
sensors

Review

Sensor-Based Technology for Social Information
Processing in Autism: A Review

Andrea E. Kowallik 1,2,3 and Stefan R. Schweinberger 1,2,3,4,5,*
1 Early Support and Counselling Center Jena, Herbert Feuchte Stiftungsverbund, 07743 Jena, Germany;

andrea.kowallik@uni-jena.de
2 Social Potential in Autism Research Unit, Friedrich Schiller University, 07743 Jena, Germany
3 Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University Jena,

Am Steiger 3/Haus 1, 07743 Jena, Germany
4 Michael Stifel Center Jena for Data-Driven and Simulation Science, Friedrich Schiller University, 07743 Jena,

Germany
5 Swiss Center for Affective Science, University of Geneva, 1202 Geneva, Switzerland
* Correspondence: stefan.schweinberger@uni-jena.de; Tel.: +49-(0)-3641-945181; Fax: +49-(0)-3641-945182

Received: 11 October 2019; Accepted: 30 October 2019; Published: 4 November 2019
����������
�������

Abstract: The prevalence of autism spectrum disorders (ASD) has increased strongly over the past
decades, and so has the demand for adequate behavioral assessment and support for persons affected
by ASD. Here we provide a review on original research that used sensor technology for an objective
assessment of social behavior, either with the aim to assist the assessment of autism or with the
aim to use this technology for intervention and support of people with autism. Considering rapid
technological progress, we focus (1) on studies published within the last 10 years (2009–2019), (2) on
contact- and irritation-free sensor technology that does not constrain natural movement and interaction,
and (3) on sensory input from the face, the voice, or body movements. We conclude that sensor
technology has already demonstrated its great potential for improving both behavioral assessment and
interventions in autism spectrum disorders. We also discuss selected examples for recent theoretical
questions related to the understanding of psychological changes and potentials in autism. In addition
to its applied potential, we argue that sensor technology—when implemented by appropriate
interdisciplinary teams—may even contribute to such theoretical issues in understanding autism.

Keywords: automatic recognition; face; voice; body motion; autism spectrum disorder (ASD);
assessment; intervention

1. Introduction

Throughout the last decades, the number of people diagnosed with an Autism Spectrum Disorder
(ASD) increased dramatically [1,2] and so did the need for high-quality diagnostic protocols and
therapies. With the ongoing progress in computer sciences and hardware, a lot of creative ideas
emerged on how to use sensor data to identify and observe autistic markers, support diagnostic
procedures and enhance specific therapies to improve individuals’ outcomes.

ASD is a behaviorally defined group of neurodevelopmental disorders that are specified by
impaired reciprocal social communication and restricted, repetitive patterns of behavior or activities
(DSM-5), [3]. The symptoms are usually apparent from early childhood and tend to persist throughout
life [4]. Common social impairments include a lack of social attention as evident in abnormal eye
gaze or eye contact [5] and social reciprocity such as in reduced sharing of emotions in facial [6] or
vocal behavior [7]. Further, only a minority of the affected people report having mutual friendships [8].
Related to the restricted and repetitive behaviors, stereotyped motor movements and speech are the
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stand-out features in many people with ASD [9]. Other symptoms are insisting on sameness and
routines [10], special interests and hyper- or hyporeactivity to sensory input from various modalities [11].
The exact profile and severity of symptoms in people with ASD as well as their personal strengths and
coping capabilities vary to a great degree, and so does their need for support.

Reasons for the increased prevalence over the last decades include a more formalized diagnostic
approach and heightened awareness. The current ‘gold standard’ for a diagnosis of ASD consists of
an assessment of current behavior, a biographical anamnesis, and a parental report, all collected and
evaluated by a trained multi-professional team [12]. Although the screening and diagnostic methods
for ASD improved throughout the last years, many affected people, especially women [13] and high
functioning people, still receive a late diagnosis. Since early interventions have been shown to be most
effective for improving adaptive behavior, as well as IQ and language skills [14], there is continued
demand for methods promoting early assessment in order to avoid follow-up problems. In this context,
progress in automatic and sensor-assisted identification of ASD-specific behavioral patterns could
make an important contribution to an earlier and less biased diagnosis.

Even beyond assessment, advances in digital technology are highly relevant for autism, and in
more than just one way. First, there is some evidence that many autistic people show behavioral
tendencies to interact with technology and to potentially prefer such interactions to interactions with
humans. It is thought that autistic traits are related to systemizing, the drive to analyze how systems
work, as well as to predict, control and construct systems [15]. In this context, high information
technology (IT) employment rates are often used as a proxy for higher rates of strong systemizers
in a population. Intriguingly, recent research from the Netherlands reported that the prevalence of
childhood autism diagnoses, but not of two control neurodevelopmental diagnoses (i.e., ADHD and
dyspraxia), was substantially higher in Eindhoven, a classical (IT) region, when compared to two
control regions (Utrecht and Haarlem) that had been selected for high demographic and socio-economic
similarity in criteria other than the proportion of IT-related jobs [16]. Second, and qualifying any
simplistic interpretation of this correlative (but not necessarily causal) relationship, there is evidence
that technology can potentially provide powerful social support for children with autism. For instance,
children with ASD often perform better with a social robot than a human partner (e.g., in terms
of enhanced levels of social behavior towards robots), tend to perceive interactions with robots as
positive [17], and subsequently show reduced levels of repetitive or stereotyped actions. For a recent
review, see Pennisi et al. [18].

Scientific interest in the utilization of sensor technology to gain an understanding of people
with ASD has increased considerably in the recent past. Some fields of research focus on different
neurobiological assessments and try to identify autism-specific signals or ‘biomarkers’ to better
understand the neurobiological underpinnings of the disorder. Good overviews covering methods
including electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) are provided by Billeci et al. [19] and by Marco et al. [20]. Other research
focused on an autonomic activity such as heart rate variability (HRV) or skin conductance responses
(SCR). These can be studied with Wearable devices, typically in the context of emotional monitoring in
ASD as seen in a review by Taj-Eldin, et al. [21]. Applications in VR environments [22–24] have also
been reviewed as promising methods to train and practice social skills.

The aim of this review is to provide an overview of the current state of research using sensor-based
technology in the context of ASD. We focus on sensor technology that is applicable without constraining
natural movement, and on sensory input from the face, the voice, or body movements. Accordingly,
this review does not consider evidence from wearable technology, VR, or psychophysiological and
neurophysiological recordings. Note also that while we provide details of our procedure for identifying
relevant original findings to enhance reproducibility, this paper represents a thematic review in which
we pre-selected for contents as described below, and in which we occasionally discuss additional
relevant findings that were not formally identified by this literature search. For instance, we may refer
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to some key findings regarding psychological theories of human social or emotional communication
where relevant, even when the findings were not obtained with individuals with autism.

2. Literature Search

We performed parallel literature searches on Web of Science, PsychInfo, PubMed, and IEEE
Xplore. Considering the rapid advance of technology throughout the last decades, we focussed on
the last 10 years (2009–2019) to give an overview of recent developments in this field. Searches were
performed on 29 May 2019. Our search terms were (autis* OR ASD OR Asperger) AND (sensor OR
sensors) AND (fac* OR voice* OR body motion* OR person* OR regoc* OR identi* OR emotio* OR
diagnos*). Furthermore, the considered language was restricted to English. Overall, the search resulted
in 386 articles (Web of Science N = 185, IEEE Explore N = 109, PubMed N = 52, PsychInfo N = 40). Note
that we only included publications with original data from an ASD or high-risk group, such that new
algorithms on preexisting data sets were not included. We also included the reference lists of identified
articles with respect to additional screening for relevant publications. After removing duplicates, this
selection process resulted in a total of 36 articles. These are discussed below, and those articles that
focused on assessment or intervention are additionally summarized in Tables 1 and 2, respectively.

3. Supporting Assessment: Identification of ASD Related Features

3.1. Facial Information

3.1.1. Facial Movements

For facial movements, researchers tended to focus on emotional facial information, following the
idea that impaired social communication in ASD can be framed as deficits in emotional communication
regarding both perception and expression [25], and the finding that people with ASD may show
reduced or idiosyncratic emotional expressions [6,26]. Against this context, it may be useful to keep in
mind that ASD-specific impairments in face perception are not restricted to emotional expressions,
but also affect other aspects such as facial identity [27]. Similarly, expression in social communication
may be affected in subtle ways that go beyond emotional expressions [28]. The original articles on
sensor-based assessment in terms of identification of autism spectrum disorders (ASD)-related features,
regarding facial movements and other forms, represented in this review are listed in Table 1.

Samad et al. [29] compared facial expressions from an ASD and a typically developing (TD) group,
with 8 participants each. Computing facial curvatures from 3D point cloud data, they found equally
intense but more asymmetrical facial expressions in the ASD group. Another study [30] used a single
webcam mounted on a TV screen to record toddlers’ spontaneous facial expressions when confronted
with emotional cartoons. Comparing descriptive data from small groups with five children each, they
reported that the lower face seemed to be more important in distinguishing between the ASD and TD
groups. Leo et al. [31] presented a new processing pipeline on 2D video data that aimed at assessing
facial expressions in ASD children specifically. They estimated the production skills for individual
children based on verbal instructions to express these emotions, separately for individual face parts and
emotions. The performance of 17 boys with ASD was variable, and some boys exhibited differential
production scores for different categories of emotions. Note that this finding is in broad agreement
with theories that emphasize category-specific mechanisms, and with componential approaches to
emotion [32,33]. Samad et al. [34] used a storytelling avatar, also with the aim of eliciting spontaneous
emotions to differentiate between ASD and TD groups with 10 participants each. Comparing 3D data
on the level of facial action units (AUs) they found overall lower AU activations in the ASD group
and lower correlations between the AUs. The deviant activation in AUs 6, 12, and 15 (cheek raiser,
lip corner puller, and lip corner depressor, respectively), were found to be promising markers for
ASD. As a more serious screening approach, the App ‘Autism & Beyond’ [35] recorded toddlers’ facial
responses to certain stimuli with the front camera and classified them into positive, neutral, or negative.
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Using a large database of 1756 children, the associated facial expressions, along with eye gaze and
parental reports, with Autism Spectrum risk status. Comparisons between high- and low-risk groups
revealed that high risk for ASD was associated with higher frequencies of neutral facial expressions,
and with lower frequencies of positive expressions.

3.1.2. Eye Gaze

One major domain in which autistic people are frequently described to behave unusually relates
to oculomotor behavior, including low levels of eye contact during communication, and low levels of
directional signaling via eye gaze. In fact, a current target article challenges the common belief that
autistic people lack social interest in others, and suggests that this interpretation could be erroneously
elicited by unusual behavior such as low levels of eye contact [36]. While this may be a useful context
to keep in mind when reading this section, there is agreement that the assessment of eye gaze can help
to identify behavioral patterns that are relevant for autism [37].

Chawarska and Shic [38] compared toddlers with ASD and TD of different age groups (2 and
4 years old) with an eye-tracking system while they watched neutral faces. Although all groups spent
equal time looking at the screen, a restricted scanning pattern in the ASD group was found, with
relative neglect of the mouth area. Additionally, the older ASD group spent less time looking at inner
facial features in general, even compared to the younger ASD group. According to the authors, this
indicates a different scanning pattern of children with ASD that emerges throughout early childhood
and suggests less looking at the mouth as the best early predictor for ASD. Liu et al. [39] used a
machine-learning framework on eye-tracking data of 29 ASD vs. 29 TD children (mean age 7.90 years)
looking at images of faces embedded in a learning task with repeated presentations. Their proposed
framework was able to identify ASD children both from age- (mean age 7.86 years) and IQ-matched
(mean age 5.74 years) control groups with high classification accuracy (up to 88.5%). Król and Król [40]
used eye-tracking to study the effect of including temporal information into spatial eye-tracking of face
stimuli, thus creating scan paths for 21 ASD and 23 TD individuals (mean age around 16 years). They
found a difference in face-scanning not only in spatial properties but also in temporal aspects of eye
gaze, even within short exposures (about 2 s) to a facial image. Classification of group membership
based on a machine-learning algorithm on spatial and temporal data led to better accuracy (55.5%)
than classification based on spatial data alone (53.9%), although overall accuracy was rather low. Note
that discrepancies between classification accuracies in this study and the study by Liu et al. [39] need
to be seen in the context of specific conditions of each study, and could potentially be attributed to the
facial stimuli and trial numbers used, the experimental task instructions, methodological differences in
data analysis, or differences in the samples tested.

In a more general study on the visual scanning of natural scene images, Wang et al. [41] compared
an ASD and a TD group (N = 20 and 19, respectively) at different levels of perception. The ASD
group was found to fixate more towards the center of an image (pixel level), less on objects in general
(object level) and less on certain objects (e.g., faces or objects indicated by social gaze), but more on
manipulatable objects (semantic level).
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Table 1. Original Articles on Sensor-Based Assessment in Terms of Identification of autism spectrum disorders (ASD)-related features.

Domain of Behavior Reference Solution Name Sensor/Parameters Sample (Mean
Age)

Setting and Stimuli Results

Facial Movements Samad et al., 2016 [29] Sony EVID70 Color
Camera, 3dMD

2D, 3D Imaging ASD: 8 (13 y), TD: 8
(16 y)

Emotion Recognition
Task: 12 3D Faces

ASD: Intense, Asymmetrical Facial
Expressions with Lack of Differential

Facial Muscle Actions
Facial Movements Del Coco et al.,

2017 [30]
Webcam 2D Imaging ASD: 5 (5 y), TD: 5

(Age-,
Gender-Matched)

Watching 9 Emotion
Eliciting Videos Taken

from Famous
Cartoons

ASD Descriptively Exhibited Less
Facial Behavioral Complexity; Lower
Face Seemed More Significant Than
Upper Face to Distinguish Between

TD-ASD
Facial Movements Leo et al., 2018 [31] Off-The-Shelf Camera 2D Imaging ASD: 17 (9 y) Emotion Production

Task: 4 Expressions
(Happiness, Sadness,

Fear, Anger)

Descriptive Scores for Upper and
Lower Face Parts

Facial Movements Egger et al., 2018 [35] iPhone 2D Imaging (Front
Camera)

High Risk: 555 (3 y),
Low Risk: 1199 (3 y)

Watching Video Clips More Neutral and Less Positive
Emotional Reactions in High-Risk

Group
Facial Movements Samad et al., 2019 [34] PrimeSense 3D Imaging ASD: 10 (14 y), TD:

10 (13 y)
Watching Story

Content Narrated by
The Animated Avatar

ASD: Overall Lower FAU Activation,
Higher Activations of FAU 15,
Limited Activation of FAUs In

Response to Encountering Negative
Emotional States; Concurrent

Activations of Several FAU Pairs Are
Found to Be Absent

Eye Gaze Chawarska and Shic,
2009 [38]

iView X™ RED Eye-Tracking ASD: 44, TD: 30 Watching Color
Images of Affectively
Neutral Female Faces

ASD: Attended to Visual Scenes
Containing Faces to A Similar Extent;

ASD Look Less at Inner Facial
Features, Older ASD Spent Less
Time with Inner Features Than
Younger, ASD Spent Less Time

Looking at the Mouth
Eye Gaze Liu et al., 2016 [39] Tobii T60 Eye-Tracking ASD: 29 (8 y),

TD-Age: 29 (8 y),
TD-Ability: 29 (6 y)

Face Memorization
and Recognition Task

Classification Accuracy Predicting
ASD: 88.51% (p < 001)

Eye Gaze Król and Król,
2019 [40]

SMI RED250 Eye-Tracking ASD: 21 (16 y), TD:
23 (16 y)

Face Perception Tasks
with 60 Color

Photographs of Faces
(FACES Database)

Prediction ASD vs. TD Group
Membership: Based on Only

“Spatial” Information (M = 53.9%)
Was Significantly Smaller Than That
of the “Spatial + Temporal” Model

(M = 55.5%)
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Table 1. Cont.

Domain of Behavior Reference Solution Name Sensor/Parameters Sample (Mean
Age)

Setting and Stimuli Results

Eye Gaze Wang et al., 2015 [41] Tobii X300 Eye-Tracking ASD: 20 (31 y),
TD:19 (32 y)

Free Viewing Task
with 700 Natural

Scene Images (OSIE
Dataset)

ASD: Higher Saliency Weights for
Low Level Properties, Lower

Weights for Object and
Semantic-Based Properties

Voice Min and Tewfik,
2010 [42]

Microphone Audio,
Accelerometer

ASD: 4 No Context Given 22/24 Vocal Stimming Events
Detected by Classifier

Voice Min and Fetzner,
2018 [43]

Microphone Audio, 2D Imaging ASD: 4 No Context Given Trained Dictionaries Detect Vocal
Stimming with Sensitivity: 73–93%

Voice Marchi et al., 2015 [44] Zoom H1 Handy
Recorder (Hebrew,
English), Zoom H4
With RØDE NTG-2

Microphone
(Swedish)

Audio ASD: 7 (Hebrew), 11
(Swedish), 9

(English); TD:10
(Hebrew), 9
(Swedish), 9

(English)

Repeating Sentences
From 9 Emotional

Stories

ASD: Generally Perform Poorer, In
English And Swedish Angry Was

Poorly Performed, In Hebrew Afraid
Was Poorly Performed

Voice Ringeval et al.,
2010 [45]

Logitech USB
Desktop Microphone

Audio AD: 12 (10 y),
PDD-NOS: 10 (10 y),

SLI: 13 (10 y), TD:
73 (10 y)

Reading 26 Sentences
with Certain Prosodic

Dependencies
(Descending, Falling,

Floating, Rising)

AD: Intonation for Falling Floating
and Especially Rising Was Worse

Compared to TD

Body Movement Gonçalves et al.,
2014 [46]

Microsoft Kinect Color Depth
Sensors, IR Emitter,

Microphone

ASD: 5 (9 y) Playing Session with
Robot

Good Detection of Hand Flapping
with DTW, But Susceptible to Noise

Body Movement Jazouli et al., 2019 [47] Microsoft Kinect V1 Color Sensor, IR
Depth Sensors, IR

Emitter,
Microphone

ASD: 5 (5–10 y), TD:
5 (Training Data)

No Context Given 94% Overall Recognition Rate For
Stereotyped Gesture Recognition ($P

Algorithm)

Body Movement Rynkiewicz et al.,
2016 [47]

Microsoft Kinect Color Sensor, IR
Depth Sensors, IR

Emitter

ASD: 33 (5–10 y) ADOS-2-Tasks
(Cartoon Task,

Demonstration Task)

ASD: Females Present Better
Non-Verbal Skills (Gestures),

Although Communication Skills
Were Lower

Body Movement Anzulewicz et al.,
2016 [48]

iPad Touch Sensor;
Accelerometer

ASD: 37 (4 y); TD:
45 (5 y)

Playing 2 Serious
Games (Sharing,

Coloring)

Differences in Pressure Going into
the Device as Well as Differences in

Gesture Kinematics and Form
Multimodal Samad et al., 2017 [49] Sony EVI-D70,

Mirametrix S2
2D Imaging, Eye

Tracker
ASD: 8 (13 y); TD: 8

(16 y)
Emotion Recognition

and Manipulation
Task of 3D Faces

ASD: Have Uncontrolled
Manifestation of FAU 12,

Spontaneous Facial Responses Are
Not Synchronized with Their Visual
Engagement with Facial Expressions,

Poor Correlation in Dynamic
Eye-Hand- Movements
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Table 1. Cont.

Domain of Behavior Reference Solution Name Sensor/Parameters Sample (Mean
Age)

Setting and Stimuli Results

Multimodal Jaiswal et al., 2017 [50] Microsoft Kinect V2 Color Sensor, IR
Depth Sensors, IR

Emitter,
Microphone

ASD: 22; ADHD: 4,
ASD + ADHD: 11,

TD: 18

Read and Listen to A
Set Of 12 Short Stories
(From ‘Strange Stories’
Task), Accompanied

By 2–3 Questions

Classifier Sensitivity for Control vs.
Clinical Condition: 96.4%;

ASD+ADHD vs. ASD: 93,9%

Social Behavior Westeyn et al.,
2012 [51]

BlueSense, Video
Cameras

Touch Sensors,
Motion Sensor,

Microphone, 2D
Imaging

High-Risk: 1, TD: 10
Adults; 12 Children

Playing with Smart
Toys with Scripted

Play Prompts

Retrieval Score of 59% for a Single
Child Using Models Constructed

from Adult Play Data

Social Behavior Anzalone et al.,
2014 [52]

Microsoft Kinect; Nao Color Sensor, IR
Depth Sensors, IR

Emitter,
Microphone

ASD: 16v (9 y); TD:
16 (8 y)

Nao Prompts JA by
Gazing/By Gazing
and Pointing/By

Gazing, Pointing and
Vocalizing at Pictures

ASD: Trunk Position Showed Less
Stability in 4D Compared to TD

Controls, Gazing Exploration
Showed Less Accuracy

Social Behavior Campbell et al.,
2019 [53]

iPad 2D Imaging Sensor
(Front Camera)

ASD: 22 (2 y); TD:
82 (2 y)

Reaction to
Name-Calling While

Watching Videos

ASD: Classifying by Atypical
Orientation: Sensitivity: 96%,

Specificity: 38%
Social Behavior Petric et al., 2014 [54] Nao Robot Cameras,

Microphones,
Ultrasound Range

Sensors, Tactile
Sensors, Force

Sensitive Resistors,
Accelerometers

ASD: 3 (5–8 y), TD:
1 (6 y)

ADOS-Tasks (Name
Calling, JA, Play

Request, Imitation)

Descriptively High Correspondence
of Human Rater and Algorithm

Note: Age in sample description typically refers to mean age of participants per group, with the exception of a few studies which report either age ranges, individual age of single cases, or
did not specify exact age.
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Overall, facial data suggest that facial movements, either in response to emotional stimuli or as
an imitation of seen facial expressions, comprise relevant features that may be markers for autism.
Recordings of spontaneous emotional responses could be of particular benefit when assessing small
children or nonverbal people, although the importance of age-appropriate task instructions should
be considered. Across several studies, eye gaze data reveal different scanning patterns for people
with ASD, particularly when viewing faces. However, we believe that further systematic research
into fixation patterns and scan paths for more complex natural scenes could enrich our current
understanding with additional insights. Similarly, the observation of reduced eye contact/mutual gaze
in ASD, reviewed in Jaiswal et al. [50], points at a technologically challenging but theoretically relevant
field of future investigations using sensor technology.

3.2. Voices

A scientific metaphor that has become somewhat popular describes the voice as an “auditory
face” [55], emphasizing the fact that voices, just like faces, provide rich information about a person’s
emotions, but also about identity, gender, socioeconomic or regional background, or age (for review,
see [56]). In the context of autism, and like for faces, researchers focused on deficits in vocal emotional
communication and pointed out that these deficits tend to affect multiple modalities including voices,
faces, and body movement [57]. At the same time, deficits in vocal communication may also affect
other aspects such as vocal identity perception [58,59], and vocal expression of autistic people in
communication could be affected beyond emotional expressions.

One path for detecting auditory markers for autism in voices is linked to the symptom of repetitive
behaviors or ‘vocal stereotypies’. One study conducted a subspace analysis from acoustic data of
autistic children and reported a good detection of vocalized non-word sounds [42]. Subsequently,
Min and Fetzner [43] also used subspace learning for vocal stereotypies and trained dictionaries to
differentiate between vocal stimming (a nonverbal vocalization often observed in autism) and other
noises. Using a small sample of 4 children with ASD who lacked verbal communication (age not
reported), the authors could e.g., detect vocal stimming and predict perceived frustration reasonably
well, although the study was regarded as preliminary. For verbal children, other potential vocal
markers could include prosody. Marchi et al. [44] created an evaluation database in three languages
with ASD and TD children’s emotionally toned voices which were analyzed using the COMPARE
feature set. Groups comprised between 7 and 11 individuals per language, and children were between
5 and 11 years old. Comparisons between groups and emotions showed relatively poor classification
performance ASD children’s’ voices, particularly for ‘Anger’ for both the Swedish and English dataset,
and for ‘Afraid’ for Hebrew-speaking children with ASD. Although using a pre-existing dataset, a study
on automatic voice perception showed that an algorithm successfully classified up to 61.1% of voice
samples of children actually diagnosed with and without autism [60]. Ringeval et al. [45] assessed
verbal prosody in ASD children, children with pervasive developmental disorder (PDD), children with
specific language impairment (SLI), and TD children (aged around 9–10 years, with 10–13 children per
clinical group). Specifically, these authors recorded performance during an imitation task for sentences
with different intonations (e.g., rising, falling). The rising intonation condition was reported to best
discriminate between groups, and the authors interpreted their findings as indicating a pronounced
pragmatic impairment to prosodic intonation in ASD.

When compared with facial data, the use of sensors for automatic analysis of markers for autism
in voices clearly is still at an early and preliminary stage. The studies reviewed above that use original
data typically rely on small data sets from few people. Although initial findings suggest that the
systematic search for vocal markers of autistic traits could be highly promising, more research is clearly
warranted at this stage. When considering that similar impairments in facial and vocal emotional
processing could be present in ASD [57], multisensory assessment of emotional behavior in future
studies could be particularly promising.
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3.3. Body Movement

The identification of ASD-associated movement patterns has been the subject of intense research,
primarily focusing data from accelerometer sensors [42,61]. As the display of stereotypical body
movement patterns is a core symptom of ASD, it has been a target feature in computer vision. Gonçalves
et al. [46] used a simple gesture recognition algorithm on 3D visual data automatically detecting
hand-flapping movements. Validation of these data with 2D video data suggested that automatic
‘hand flapping’ detection delivers valuable information for monitoring autistic children, as in the case
of special needs schools. Jazouli et al. [47] also used the same sensor but based their analysis on a $P
Point-Cloud Recogniser to automatically detect body rocking, hand flapping, fingers flapping, hand
on the face and hands behind back with an overall mean accuracy of 94%.

Rynkiewicz et al. [47] studied the role of non-verbal communication in the setting of an ADOS-2
assessment for children aged 5–10. They used a 3D sensor for automatic gesture analysis of the
upper body, while the boys (N = 17) and girls (N = 16) with high-functioning ASD performed two
assessment-related tasks. Females had a higher gesture index than boys although they had less verbal
communication skills and a more impaired ability to read mental states from faces. The authors
suggested that the vivid use of gestures in girls (generally less common in our current understanding
of the autistic phenotype) may contribute to possible under-diagnosis of autism in females. This
might further lead to the more general use of automatic gesture analysis that is currently performed
by professional human raters in the course of these assessments. A study by Anzulewicz et al. [48]
used the touch and inertial sensors of a tablet to assess the specific movement patterns of children
with autism (N = 37) and an age- and gender-matched TD group (N = 45) while playing simple games.
Apart from interesting findings including the use of greater force, larger and more distal gestures and
faster screen taps in the ASD group, they also tested different machine learning algorithms to classify
between groups, with promising results.

In summary, the use of 3D data has been preferred by researchers investigating body movements.
While it seems to be possible to detect certain stereotypical movements, there is still a lack of large-scale
studies. However, even coarser movement indices (including, for instance, gesture indices or general
movement patterns) may also provide meaningful information for the identification and differentiation
of autistic behavioral markers.

3.4. Multimodal Information

Multimodal approaches to automatic analysis of behavior in ASD are still infrequent. Samad et
al. [49] used facial motion, eye-gaze and hand movement analysis of adolescents with (N = 8) and
without ASD (N = 8) on tasks involving 3D expressive faces. They found a reduced synchronization
of facial expression and visual engagement with the stimuli in the ASD group, as well as poorer
correlations in eye-gaze and hand movements. Jaiswal et al. [50] designed an automatic approach
based on 3D data of facial features and head movements that detected ASD (vs. TD and vs. comorbid
ASD and ADHD, with N between 11 and 22 per group) in adults with high accuracy in classification
performance. Their recorded data consisted of participants reading, listening to and answering to
questions taken from the ‘Strange Stories’ task [62] often used in ASD-assessments.

Overall, the integration of multimodal information, unfortunately, is not yet common in this
field, despite the fact that there are reasons to expect that multimodal assessments will provide ample
additional information (for instance, on synchronization or complementarity of signals from different
channels). Thus, it can be expected that future use of multimodal assessments has the potential to
substantially improve both the identification of markers for autistic traits and classification results.

3.5. Cognition and Social Behavior

A substantial body of research has suggested that autism is characterized by changes in cognitive
information processing. For instance, autistic people may have difficulties in cognitively simulating
the observed actions of communication partners – a process that has been related to the so-called
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human mirror neuron system, and that has been inferred via neurophysiological recordings [63]. Via
experiments with social behavioral assessments, autism has also been related to a deficit in forming a
theory of mind about other people [64]. Researchers in this field have long focused on inferences about
“core” cognitive deficits from observational data, even though results can be very inconsistent across
situations or studies [65,66]. We also welcome an increasing awareness of the danger that researchers
wrongly infer putative core deficits by misinterpreting observational data [36]. Of course, inferences
about core cognitive processes most typically need to be made from observational information. It is
this context in which we foresee that sensor data, beyond their immediate value for an individual
study, might eventually contribute to resolving theoretical controversies. One of these is the degree to
which we should frame cognitive changes in autism in terms of general “core” deficits, or rather in
terms of domain-specific deficits that emerge in a concrete perceptual and interactional context.

The automatic analysis of playing behavior could be a promising screening tool to identify
stages of development, developmental delays and specific forms of deficits. In a preliminary study
with only a single completely analyzed data set of a TD child [51], play data from smart toys with
embedded acceleration sensors, as well as simultaneous video and audio recordings, were automatically
characterized as certain forms of play behavior (exploratory, relational, functional), roughly indicating
a certain stage of development. While this approach seems interesting, current limitations include
the verbal prompting nature of their setting, which only allows children with good verbal skills to
be assessed.

Joint attention is a basic communicational skill of sharing attention between communicational
agents towards an object and has long been considered to be a precursor of a theory of mind [67]
which may be reduced in people with ASD. In a study investigating a robot-assisted joint attention
task [52] in children with and without ASD (N = 16 each), they captured participants’ orientation
using 3D sensors over a timespan. In addition to findings of significantly less joint attention in the
ASD group’s interaction with the robot, the ASD group also showed decreased micro-stability in the
trunk area that was tentatively interpreted as a consequence of increased cognitive cost. In another
study [53], attentional and orienting responses to name calls were studied in toddlers, aged 16–31
months, with ASD (N = 22) and TD (N = 82). Achieving a high intra-class-correlation with human
raters, automated coding offered a reliable method to detect the differential social behavior of toddlers
with ASD, who responded to name calls less often and with longer latency. Petric et al. [54] designed
and further developed a robot-assisted subset of the ADOS assessment. They included certain social
tasks (name-calling, joint attention) to assess information on eye gaze, gestures, and vocal utterances.
The agreement of the robot’s classifier and clinicians’ judgments were evaluated as promising, but the
results should be regarded with caution given the very small sample of children (ASD N = 3, TD N = 1).

Overall, while researchers have begun to assess joint attention in ASD, sensor-based assessment of
other functional domains of cognition and social behavior still awaits systematic research. In particular,
research on a few putative “core” areas of social cognition, including on observational tasks that probe
theory of mind in ASD, is currently lacking.

4. Supporting Interventions

While accurate early diagnosis and an assessment of specific impairments are crucial, they also
are prerequisites that inform environmental adjustment, intervention, and training approaches which
ultimately can be valuable for the individual person with ASD following diagnosis. Technically-assisted
training often has the benefit of being readily available, problem-specific, cost-effective, and widely
accepted by affected children. Additionally, smart responses of training systems that give reliable,
immediate feedback and appraisal can be highly beneficial for fast learning results. Note that although
we identified many publications on interventions aiming at autism as a target condition, many of
these reported conceptual or technological contributions and few of them presented original data from
people with ASD that qualified them for inclusion in this review (cf. Section 2). The original articles
presented in this review, regarding sensor-based supporting interventions for ASD, are listed in Table 2.
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4.1. Emotion Expression and Recognition

Emotion expression, especially from the face, is considered highly relevant in autism research.
A game called FaceMaze [68], in combination with automatic online expression recognition of the user
was specifically developed to improve facial expression production. In this game, children played
a maze game while posing ‘happy’ or ‘angry’ facial expressions to overcome obstacles in the game.
In a pre-post-rating with naive human raters, quality ratings for both trained expressions (happy and
angry expression) in ASD children (N = 17, aged 6–18) increased in the post-test while ratings for an
untrained emotion (surprise) did not change. Another smaller study created a robot-child-interaction
and tested it with three children with ASD that were to imitate a robot’s facial expression [69]. The robot
correctly recognized the children’s’ imitated expressions through an embedded camera in half of the
cases. In these cases, it was able to give immediate positive feedback. It also correctly did not respond
in about one-third of the trials where there was no imitation by the participants. Piana, et al. [70]
designed a serious game with online 3D data acquisition that trained children with ASD (N = 10)
in several sessions to recognize and express emotional body-movements. Both emotion expression
(mean accuracy gain = 21%) and recognition (mean accuracy gain = 28%) increased throughout the
sessions. Interestingly, performance in the T.E.C. (Test of Emotion Comprehension, assessing emotional
understanding more generally), increased as well (mean gain = 14%).

4.2. Social Skills

Robins et al. [71] created an interactive robot (KASPAR) with force sensitive resistor sensors.
They later planned to use KASPAR for robot-assisted play to teach touch, joint attention and body
awareness [72], although conclusive data on experimental results from interactions between individuals
with autism and KASPAR may still be in the pipeline. Learning social skills also presupposes attention
to potential social cues and social engagement. Costa et al. [73] reported preliminary research on using
the LEGO mindstorm robots with adolescents with ASD (N = 2), in an attempt to increase openness and
induce communication since the participants actively had to provide verbal commands or instructional
acts. They reported that the two participants behaved differently, one being indifferent, and one being
increasingly interested in the interaction. Wong and Zhong [74] used a robotic platform (polar bear)
to teach children with ASD (N = 8) social skills. They found, that within five sessions an increase in
turn-taking, joint attention and eye contact was observable, resulting in overall 90% achievement of
individually defined goals.

Greeting is a basic element of communication. In a greeting game with 3D body movement as
well as voice acquisition [75], a participant would play an avatar with his own face, learning to greet
(vocalization, eye contact and waving) and get immediate appraisal upon success. A single case study
suggested that this intervention can be effective at teaching greeting behavior. As a more complex
pilot intervention, Mower et al. [76] created the embodied conversational agent ‘Rachel’ that acted
as an emotional coach in guiding children through emotional problem-solving tasks. Of their two
participants with ASD, audio and video data were acquired for post hoc analysis and tentatively
suggested that the interface could elicit interactive behavior.

Overall, there is some evidence that sensor technology can improve social skills in people with
autism, and the use of sophisticated robotic platforms can be regarded as particularly promising.
As limitations, it needs to be noted that all studies that met the criteria to be included in this review
only tested very few participants, and that there typically were no real-world follow-up tests reported.
As a result, a systematic quantitative assessment of treatment effects and effect sizes, as well as
a comparison with more conventional interventions (e.g., social competence training) will require
substantial cross-disciplinary research. Moreover, most studies were driven by a combination of
theoretically interesting and technically advanced approaches, and from the perspective of typical
development. Designing more user-centered and irritation-free approaches could promote both
usability and motivation for people with autism to engage in technology-driven interventions.
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Table 2. Original Articles on Sensor-Based Supporting Interventions in ASD.

Domain of Behavior Reference Solution Name Sensor/Parameters Sample (Mean Age) Setting and Stimuli Results

Emotion Gordon et al.,
2014 [68]

Webcam 2D Imaging Sensor ASD: 30 (11 y), TD: 23
(11 y)

Playing Computer Game
(FaceMaze)

ASD: Increase in Happy and
Angry Expression Performance

Emotion Leo et al., 2015 [69] Camera, Robokind™
R25 Robot

2D Imaging Sensor ASD: 3 Imitate Expression from
Robot (Happiness, Sadness,

Anger, And Fear)

31/60 Interactions Recognized;
19/60 No Imitation

Emotion Piana et al., 2019 [70] Microsoft Kinect V2 Color Sensor, IR
depth Sensors, IR

Emitter

ASD: 10 (10 y) 10 Sessions Body Emotion
Expression and

Recognition Task

Increased Accuracy in
Expression and Recognition

After Training Sessions In The
Trained Group, Transfer Effect

On Facial Expression
Recognition

Social Skills Robins et al., 2010 [71] KASPAR, Video
Cameras

Touch Sensor, 2D
Imaging

ASD: 3 Unconstrained Interaction
with The Robot

Interaction Evaluation Through
Sensor Activation, Differential
Interaction and Maintenance of

Interaction
Social Skills Costa et al., 2009 [73] LEGO Mindstorms

TM, Video Cameras
Touch Sensor, Sound

Sensor
ASD: 2 (17, 19 y) 4- 5 Sessions of Feedbacked

Interaction with Robot
Interaction Evaluation Through
Sensor Activation, Differential
Interaction and Maintenance of

Interaction
Social Skills Wong and Zhong,

2016 [74]
CuDDler Robot,
Video Camera

Microphone, Contact
Microphone, Tactile
and Posture Sensors

ASD: 8 (5 y) 5 Sessions of ABA (Didactic
Teaching Followed by Role

Modeling by Either A
Robot (RT) Or Human (CT)

Robot Training Significantly
Facilitated Verbal and Gestural

Communicative Skills, Increased
Eye Contact Duration

Social Skills Uzuegbunam et al.,
2015 [75]

Microsoft Kinect Color Sensor, IR
depth Sensors, IR

Emitter, Microphone

ASD: 3 (7–12 y) Greeting Game with
Participants Face, Reacting

to Participant, Getting
Appraisal

All 3 Showed Increased Social
Greeting Behavior Throughout

and After Intervention

Social Skills Mower et al.,
2011 [76]

HDR-SR12 High
Definition Handycam

Camcorders

Microphones, 2D
Video Sensors

ASD: 2 (6, 12 y) 4 Sessions with Embodied
Conversational Agent

RACHEL Going Through
Emotional Scenarios

Tool for Eliciting Interactive
Behavior

Note: Age in sample description, where specified in a study, either refer to mean age of participants per group, to age ranges, or to individual ages in small samples of single cases.
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5. Monitoring

Monitoring a child’s emotional state or behavioral changes can be crucial for the outcomes of a
learning environment. As discussed above, emotional expressions from people with ASD may differ in
several respects from those of TD people. As a result, there is a higher risk that caregivers or interaction
partners overlook or misinterpret the emotional state of people with autism.

Del Coco et al. [77] created a humanoid and tablet-assisted therapy setup that was trained to
monitor behavioral change in children with ASD via a video processing module. Besides creating a
visual output of behavioral cues, they computed a score for affective engagement (happiness related
features) from visual cues such as facial AUs, head pose and gaze that provides the practitioner with
a behavioral trend along with the treatment. Dawood et al. [78] used facial expressions, eye gaze
and head movements to identify five discrete emotional states of young adults with ASD in learning
situations (e.g., anxiety, engagement, uncertainty). Their resulting model yielded a high validity in
identifying emotional states of participants with high-functional ASD. At the same time, a lower
validity was found for TD participants, suggesting differential facial expressions of certain emotional
states in ASD. For monitoring social interactions, Winoto et al. [79] created a machine-learning-based
social interaction coding of 3D data around a target user. Kolakowska et al. [80] approached automatic
progress recognition with different tablet games. Over a 6-month time window, they were able to
identify movement patterns in their study group of children with ASD (N = 40), that not only related
to development in fine motor skills but also other fields like communication and socio-emotional
skills. Overall, these initial studies suggest that sensor-based monitoring of emotional and behavioral
changes may support caregivers in optimizing learning outcomes.

6. Discussion

The studies discussed above demonstrate substantial research activities towards using
sensor-based technology in the context of autism overall, with attention to multiple aspects including
diagnosis/classification and intervention. At the same time, it appears that much current research is
largely driven by fast technological progress in terms of innovative engineering and data analysis
methods. It remains a significant challenge to reconcile these developments with the specific testing
of psychological or neuroscientific theories regarding functional changes and potentials in autism.
Similarly, systematic studies with theory-driven protocols and larger samples are required to evaluate
in more detail both the diagnostic and interventional potential of sensor-based technology. For the
ultimate goal of evaluating its practical relevance, quantitative assessments of diagnostic sensitivities
and specificities, or of treatment effect sizes, will be as important as will be comparative studies with
more traditional approaches to diagnosis and intervention.

One of many examples of how sensor technology has the potential to go beyond application, and
to contribute to current neurocognitive theories of communication is related to the theory of a tight link
between perception and motor action in communication. This link now has been firmly established in
speech communication [81], but there are reasons to believe that perception and action are also closely
linked in nonverbal emotional and social communication. For instance, listening to laughter normally
activates premotor and primary motor cortex [82], and may involuntarily elicit orofacial responses in a
perceiver in parallel. In turn, there also is initial evidence that voluntary motor imitation can actually
facilitate facial emotion recognition, particularly in people with high levels of autistic traits [83] who
are thought to engage less in spontaneous imitation. A consistent theoretical account for such findings
is that imitation, and covert sensorimotor simulation of others’ actions, may be based in part on the
so-called mirror neuron system. This system consists of neurons that fire not only when a person
performs an action, but also when s/he observes the same action in another individual. However,
the human mirror neuron system is thought be specifically impaired in autism [63], and a subset
of promising intervention approaches for autism using neurofeedback [84] are based on this theory.
However, it should be noted that the underlying theory remains disputed [85].
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Findings such as those by Lewis and Dunn [83] may be taken to suggest that interventions that
promote facial imitation of emotions in autistic people should also support their abilities for emotion
recognition and bidirectional communication. However, it is technically challenging to objectively
quantify the degree of facial imitation, and in fact, a limitation of the study by Lewis and Dunn was
that these authors failed to quantify imitation beyond simply asking participants to rate their own
degree of imitation. Other studies measured facial imitation more objectively but typically did so by
measuring the facial muscle response for selected target action units with electromyography (EMG,
e.g., [86,87]). Although this can provide an objective measure of facial imitation, the fact that the
method uses recording electrodes attached to facial muscles has many drawbacks. For instance, one
concern is that this technology could draw the participants’ attention to their own facial behavior,
which in turn could influence facial action. We believe that contact- and irritation-free assessment of
imitation as provided by modern sensor and real-time facial emotion recognition technologies is the
method of choice to promote better understanding not only the role of spontaneous facial imitation in
emotion recognition in normal communication, but also to determine the potential role of impaired
links between perception and action for communication difficulties in people with autism.

While the research discussed in this review appears to underline a great potential for the use of
sensor technology, in particular in the context of autism, it is equally clear that many current tests
of assessments or interventions will benefit in validity from a clear conceptual framework of autism
spectrum disorders in the developmental perspective. At present, and honoring findings of large
individual variability within both people with ASD and TD, results that were obtained with only a few
participants (not always well described, and sometimes obtained in the absence of a TD group) or with
experimental groups that are not comparable with respect to their basic characteristics (e.g., age, gender,
IQ) need to be interpreted with caution in order to avoid biased or overgeneralized interpretation of
individual study findings.

Other potential obstacles relate to sophisticated developments (and costs) of some of the systems
used, which make them unlikely to become available in greater quantities. Moreover, even readily
available systems may get discontinued or run out of support, such as in the case of Microsoft’s
Kinect in 2017, and this provides great challenges for large-sample research in autism which often
takes years to complete. Research aiming at training and modeling behavior of people with ASD also
will increasingly need to consider usability, to the extent that the relevant systems are to be used by
individuals with ASD, their parents, caregivers, and therapists.

Finally, compared to the typical approach of developing sensor-based technology with neurotypical
individuals before applying it to people with autism, a more promising strategy may be one in which
technology design originates from a user-centered perspective, with autistic people as users actively
involved in the process. Such an approach has been forcefully advocated by Rajendran [88], who
argues that this may both enhance our understanding of autism and promote better inclusivity of
people with autism in an increasingly digital world. At the same time, such technologies ultimately
can be useful for people without autism as well. This is because autism is seen as a unique window
into social communication and social learning more generally.

7. Conclusions

Technical advancements and the ongoing developments in sensor technology and data science
promise to unlock huge potentials for the diagnosis and understanding of autism, and for supporting
affected people with training or intervention programs that can be tailored to their specific needs.
At the same time, living up to these potentials calls for a concerted and interdisciplinary effort in which
computer scientists, engineers, psychologists, and neuroscientists jointly collaborate in large-scale
research projects that can uncover, in a quantitative manner, the efficiency of these approaches. In our
view, this will be the route not only for establishing routine contributions to evidence-based diagnosis
and interventions in autism [89] but also to ensure that more people with autism can genuinely benefit
from tailor-made technology.
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