease patients to be primarily 
nonresponders 

We then tested how this approach would cluster patients with stable 
disease following NIV treatment. This analysis found that stable patients 
clustered primarily with nonresponders. (Fig. 5E, Supp Table 10). 

Fig. 4. Genes can be specific for responding or 
nonresponding patients. (A) Venn diagram of 
Responder-specific genes from Pembrolizumab- 
and Nivolumab-treated patients. (B) Heatmap 
of common Responder-specific genes from 
Pembrolizumab-treated patients. (C) Heatmap 
of common Responder-specific genes from 
Nivolumab-treated patients. (D) Venn diagram 
of Nonresponder-specific genes from Pem-
brolizumab- and Nivolumab-treated patients. 
(E) Heatmap of common Nonresponder-specific 
genes from Pembrolizumab-treated patients. (F) 
Heatmap of common Nonresponder-specific 
genes from Nivolumab-treated patients.   

Fig. 5. Common 46 downregulated signature 
genes segregate patients by response and sur-
vival across 2 cohorts. (A) Heat map of signa-
ture genes from Pembrolizumab-treated 
patients. (B) Means of RES scores from nonre-
sponder (NR) and responder (R) 
Pembrolizumab-treated patients. (C) Assign-
ments of Pembrolizumab-treated patients as 
nonresponder (NR) and responder (R) by pre-
dictions from signature genes. (D) Survival 
analysis of Pembrolizumab-treated patients 
with mean signature RES scores above and 
below the median. (E) Heat map of signature 
genes from Nivolumab-treated patients. (F) 
Means of RES scores from nonresponder (NR) 
and responder (R) Nivolumab-treated patients. 
(G) Assignments of patients from Nivolumab- 
treated patients as nonresponder (NR) and 

responder (R) by predictions from signature genes. (H) Survival analysis of Nivolumab-treated patients with mean signature RES scores above and below the median. 
***p < 0.001.   
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Logistic regression of NIV upregulated genes and the shared gene 
signature predicted that 11 of the 16 stable patients would cluster with 
nonresponders. Logistic regression of NIV downregulated genes accu-
rately predicted all 16 to be nonresponders. While stable disease is an 
intermediate state, the models primarily cluster it with nonresponders. 

Recurrent RNA editing sites are present in patient tumors and cluster with 
response 

The above analyses focused on shared RES scores across genes; 
however, we next wanted to determine the discriminative power of 
recurrent RES sites. For this, we sub-classified RES sites enriched in 
responder or nonresponder patients. By using recurrent RES sites, we 
could completely separate patients within the PEM cohort based on 
clinical response (Fig. 6A). This is also true for patients within the NIV 
group (Fig. 6B), suggesting that recurrent RNA editing within genes is 
contributing to immunotherapy response. To focus on this, we compared 
the recurrent RES from common genes from each dataset. RES sites from 
common genes were also strongly discriminative of patient response and 
could segregate responders from nonresponders or stable disease 
(Fig. 6C, D). We then examined whether recurrent RES sites existed 
between patient cohorts. For this analysis, we compared RES sites from 
both groups and identified 5 RES sites within DAP3, RIF1, UBXN2A, 
NFAM1, and KRITI that were present and significant in each (Table 1). 
We next tested whether these recurrent RES events could separate pa-
tients by response and found that although the number of RES sites is 
small, these sites correlated with patient response (Fig. 6E, F). By using 
the cumulative levels of RES sites within these genes, we found that the 
elevated numbers of these RES sites correlate with improved patient 
survival in both patient cohorts (Fig. 6G, H). We then used Cox Pro-
portional Hazards modeling [28] to determine hazard potential of these 
events and found a significant association between patient response and 
the number of common RES sites. Our findings strongly implicate 
recurrent RES sites within melanoma tumors as predictive of patient 
outcome and survival in a retrospective study. 

Discussion 

This analysis highlights the utility of RNA editing sites in deter-
mining the response of melanoma patients to immunotherapy. Previous 
studies have focused on understanding the transcriptional changes in 

patients to identify immune-related signatures in pathways including 
interferon signaling [30], MHC antigen presentation [3,31,32], and 
innate anti-PD1 resistance [2]. Although innovative, the discriminative 
power of these signatures to identify patients that will respond to 
immunotherapy has been limited. In this study, we investigated the 
capacity of RNA A-I editing events to accurately segregate patients by 
outcomes and response to either Pembrolizumab [2] and Nivolumab [3] 
immunotherapy. Our approach has incorporated new knowledge 
generated by a number of groups that have identified the role of 
ADAR-mediated RNA editing as important in the development of cancer 
[6–8,11,33,34]. These studies have linked ADAR activity or ADAR-loss 
to immune response levels and immune checkpoint blockade [6–8]. In 
agreement with a number of other studies, we found no correlation 
between interferon signatures, ADAR levels, or total A-I editing events to 
immunotherapy response [30,35,36]. However, by systematically 
identifying A-I RNA editing changes within genes, those solely within 
genes of responders and nonresponders, shared gene editing events, and 
recurrent RNA editing sites between tumor cohorts, we found that RNA 
editing may be important for improving immunotherapy responses and 
for identifying sensitive patients. In addition, by using TCGA-SKCM, we 
highlight that these RNA editing signatures are specific for anti-PD1 
immunotherapy treatments. Despite the success of our analysis, these 
datasets have significant variations in their RNA-seq coverage between 
tumors and cohorts that limit multiple comparison analysis. These dif-
ferences are common in RNA-Seq data generated by different groups 
using alternate protocols and with diverse patients. Despite this, it is 
clear that this approach does have utility in segregating melanoma pa-
tients and demonstrates that expanding this analysis into other tumor 
types may be fruitful. 

One of the interesting observations from this research is the under- 
representation in immune-related RNA editing events. Our initial hy-
pothesis centered on ADAR-mediated RNA editing of immune sensing or 
immune response genes as key for patient sensitivity. However, our 
analysis only identified one immune-related gene as having high RES 
levels, but the predictive capacity of this gene was low. In contrast, 
many of the most prognostic RES events were found on genes that 
interact with key oncogenes and DNA damage repair proteins including 
FANCD2 [37], EGFR [38], NTRK1, and p53. These results are supported 
by clinical data from lung cancer studies that show that mutations 
within EGFR and NTRK1 are common in patients resistant to immuno-
therapy [39,40]. In contrast, p53 disruptions have been linked to 

Fig. 6. Recurrent and common RES sites occur 
and predict outcomes in melanoma tumors. (A) 
Heat map of 1308 responder enriched and 2148 
nonresponder enriched RES sites in nonre-
sponder (NR) and responder (R) patients from 
Pembrolizumab-treated patients. (B) Heat map 
of 370 responder enriched and 42 nonresponder 
enriched RES sites in non-responder (NR), 
responder (R), stable disease (SD) and unknown 
(UNK) patients from Nivolumab-treated pa-
tients. (C) Heat map of 302 responder enriched 
and 26 non-responder enriched RES from 
shared genes in non-responder (NR) and 
responder (R) patients from Pembrolizumab- 
treated patients. (D) Heat map of 207 
responder enriched and 19 nonresponder 
enriched RES shared RES genes in non- 
responder (NR), responder (R), stable disease 
(SD) and unknown (UNK) patients from Nivo-
lumab treated patients. (E) Heat map of signif-

icant 5 shared RES sites in nonresponder (NR) and responder (R) patients from Pembrolizumab-treated patients. (F) Heat map of significant 5 shared RES sites in 
nonresponder (NR), responder (R), stable disease (SD), and unknown (UNK) patients from Nivolumab-treated patients. (G) Survival analysis of patients stratified by 
common RES number 0–5 from Pembrolizumab-treated patients (0 common RES - black, 1 common RES – blue, 2 common RES – magenta, 3 common RES – tan, 4 
common RES – orange, 5 common RES - red). (H) Survival analysis of patients stratified by common RES number 0–2 from Nivolumab-treated patients (0 common 
RES - black, 1 common RES – blue, 2 common RES - magenta) (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.).   
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improved sensitivity to these therapies [41]. These common RNA edit-
ing events suggest that aberrant growth signaling and genome stability 
may be key contributors to patient response in the melanoma patients 
we analyzed. 

Additionally, we found that ADAR-mediated RNA editing of the 
DAP3 gene (chr1 155733925) is recurrent in the responder-enriched RES 
group. DAP3 has previous been shown to repress RNA-editing, while 
fueling tumor progression [35]. Interestingly, many nucleotide binding 
proteins show strong levels of downregulated RES sites in both cohorts. 
In PEM-treated patients, ZNF124, 490 and 827 show statistically lower 
RES levels in responders and are predictive of immunotherapy sensi-
tivity. In the NIV cohort, ZNF 226, 329, 426 and 836 act in a similar 
manner. Although the functions of these proteins are not well under-
stood, there is a clear thread from this analysis that suggests that re-
ductions in the levels of RNA-editing within nucleotide-binding genes is 
recurrent in tumors of patients sensitive to immunotherapy. 

Collectively, this analysis highlights the utility of understanding RNA 
editing changes in melanoma patients. It suggests that the in-depth 
profiling and sub-categorizing of events, rather than bulk A-I levels, 
can shed new light on the biology and responsiveness of these tumors to 
immunotherapy. These results identify pathways previously linked to 
immunotherapy and new alterations that have under-explored roles in 
tumor biology and immune sensitivity. Further work utilizing special-
ized RNA-seq platforms that maximize gene coverage and minimize 
inter-tumoral and cohort variation are required before these ideas are 
ready for clinical predictions of treatment. However, these results sug-
gest that this an area of real opportunity for improving immunotherapy 
outcomes for patients. 
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