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Abstract

We propose a dynamic factor model appropriate for large epidemiological studies and develop an 

estimation algorithm which can handle datasets with large number of subjects and short temporal 

information. The algorithm uses a two cycle iterative approach for parameter estimation in such a 

large dataset. Each iteration consists of two distinct cycles, both following an EM algorithm 

approach. This iterative process will continue until convergence is achieved. We utilized a dataset 

from the National Alzheimer Coordinating Center (NACC) to estimate underlying measures of 

cognition based on a battery of observed neuropsychological tests. We assess the goodness of fit 

and the precision of the dynamic factor model estimators and compare it with a non-dynamic 

version in which temporal information is not used. The dynamic factor model is superior to a non-

dynamic version with respect to fit statistics shown in simulation experiments. Moreover, it has 

increased power to detect differences in the rate of decline for a given sample size.
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Introduction

An increasing number of studies provide data on many variables across a large number of 

individuals in a longitudinal setting. These studies give us an unprecedented opportunity for 

epidemiological research on psychological measures over time and between subpopulations. 

For example, many observational and clinical trial studies of cognitive aging use 

neuropsychological test batteries to assess overall cognition and its specific domains [1]. 

Statistical tools have been developed to extract information from these evaluation tests in 

order to estimate a single or multiple latent cognitive indices. A common method for the 

estimation of such latent variables is confirmatory factor analysis (CFM) [2,3]. The repeated 

nature of the studies is often ignored in these models, even though recent studies attempt to 
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capture the temporal information in order to increase performance of measures for cognitive 

change [4–6]. In psychology, the problem of estimating latent structures from repeated 

measurements has been addressed by the use of dynamic factor models (DFM). ere is a long 

literature on estimation theory and applications of DFMs, either direct autoregressive factor 

models (DAFS) or white noise factor score models (WNFS) [7–10]. These methods have 

been applied in studies with a relatively long time series (at least 70 repeated observations 

per subject) of a single or a small number of individuals [11–13]. On the other hand, in 

longitudinal epidemiological studies, we often have a large number of subjects with a very 

short time series, usually non-stationary, with typically 2 to 5 repeated observations per 

subject. Furthermore, in order to compare latent variables across subpopulation of interest 

cross-sectionally and over time, we require that the estimated factor scores are comparable 

across individuals. This implies certain restrictions on the factor model. Molenaar et al. 

(1992) extended DFMs to non-stationary time series [14]. Although models for large 

number of individuals and short time series are theoretically feasible by applying standard 

multivariate time series methods, they are computationally restrictive. As the number of 

individuals becomes large, so does the number of parameters to be estimated, and direct 

optimisation becomes harder and more time consuming. Markov Chain Monte Carlo 

methods for parameter estimation have been implemented [15,16], but these methods require 

long time series, typically in the hundreds of observations over time. On the other hand, 

Zuur et al. (2003) showed that parameter estimation using the EM (Expectation-

Maximazation) algorithm in a relatively short time window (30 repeated observations) for 

12 cross-sectional units can be easily implemented [17]. This methodological approach has 

its own limitations since applying the EM algorithm to a larger number of individuals and 

even shorter time series would substantially increase computation time [18]. The limitations 

of the data and complications of the estimation methods have resulted in a very narrow 

interest for DFM applications in large epidemiological studies.

In this paper, we provide statistical tools for analyzing DFMs using data which are typical in 

epidemiological studies with large number of participants and short non-stationary time 

series. Specifically, we develop an estimation algorithm, extending the classic EM 

algorithm, by developing an iterative two-cycle estimation process, following the steps of 

the ECME (Expectation/Conditional Maximization Either) algorithm [19]. This estimation 

method is flexible enough to be applicable in studies with multiple individuals, and short 

unequally spaced temporal information.

We apply the dynamic factor model to a variety of neuropsychological tests using data from 

the National Alzheimers Coordinating Center (NACC) study and estimate a smooth 

cognitive measure for each individual’s total cognition as well as measures for specific 

cognitive domains, such as memory, attention and language. We hypothesize that by 

incorporating longitudinal information into the factor models we increase the accuracy of 

the estimates of change over time and consequently increase power to detect differences 

between groups. We focus on a case-control sample using data where participants are 

selected to be cognitively normal. Cases in this study include participants that will convert to 

Mild Cognitive Impairment (MCI) after the period used in the analysis, while controls will 

continue having normal cognition for the next two follow-up visits after the end of the 

analytic period.

Tripodis and Zirogiannis Page 2

Int J Clin Biostat Biom. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the next section we describe the dynamic factor model and its estimation method. In §3, 

we assess its performance in estimating the underlying cognition and its domains and 

compare it with a factor model which ignores any longitudinal information (non-dynamic 

model). We apply the dynamic and non-dynamic versions of the factor model to clinical data 

collected by NACC, and compare their power of detecting differences in the rate of 

cognitive change for various sample sizes. Finally in §4, we conclude with a discussion of 

the methods and results including limitations and directions for future studies.

Methods

In this section we describe the dynamic version of the factor model and its estimation 

process. The difference of the dynamic factor model for panel data from the non-dynamic 

version is that the former captures not only correlations between input variables but also 

autocorrelations and cross correlations of these variables of interest.

Model

—We let Ut denote the nq × 1 vector containing the unobserved cognitive indices of q 

factors for n subjects (with q < n) at time t, with t = 1,…, T. We assume that the dynamic 

properties of Ut can be captured by a Markov process. For illustration purposes, and without 

loss of generality, we first present the case where we have equally spaced observations and 

equal number of neuropsychological tests for each subject. We subsequently present the 

model for the general case with unequally spaced or missing observations. Hence, we form 

the following linear Gaussian state space model:

(2.1)

(2.2)

where B is the matrix of factor loadings with dimensions np×nq, with p denoting the number 

of observed variables, yt is a np×1 vector of observed neuropsychological measures per 

individual, T is np×nq transition matrix and In is a nq×nq identity matrix and et and ηt are 

error terms [20,21]. The state space formulation described in (2.1) and (2.2) models the 

behavior of the unobserved state vector Ut over time using the observed values y1,….., yn. 

The state vector Ut is assumed to be independent of the error terms et and ηt for all t. In 

addition, the error terms et and ηt are assumed to be independent, identically distributed 

(i.i.d.) [22,23]. In general, the model defined by equations (2.1) and (2.2) is not identifiable. 

Zirogiannis and Tripodis (2014) state the conditions for identifiability for a general dynamic 

factor model [24]. In order for the model in (2.1) and (2.2) to be identifiable we must impose 

a certain structure. We first assume that the unobserved cognitive indices follow a 

multivariate random walk, so that T = In. This is a reasonable assumption when modeling 

cognition for an aging population where the spacing of the observation period is roughly 

annual. Similar non-stationary models for psychological constructs have been suggested by 

Molenaar and Campbell (2009) and used, among others, by Hekler et al. (2013) and Gu et 

al. (2014) [12,25,26]. We also impose a structure on the factor loading matrix B and the 

variance of the idiosyncratic errors D. We assume that the factor loadings for each observed 
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variable are the same for each individual in the study. This assumption is necessary in order 

to have comparable estimated cognitive indices across individuals. We also assume that 

participants in the study are conditionally independent and that the variance of the 

idiosyncratic errors is the same for all individuals. These assumptions result in a block 

diagonal structure for D. The imposed structure results in a model that is fully identifiable. 

The model can be easily extended for cases where non-diagonal block elements of B and D 

are not zero. The choice of the structure of B and D is specific to our application of interest.

Unequally spaced and missing observations: It is very common in longitudinal 

observational studies to have unequally spaced or missing observations. Let τit be the 

distance between observations t and t + τit of the ith subject, and τt the vector with the 

distances between two subsequent observations at time t. Then we can re-write the state-

space form of the multivariate random walks as:

where  with Ei a q×q matrix with 1 for the element (i, i) and 0 everywhere else 

and ei is a 1×q vector with 1 for the element i and 0 everywhere else. This time-varying 

model can be used for unequally spaced and missing observations, as well as for forecasting 

for any τn steps ahead.

2-step modified ECME Algorithm

The high dimensionality of the data vector yt makes estimation of our model rather 

problematic. Moreover, in biomedical applications such as the one we explore in this paper, 

we deal with cases where T is very small while n is very large. Usual Newton-type gradient 

methods do not work in this situation creating the need for a novel estimation approach. We 

introduce a modified ECME algorithm that makes estimation of the model specified in (2.1) 

and (2.2), feasible through an iterative two-cycle process. The 2-cycle modified ECME 

algorithm is an extension of the ECME algorithm developed by Liu and Rubin (1998), 

which itself is an extension of the widely known EM algorithm [27]. The modified ECME 

algorithm starts by partitioning the vector of unknown parameters Ψ into (Ψ1, Ψ2) where Ψ1 

contains the elements of D that need to be estimated, while Ψ2 contains the relevant 

elements of B. We use the term “cycle” as an intermediary between a “step” and an 

“iteration” as in Meng and Dyk (1997) [28]. In the case of our modified ECME algorithm, 

every iteration is comprised of two cycles. Each cycle includes one E-step and one M-step, 

where the first cycle estimates Ψ1 and Ψ2 given the estimates of Ψ of the previous iteration, 

while the second cycle estimates Ψ2 given the estimates of Ψof the previous cycle.

The functional form of the complete-data log-likelihood at time period t is [29]:

Tripodis and Zirogiannis Page 4

Int J Clin Biostat Biom. Author manuscript; available in PMC 2016 January 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Since ut is unobserved, we can consider it missing and use the EM algorithm framework. In 

order to find the MLE, we need to calculate the distribution of the latent variable ut 

conditional on the observed values of yt. There is a long literature describing the EM 

procedure for factor analysis in cross-sectional data starting with Rubin and Thayer (1982) 

[30]. Applying the EM framework for longitudinal data we need to condition not only on the 

concurrent observed value of yt but on all the previous observed history y1, …, yt. As we 

will see in the following two subsections, we use the first cycle to obtain estimates for ut by 

conditioning on the concurrent observed variables, yt, and the second to update these 

estimates by conditioning on the history of the observed variable, y1, …, yt using the 

Kalman filter [31]. This iterative process will continue until the likelihood function stops 

increasing and convergence is achieved.

First cycle—During the kth iteration of the first cycle, the E-step of the 2-cycle ECME 

algorithm is:

(2.3)

Following the notation presented in [29], the sufficient statistics are calculated in the (k − 1) 

iteration by the following equations:

(2.4)

The first M-step involves differentiating ZΨ(Ψ1, Ψ2, Ψ1
(k − 1), Ψ2

(k − 1)) with respect to Ψ1 

and Ψ2 in order to obtain  and :

(2.5)

The first-cycle M-step is identical to the M-step of the traditional EM algorithm for factor 

analysis models [32]:

(2.6)

(2.7)

Where Cyy is the sample unconditional covariance matrix of , i.e. 

. At the end of the first cycle we have updated estimates for all the elements 

of the variance matrix of the idiosyncratic errors, D, and intermediate estimates for the 
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matrix of factor loadings, B. We use these estimates in the second cycle to get updated 

estimates for the factor loadings.

Second cycle—In the E-step of the second cycle we estimate . We proceed by 

calculating:

(2.8)

The second E-step involves forming the expected complete-data log likelihood conditional 

on Yt−1, which is the set of past observations y1,…,yt−1. The subsequent M-step involves 

differentiating  with respect to Ψ2. We choose  such that:

(2.9)

Upon maximization of ZΨ2, the estimate  is used in the E-step of the first cycle of the 

next iteration. We calculate and maximize  by using the prediction 

error decomposition of the conditional likelihood [33]:

(2.10)

Where υt is the prediction error conditional on past history and Ft is its variance. Quantities, 

υt and Ft can be estimated with the use of the Kalman filter, which is a set of recursions 

which allow information about the system to be updated every time an additional 

observation Yt is introduced [21]. Once υt and Ft are calculated, (2.10) is maximized with 

respect to Ψ2, as illustrated in (2.9).

Results

In the next section, we assess and apply the model and the estimation process described in 

§2. We first assess the performance of the 2-cycle ECME estimator using a simulation 

study. We then apply the model in data from the NACC study. We also compare the 

dynamic factor model with a non-dynamic version in which temporal information is not 

used. The non-dynamic version is observationally equivalent to a Confirmatory Factor 

Analysis (CFM) model and it is defined solely by the observation equation (2.1). Estimation 

was done using a code written by the authors in Ox Programming Language [34].

Simulation

The model from which we simulate is a variant used by Doz et al. (2011) which is based on 

a simulation scheme used by Stock and Watson (2002) [35,36]. We define:
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(3.1)

With

1.

f a p×1 vector of factors loadings with f[K] ~ U(0,1) subject to 

2. d a p×p diagonal matrix of variances for the idiosyncratic elements, with 

 with βk ~ u(0.1, 0:9)

where k = 1,…, p. We generate 1000 replicates from the model defined by (2.1), (2.2) and 

(3.1) with U0 ~ N(0, In), for different combinations of sizes for observed tests, p, number of 

subjects n, and time points, T. Specifically, we use p = 5,10,15, n = 10,50,100,200,300 and 

T = 3,5,7,10,15.

The choice of these values corresponds to our specific application. We specify factor 

loadings which are the same across individuals who do not share any familial or other 

relationship. The coefficient βk is the ratio between the variance of the idiosyncratic 

component, et, and the total variance of the corresponding observed variable, Yt. In the 

simulation, this ratio is drawn from a uniform distribution between the interval of (0.1, 0.9). 

This interval was chosen in order to avoid parameters at the boundary of the parameter 

space.

Estimation was done using the 2-cycle modified ECME and yielded estimates of the factor 

Û = (Û1, Û2,…, ÛT). Performance was measured by the trace statistic:

The trace statistic is a multivariate version of the R2 of the regression of the true factors on 

the estimated factors [35]. A number close to 1 implies a good approximation of the 

estimated latent variable to the true factor. We used the trace statistic, TRDFM, as a 

performance measure for the

Dynamic factor model. We also obtained estimates of the latent factor using a non-dynamic 

factor model defined only by equation (2.1). In order to have comparable results, we also 

used the 2-cycle modified ECME for the non-dynamic version of the factor model. We then 

calculated the equivalent trace statistic, TRCFM for the non-dynamic model. We use the 

ratio of the two trace statistics, , as a comparison measure of the two models. Values 
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above 1 imply that the dynamic model has superior performance to the non-dynamic 

version, with respect to how close the estimated and the true factors are.

Table 1 reports the results of the trace statistics from the simulation experiment. The 

numbers in the table refer to the average across 1000 replicates. As an example, we use the 

case of T = 3, n = 300, and p = 5; 86% of the variability of the true, simulated factor is 

explained by the factor estimated by the DFM. The explained variability using DFM is 1% 

higher than the explained variability using CFM. The goodness of fit of the estimated 

factors, as measured with TRDFM, increases with the size of individuals n in the sample, and 

the number of repeated observations per individual T. TRDFM varies from 0.77 for a small-n, 

and small-T sample to 0.97 for a moderate n-moderate T. The goodness of fit of the 

estimators does not improve as the number of observed tests p per individual increases for a 

given size n and T. Moreover, the dynamic factor model always performs at least as good as 

the non-dynamic version. The relative performance of the dynamic factor model increases 

with T. Based on , the relative performance of the dynamic model ranges from 1% 

better goodness of fit compared to the non-dynamic version when n = 10, p = 5 and T = 3 to 

9% when n = 300, p = 15 and T = 15.

Application

Alzheimers Disease (AD), the most common form of dementia, is a significant cause of 

disability and mortality among the elderly. The latest figures show that 5.2 million people in 

the US, approximately 14% of the population over age 70, are afflicted by AD [37]. As the 

population ages over the next several decades, this number is expected to increase [38]. The 

only definitive way to diagnose AD is post-mortem, but neuropsychiatrists reach a pre-

mortem diagnosis by reviewing and discussing the subject’s clinical history, as well as 

scores from a variety of neuropsychological evaluation tests [39]. The results of the 

neuropsychological tests which are part of the batteries can exhibit high within-subject 

variability [40] and may make diagnosis difficult. Moreover, the emphasis in Alzheimers 

disease clinical research has shifted to developing interventions before symptoms onset. In 

order to address this need, researchers are required to develop cognitive measures which 

discriminate between cognitively healthy subjects and individuals with small cognitive 

changes who will convert to mild cognitive impairment (MCI).

We used the NACC dataset with visits from September 2005 to June 2013 for testing and 

evaluation. NACC serves as a repository for data collected at 34 past and present 

Alzheimer’s Disease Centers (ADCs) throughout the United States. The ADCs conduct 

clinical and biomedical research on Alzheimer’s disease and related disorders. Centers 

enroll their study subjects in various ways, including referral from clinicians, self-referral by 

patients themselves or concerned family members, active recruitment through community 

organizations, and volunteers who wish to contribute to research. Most centers also enroll 

volunteer control subjects. Study subjects at each center are best regarded as a case series, 

not necessarily representing all cases of disease in a defined population. More information 

on the study can be found in Morris et al. (2006) [41].
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We focus on a study sub-sample which includes cognitively healthy participants at initial 

visit. For all subjects we only considered their neuropsychological test results while 

cognitively healthy, even though some converted to MCI state at a later visit. For those 

participants who did not convert to MCI during our observation period, we only considered 

those with at least 4 visits. To avoid the risk of healthy participants converting to MCI at a 

future visit, we restricted our analytic period by excluding from further analyses the last two 

measurement occasions for that group. Consequently, normal controls remain cognitively 

normal for at least 2 years after the end of the analytic period used in this study. For those 

participants who converted to MCI we considered those with at least 1 follow-up with 

normal cognition. We also excluded non-English speakers as well as subjects with a number 

of comorbidities: history of stroke, history of transient ischemic attack, history of other 

cerebrovascular diseases, Parkinson’s disease or other Parkinsonism disorder, history of 

seizures, history of any brain trauma or other neurologic conditions, history of depression or 

psychiatric disorder. We then created two balanced groups, with n = 149 each, matched by 

age, sex and education which differ only in their future cognitive state: one group converts 

to MCI at the following visit after the end of the analytic period (converters), while the other 

group remains cognitively normal for at least the next two subsequent visits (non-

converters) beyond the end of the restricted observational period. The description of the 

sample is given in figure 1. The mean (SD) age at initial visit is 75.7 (7.5) with 15.4 (2.5) 

average years of education. There are 170 (57.1%) women in the sample with 3.0 (1.2) visits 

on average, and 2.3 (1.3) years of follow-up since the initial visit.

We considered four factor models using different neuropsychological measures according to 

their relation to a specific domain: i) memory, ii) attention-psychomotor speed, iii) language 

and iv) general cognition. For each factor model, we run both a dynamic and a non-dynamic 

version. We estimated all models using a MacBook Pro with a Intel Core i7 2.3GHz 

processor on OS X Yosemite. Estimation times vary from 12.01 second for the language 

domain, to 46.97 seconds for the attention-psychomotor speed domain. For the general 

cognition factor, which includes all 11 neuropsychological scores, estimation time was 

25.31 minutes. For both versions of the model, the one step-ahead prediction errors were 

tested for normality and residual autocorrelation. Even though both the dynamic and the 

non-dynamic version of all four factor models indicated non-normal errors (e.g. for general 

cognition, p-value<0.0001 for Bowman-Shenton test for normality and for Box-Ljung 

portmanteau test for autocorrelation at lag 1), further investigation showed that this is caused 

by outliers from seven participants. These participants have significantly lower estimated 

factors at the last visit, which may indicate misdiagnosis or untimely diagnosis of MCI. For 

each neuropsychological test, we run mixed effects regressions using PROC MIXED in SAS 

9.3 with random intercepts and random slopes for time to test the hypothesis that there are 

significant differences in the rate of change by group (converters vs non-converters). We 

also used mixed effects regression on the factor scores estimated by the dynamic as well as 

the non-dynamic factor models. Table 2 shows the factor loadings for each domain and table 

3 shows the estimated annual rate of change for each of the neuropsychological tests and for 

the non-dynamic and dynamic factors. For ease of comparison, all outcomes have been 

standardized, using the mean and standard deviation of all cognitively healthy NACC 

participants. We note that there is no significant annual change for the group of non-
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converters for all neuropsychological measures, with the exception of logical memory: 

delayed, and for the estimated factors. For the converters, only MMSE, Trails B and Verbal 

Fluency Test: vegetables show significant decrease at the 5% level, while the factors from 

the simple (non-dynamic) factor model for attention and language show significant decrease 

over time. For the dynamic factor model estimates, all three domains and total cognition 

estimates show significant decreases over time for the group which progressed to MCI at the 

next follow-up period. For the non-dynamic factor model estimates however, the total 

cognition factor and the memory factor do not show any difference. Given that an important 

feature that leads to an MCI diagnosis is manifestation of significant cognitive decline, it is 

important to note that the dynamic factor model estimates show evidence of decline even 

before conversion to MCI. We also note that both the dynamic and the non-dynamic version 

of factor models show significant differences in the annual rate of change between groups. 

In general, the estimates of difference of the Factor models are larger and have lower p-

values than the estimates of input variables. Furthermore, the estimates of difference from 

the dynamic factor model are at least as high with larger p-values as the equivalent estimates 

of the simple factor models. This difference is due to the fact that DFM incorporates the 

longitudinal aspect of the psychometric results of every patient. This may be an indication of 

increased power for the dynamic factor model, which we explore in the next sub-section.

Power analysis—We also investigated the performance of the observed indicators and the 

estimated factors with respect to power. Our main aim remains the detection of differences 

by group in the rate of change. In order to assess the power of each outcome, we follow a 

bootstrapping scheme using the data described in the previous section. We first assume that 

there is, indeed, a difference in the annual rate of change between normal controls and MCI 

while they are both cognitively normal. For a given sample size n, we perform the following 

steps:

Simulation scheme

1. Select n/2 matched pairs with replacement.

2. Estimate factor scores for all domains and for total cognition using simple and 

dynamic factor models.

3. Run a mixed effect regression on the estimated factor using time since first visit, 

group (converters Vs non-converters) and time×group interaction, along with age at 

initial visit as covariates.

4. Is the estimate of time×group interaction significant at the 5% error level?

5. Repeat for 1000 times.

Table 4 shows the power of detecting significant differences for different sample sizes for 

all outcomes. We note that power of the dynamic factor model estimates is higher than the 

power of the non-dynamic version. For the total summary index, the power for the dynamic 

version varies from 49.9% for n = 120 to 96.7% for n = 240. The power for the non-dynamic 

version is much lower and goes up to 76.9% for n = 240. These results indicate that a 

smaller sample size is required for a given power in order to find significant differences in 

the rate of change by groups. Using the results from table 4, we can calculate the required 
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sample size for both the dynamic and the non-dynamic factor models for an 80% power at a 

= 5%. For the total cognition index, the DFM model requires a sample size of 187 while the 

non-dynamic version (CFM) requires a sample size of 252. We get similar results for the 

other domains: memory (nDFM = 370, nCFM = 485), attention (nDFM = 334, nCFM = 546), 

language (nDFM = 414, nCFM = 1419).

We also note that the power of the factor models is always higher than the power of the 

individual neuropsychological tests. This indicates that using factor models increases the 

power of detecting significant differences in the rate of change. One notable exception is the 

Boston Naming Test (BNT) in the language domain. BNT has a higher power for all sample 

sizes considered compared to the non-dynamic factor estimates. It also has a higher power 

than the dynamic factor model when n = 120. For larger sample sizes, the dynamic factor 

model estimates have higher power than BNT.

Conclusion

In this article, we developed an algorithm to estimate a dynamic factor model for data 

typical in large epidemiological studies and apply it on latent cognitive variables. We 

compared it with equivalent factor models which do not use temporal information in the 

estimation, and showed that the dynamic factor model estimates are more accurate as 

reflected by comparison of fit statistics in simulation experiments. They are also more 

precise than the non-dynamic version estimates as shown by improved power to detect 

differences in the rate of decline. Since the estimated latent index is a weighted average of 

the concurrent observed values, the reason for the improved performance of the dynamic 

factor model is due to the fact that the weighting scheme of DFM takes into account any 

within-subject variability over time and any cross-correlation of tests. In the non-dynamic 

version, weights depend on the correlation between tests as well as on between-subject 

variability. Measures that are highly correlated or have increased between-subject variability 

will receive higher weight. The main limitations of the non-dynamic approach are that we do 

not use any information from the within-subject variability over time. If we do not account 

for variability over time we may over (under) inflate the weights. In the dynamic factor 

model, the estimated latent variable is a weighted average of observed values from all time 

points. Concurrent values are weighted higher than observations further back into the past 

which will be discounted exponentially. The rate of discount will depend on the variability 

of each observed measure over time. For example, in the dynamic factor model, past 

observations of measures that are stable over time will be discounted less. Koopman and 

Harvey (2003) provide a general description of the weighting schemes for the model defined 

by equations (2.1) and (2.2) [42].

The dynamic factor model can be extended to allow for observed variables loading to 

multiple factors or for studies where participants may be clustered due to familial or other 

relationship. The current model is applicable to data with short temporal component and 

unequally spaced observations. This is a particular strength of the estimation algorithm, 

since most of the observational studies on cognition have these specific characteristics. A 

limitation of the current study is that the estimated factor is not validated with changes in 

biomarkers, such as volumetric data from MRI scans. Additionally, even though NACC 
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battery is well validated and we consider the tests which load to specific domains as known, 

this may not be true in other applications. Another limitation of this current study is the use 

of aggregate scores for each test rather than the scores of each specific item used in each 

test. Crane et al. (2008) show that it is advantageous to use the item scores to derive latent 

factors in longitudinal studies [43]. Unfortunately, in the NACC study, as in many large 

studies, the data for items are not readily available for all participants. The methodology 

presented in this paper can be easily applied in most large studies where only the aggregate 

scores for each test are available. The dynamic factor model is particularly useful when we 

are interested in finding differences in the rate of cognitive change between groups. This 

advantage can be used in future observational studies researching the heterogeneity in rates 

of progression of MCI and AD patients. The DFM model can be easily used in searching 

specific thresholds above which the risk of conversion to MCI increases. This is especially 

important for designing future clinical trials that need to identify healthy participants at high 

risk of significant decline in cognition.
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Figure 1. 
Description of analytic sample
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Table 2

Factor loadings for each domain

Test Memory Attention Language Total

MMSE 0.22 0.15

Logical Memory:
Immediate

0.34 0.08

Logical Memory:
Delayed

0.34 0.05

Digits Forward 0.25 0.06

Digits Backward 0.27 0.12

WAIS 0.16 0.07

TRAILS A 0.20 0.08

TRAILS B 0.23 0.08

Animals 0.35 0.14

Vegetables 0.33 0.08

Boston Naming Test 0.28 0.12
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