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Cholinergic system
The cholinergic system (CS) is composed primarily 
of organized nerve cells that use or respond to the 
neurotransmitter acetylcholine (ACh) to communicate 
with other neurons and cells,1,2 most notably, the activation 
of skeletal muscle contraction by the voluntary cholinergic 
neuronal stimulation of nicotinic ACh receptors. The 
CS can be subdivided into neuronal, in which ACh acts 
as a neurotransmitter, and non-neuronal in which ACh, 
in a paracrine manner, acts as a local cellular signaling 
molecule, involved in the regulation of the cellular 
functions.3

Cholinergic anti-inflammatory pathway
The vagus nerve which is the major parasympathetic 
nerve, is the body’s longest nerve which innervates 
several major organs including the lungs, the heart, and 
the gastrointestinal tract.4 The parasympathetic nervous 
system via the vagus nerve, plays an important role in 
mediating inflammatory responses.5-7 The afferent vagus 
nerve can detect inflammation in peripheral tissues, 
sending this information to the brain. The dorsal motor 
nucleus of the vagus in the brainstem, through the efferent 
vagus nerve, can exert anti-inflammatory effects. This is 
known as the cholinergic anti-inflammatory pathway 

(CAP) in which ACh, is the key anti-inflammatory 
mediator.7,8

Alpha 7 nicotinic acetylcholine receptor
As shown in Fig. 1, ACh exerts its anti-inflammatory 
effects via the alpha 7 nicotinic acetylcholine receptor 
(α7nAChR) subtype on macrophages via a circuitous 
pathway from the ganglia of the celiac-superior mesenteric 
plexus, traveling along the splenic nerve 9-11 resulting in 
noradrenergic stimulation of ACh secreting T-cells. 12

In animal models, activation of α7nAChRs on 
macrophages downregulates the production of 
proinflammatory cytokines primarily via the JAK2–
STAT3 signaling pathway, and through prevention of 
activation of the NF-κB pathway.13-16

The lability of ACh and the non-specificity of nicotine 
and ACh for the α7nAChR limits their use as therapeutic 
agents. However, there are α7nAChR selective agonists, 
such as AR-R17779,17 PNU-282987,18 and GTS-21,19 that 
are potential therapeutic agents.

Vagus nerve stimulation
The CAP can be activated through external vagus nerve 
stimulation in two ways: Invasive vagus nerve stimulation, 
applied to the cervical branch of the vagus nerve, via 
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Abstract
The cholinergic anti-inflammatory pathway (CAP) 
first described by Wang et al, 2003 has contemporary 
interest arising from the COVID-19 pandemic.  
While tobacco smoking has been considered an 
aggravating factor in the severity of COVID-19 
infections, it has been suggested by some that the 
nicotine derived from tobacco could lessen the 
severity of COVID-19 infections. This spotlight 
briefly describes the CAP and its potential role as 
a therapeutic target for the treatment of COVID-19 
infections using vagus nerve stimulation or selective 
alpha7 nicotinic acetylcholine receptor agonists.
Keywords: Cholinergic anti-inflammatory pathway, Vagus nerve stimulation, Alpha 7 nicotinic 
acetylcholine receptor, COVID-19

Article Type:
Spotlight

Article History:
Received: 2 Aug. 2021
Accepted: 28 Sep. 2021
ePublished: 22 Jan. 2022

Article Info

https://doi.org/10.34172/bi.2022.23980 
https://orcid.org/0000-0003-0867-2322
https://orcid.org/0000-0002-6434-2136
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34172/bi.2021.23980&domain=pdf&date_stamp=2021-01-22


Mehranfard and Speth

BioImpacts, 2022, 12(2), 171-174172

neurosurgical intervention which is approved by the FDA 
for the treatment of depression and epilepsy in patients 
>12 years of age20; while transcutaneous vagus nerve 
stimulation (tVNS) of the auricular branch of the vagus 
nerve is suggested to be a non-invasive alternative means of 
vagal stimulation.21 There are several ongoing clinical trials 
to assess the tVNS impact on different conditions such as 
stress response in major depression (NCT04448327), and 
pediatric inflammatory bowel disease (NCT03863704). 
Of note, there is an ongoing clinical trial to investigate 
whether transcutaneous electrical stimulation of the 
auricular branch of the vagus nerve will decrease the 
proinflammatory cytokine response in healthy individuals 
(NCT02910973).

Another type of non-invasive vagus nerve stimulation 
(NVNS) device, “gammaCore SapphireTM CV” developed 
by electroCore, Inc., which fits onto the neck and sends 
pulses to the vagus nerve, has been granted emergency 
use authorization (EUA) for the treatment of COVID-19 
associated dyspnea (https://www.fda.gov/media/139968/
download; accessed July 19, 2021).

Role of the spleen in CAP
Acetylcholine is primarily produced by neurons for use 
as a neurotransmitter, but non-neuronal cells, including 
T cells in the spleen, can also synthesize ACh. After 
splenectomy, vagus nerve stimulation is no longer able 

to reduce inflammation, therefore the spleen is vital 
for the CAP response.22-25 As shown in Fig. 1, following 
vagal stimulation, the anti-inflammatory reflex travels 
through the sympathetic splenic nerve to the spleen. 
The splenic nerve, which uses norepinephrine as its 
neurotransmitter, activates beta-2 adrenergic receptors 
(β2AR) on acetylcholine-producing T cells (choline 
acetyltransferase positive T-cells (CHAT+)). This 
stimulates them to secrete ACh in the spleen, establishing 
an anti-inflammatory response through activation of the 
α7nAChR on macrophages,13 inhibiting their secretion of 
proinflammatory cytokines.9,26,27

Of note, this anti-inflammatory effect is not limited 
to macrophages in the spleen. As shown in Fig. 1, the 
innervation of vagus nerve into the other organs such 
as lungs and the gastrointestinal tract can exert a local 
anti-inflammatory effect.28,29 Nonetheless, the spleen is 
the efferent vagus nerve main targeted organ for the anti-
inflammatory effect.24,25

Concluding remarks: CAP and COVID-19
Autopsies of COVID-19 patients show a high infiltration 
of macrophages within the bronchopneumonia area.30 
Furthermore, ACE2 expressing macrophages containing 
SARS-CoV-2 nucleoprotein antigen densely infiltrate the 
lymph nodes and spleen of COVID-19 patients, causing 
significant interlukin-6 (IL-6) production.31 In severe 

Fig. 1. The cholinergic anti-inflammatory pathway (CAP) exerts its anti-inflammatory effect via efferent vagus nerve stimulation. The CAP then branches 
off in 3 directions: some vagal fibers innervate the celiac ganglion where they synapse with sympathetic neurons which project to the spleen where they 
innervate ACh producing T cells. The T cells then release ACh that binds to α7nAChR on macrophages. Activation of the α7nAChR on macrophages inhibits 
the synthesis and release of proinflammatory cytokines from the macrophages, altering them to the M2 anti-inflammatory phenotype. The second branch of 
the CAP involves vagal efferents that innervate lung tissue, releasing ACh that directly activates α7nAChR on alveolar macrophages, again converting them 
to the M2 anti-inflammatory phenotype. The third branch of the CAP involves vagal efferents that activate post-ganglionic parasympathetic enteric neurons in 
the gut, which release ACh that activates α7nAChR on resident macrophages in the gut again converting them to the M2 anti-inflammatory phenotype. The 
effect of the CAP can be mimicked with pharmacological administration of selective α7nAChR agonists (depicted by the hypodermic needle). Figure derived 
in part from Koopman et al, Wu et al, and Bonaz et al.27-29
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COVID-19 cases, substantial serum IL-6 elevation has 
been observed.32 The high production of IL-6, together 
with the macrophage activation syndrome,33 may explain 
the high serum level of C-reactive protein,34 which is 
normally undetectable in viral infections. Therefore, 
macrophage activation may be an exacerbating factor for 
severe COVID-19 infection, producing proinflammatory 
cytokines and contributing to the cytokine storm.31,35 
Anti-IL-6 or anti-IL-1 treatment of COVID-19 patients 
significantly improved patient symptoms.33,36-39 Of note, 
a recent study has shown that vagus nerve stimulation 
inhibits the acute respiratory distress syndrome 
inflammatory response through activation of the 
α7nAChR, via the CAP.14 Therefore, activation of the 
CAP through vagus nerve stimulation or pharmacological 
activation through selective α7nAChR agonists, may 
be a possible adjunctive therapy to ameliorate severe 
inflammation in COVID-19 patients by inhibiting 
production and release of proinflammatory cytokines by 
macrophages, thereby reducing the cytokine storm that 
is a major contributor to COVID-19 morbidity, without 
causing systemic effects of nicotinic cholinergic receptor 
stimulation.
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