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Abstract
With many sophisticated methods available for estimating migration, ecologists face the difficult 
decision of choosing for their specific line of work. Here we test and compare several methods, 
performing sanity and robustness tests, applying to large- scale data and discussing the results and 
interpretation. Five methods were selected to compare for their ability to estimate migration from 
spatially implicit and semi- explicit simulations based on three large- scale field datasets from South 
America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi- explicitly by 
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1  | INTRODUCTION

Whether stochastic or deterministic processes govern species distri-
bution has been a long- standing debate, starting with the equilibrium 
versus nonequilibrium theories more than 25 years ago (DeAngelis & 
Waterhouse, 1987). The Unified Neutral Theory of Biodiversity and 
Biogeography (UNTB—Hubbell, 2001) refueled this discussion (Adler, 
HilleRisLambers, & Levine, 2007; Alonso, Etienne, & McKane, 2006; 
Clark, 2009; Leigh, 2007; McGill, Maurer, & Weiser, 2006; Purves & 
Turnbull, 2010). Prior to this debate, the main accepted view of pop-
ulation dynamics was of a niche- based origin, that is, species being 
specifically adapted to certain environments where they could thrive, 
while outcompeted elsewhere. Processes as competitive exclusion 
(Gause, 1934; Hardin, 1960) and niche partitioning (Grinnell, 1917, 
1924; Patten & Auble, 1981) were believed to be the main drivers 
of differences in species composition. Actual niches occupied by 
species were thought to be determined by specific suits of adapta-
tions for certain environments and biotic interactions among species 
(Hutchinson, 1959). This combination of interspecific differences and 
environmental heterogeneity allowed for coexistence. In contrast, the 
UNTB is neither based on such interspecific differences nor environ-
mental heterogeneity. It assumes that all individuals are ecologically 
equivalent in terms of demographic events such as birth and death, 
but also in rates of migration and their probability of speciation. 
As a result, the main differences in species composition are simply 
based on stochastic processes, resulting from ecological equivalence. 
It was not a fully novel approach, however, as the model of Island 
Biogeography by MacArthur and Wilson (1967) was also truly neu-
tral in its mathematical foundations treating species equivalent in de-
mographics, even though the authors still regarded species as having 

distinct niches in real life. Much work on neutral theory had already 
been developed in population genetics, some implicit, such as the 
Island Model (Wright, 1943), and others explicit such as the Stepping 
Stone model (Kimura & Weiss, 1964). The UNTB relies heavily on 
these models of genetic differentiation between communities, with 
the neutral theory of molecular evolution (Kimura, 1983) obviously 
being one of its pillars (Hubbell, 2001). Many criticized the UNTB 
(Duivenvoorden, Svenning, & Wright, 2002; Magurran & Henderson, 
2003; Pitman, Terborgh, & Silman, 2001, 2002; Terborgh & Foster, 
1996; Tuomisto, Ruokolainen, & Yli- Halla, 2003; Valladares, Wright, & 
Lasso, 2000) and many supported it (de Aguiar, Baranger, Baptestini, 
Kaufman, & Bar- Yam, 2009; Bell, 2000; Chave, 2004; Condit et al., 
2002; Volkov, Banavar, Hubbell, & Maritan, 2003). Today, many ecol-
ogists agree that both deterministic and neutral processes play a role 
in determining species composition (Barot, 2004; Gravel, Canham, 
Beaudet, & Messier, 2006; McGill, 2010; McGill & Nekola, 2010). To 
study their relative importance, models are often used to investigate 
whether communities behave neutrally or not. An important question 
still remaining is how to parameterize neutral models. Suggestions for 
estimating two of the core parameters of Hubbell’s neutral model, 
speciation and migration, have been proposed over the years, and the 
importance of parameter estimation has been discussed previously 
(Beeravolu, Couteron, Pélissier, & Munoz, 2009). These studies con-
centrated, however, specifically on the difference between estimating 
from a single (large) sample or multiple samples in a spatially continu-
ous landscape. They did not focus on the role of spatial relationships, 
that is, the effect of distance between plots when estimating migra-
tion. We feel this effect of distance is important because space and 
migration can be incorporated in two different ways, either spatially 
implicit (Caswell, 1976; Hubbell, 2001) or spatially explicit (e.g., Chave 

a discrete probability mass function for local recruitment, migration from adjacent plots or from a 
metacommunity. Most methods were able to accurately estimate migration from spatially implicit 
simulations. For spatially semi- explicit simulations, estimation was shown to be the additive effect of 
migration from adjacent plots and the metacommunity. It was only accurate when migration from 
the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be im-
possible. We show that migration should be considered more an approximation of the resemblance 
between communities and the summed regional species pool. Application of migration estimates to 
simulate field datasets did show reasonably good fits and indicated consistent differences between 
sets in comparison with earlier studies. We conclude that estimates of migration using these meth-
ods are more an approximation of the homogenization among local communities over time rather 
than a direct measurement of migration and hence have a direct relationship with beta diversity. As 
betadiversity is the result of many (non)- neutral processes, we have to admit that migration as esti-
mated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate 
of these processes. The parameter m of neutral models then appears more as an emerging property 
revealed by neutral theory instead of being an effective mechanistic parameter and spatially implicit 
models should be rejected as an approximation of forest dynamics.
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& Leigh, 2002; Condit et al., 2002; Horvát, Derzsi, Néda, & Balog, 
2010; O’Dwyer & Green, 2010). Models of the first kind work on the 
assumption of a panmictic system. They disregard the spatial position 
of individuals within each community as there is only one migration 
parameter m, determining whether a recruit is from the regional or 
local species pool, but there is no within- community dispersal limita-
tion. Even though such models show good fits, the existence of such 
a panmictic community is unlikely, due to the physical dispersal ability 
of individuals versus the size of many communities (Kimura & Weiss, 
1964). In contrast, spatially explicit models consider the metacommu-
nity rather as the sum of a number of local communities, between 
which there exists an explicit spatial relationship. The first models, 
where the spatial position of each individual was explicitly modeled, 
were based on a discrete grid- like structure, each cell containing an 
individual which could disperse either to neighboring cells (Durrett 
& Levin, 1996; Zillio, Volkov, Banavar, Hubbell, & Maritan, 2005) or 
to other regions by implementing different dispersal kernels (Chave 
& Leigh, 2002; Condit et al., 2002). However, while there are quite 
some analytical solutions for the implicit models, only few exist for the 
explicit versions such as developed by O’Dwyer and Green (2010) by 
applying principles from physics.

Comparisons show that, although spatially explicit models should 
approximate the real world better, spatially implicit models provide bet-
ter fits to empirical data (Etienne & Rosindell, 2011; Rosindell, Hubbell, 
& Etienne, 2011). Hence, the latter are more often used when estimat-
ing migration, even though field data comes from a spatially explicit 
reality. In this study, we therefore extend the comparison of estimation 
methods toward the practical ability of these methods to estimate mi-
gration from simulated datasets based on both spatially implicit and 
spatially semi- explicit models. We focus on five different parameter 
estimation methods: (1) a sampling formula by Etienne (2005), (2) the 
Inference method by Jabot, Etienne, and Chave (2008), (3) the Gst 
statistic adopted from population genetics by Munoz, Couteron, and 
Ramesh (2008), (4) the two- stage sampling formula by Etienne (2009b), 
which is an extension on the two- stage estimation method by Munoz, 
Couteron, Ramesh, and Etienne (2007), and (5) a method by Chisholm 
and Lichstein (2009) based on plot geometry and absolute dispersal 
distances. A summary of the different estimation methods can be 
found in the Appendix S1. For the interested and more mathematically 
oriented reader, we refer to the original papers, as here we are focusing 
on the use of the methods rather than their exact mathematical deri-
vation. Our first goal was to perform a sanity check on each method. 
They should at least be able to recover parameter estimates from mod-
els on which they are based. Our second and main goal was to establish 
whether these methods are also robust, that is, whether they are able to 
accurately recover parameters when performed on models a bit differ-
ent from the models on which they are based. For this, we apply them 
to a spatially semi- explicit model in which migration can either be from 
a hypothetical metacommunity or from adjacent plots. Our last and 
third goal was to apply each method to empirical field data. For this, 
we use three different independent field datasets: Guyana/Suriname, 
French Guiana and Ecuador, which are highly distinct in their forest 
dynamics (Malhi et al., 2006). Using field data and data from spatially 

implicit and semi-explicit simulations, we hope to reach a broad public 
of ecologists working on similar problems.

2  | METHODOLOGY

2.1 | Comparison of model parameter estimation

Each parameter estimation method, as described above, was used to 
generate an estimation of migration for a number of situations using 
spatially implicit, (semi- )explicit simulated, and field datasets. Results 
were compared from the simulated datasets in terms of their ability 
to accurately describe migration as parameterized to construct the 
datasets. After using the simulated datasets, we turned to the actual 
field data, having multiple local communities assumed to be a sample 
from the larger metacommunity for which migration was also esti-
mated using the same estimation methods. Etienne’s (2005) sampling 
formula and the Inference method of Jabot et al. (2008) were both 
tested using the TeTame freeware version 2.1 http://chave.ups-
tlse.fr/projects/tetame.htm. Etienne’s (2009b) two- stage sampling 
method was tested using the PARI/GP environment (“PARI/GP ver-
sion 2.4.3”, 2008). Chisholm & Lichsteins’s method was tested using 
MATLAB (2004), and the Gst statistic was computed using the package 
untb (Hankin, 2007) in the R environment (R Core Team, 2014). Other 
R packages used were Quantreg, Vegan, Labdsv, and FasianOptions 
(Koenker, 2013; Oksanen et al., 2013; Roberts, 2013; Wuertz et al., 
2013). All R scripts used are available upon request from main author.

2.2 | Metacommunity simulation

For both spatially implicit and explicit simulations, the first step was 
to create the larger metacommunity. The relative abundance distribu-
tion of tree species in the Amazonian forests shows a nearly exact fit 
with Fisher’s logseries (Hubbell et al., 2008; ter Steege et al., 2013). 
We therefore used this relationship and the related number of species 
for a given abundance (Fisher, Corbet, & Williams, 1943) to derive 
the relative abundance distribution from the expected number of spe-
cies (S) and individuals (N) in the metacommunity, given by Φn = αxn/n. 
Here, Φn is the number of species with n individuals; α is Fisher’s α 
and x is given by N/(N + α) (N being the number of individuals in the 
total sample and x being asymptotically equal to 1 with large sam-
ple sizes). We created three different metacommunities: two for the 
simulated spatially implicit datasets and one for the spatially semi- 
explicit dataset. Because of the observed difference between the 
Guianas and Ecuador in terms of diversity and composition (ter Steege 
et al., 2013, fig S10) and the regions being separated by a large geo-
graphical distance, we created two different metacommunities for the 
spatially implicit simulations related to these two regions rather than 
one large metacommunity. They are hereafter referred to as MC- high 
and MC- low, respectively (metacommunity high and low diversity). 
ter Steege et al. (2013) estimated mean tree densities for all species 
per degree grid cell and by fitting the mean rank abundance curve to 
Fisher’s logseries distribution estimated the total amount of species to 
be expected by country (ter Steege et al., 2013 fig S10). We adopted 
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these figures to construct MC- low (20, 191, 600, 511 individuals and 
4,582 species) and MC- high (5, 611, 001, 426 and 6,834), for details 
on both see the Supporting information. For the simulated spatially 
explicit dataset, a separate metacommunity was constructed using 
the same methods based on the Reserva Ducke forest, with 5.5 mil-
lion trees and a Fisher’s α of 272 (ter Steege et al., in press), hereafter 
referred to as MC_spatial. The logseries for each community was con-
structed starting from the left tail (the most dominant species). The 
fixed parameters alpha and x were first calculated from the number of 
individuals (N) and species (S), after which the maximum dominance 
according to Fisher’s logseries for all species is calculated, which is 
then given the first rank. For each subsequent rank, the predicted 
number of species is then calculated until all species are given a rank 
and all individuals are distributed.

2.3 | Spatially implicitly simulated data

For the spatially implicit datasets, we used the exact same sampling 
procedure as proposed by Hubbell in the original UNTB. Each time 
step, one individual dies, which is replaced by an individual having 
an ancestor either in the local community (with probability 1 − m) or 
from the metacommunity (with probability m). The identity of the 
recruit is then only dependent on its relative abundance in the re-
spective community. Datasets based on GS and FG (67 and 63 plots) 
were sampled from the MC- low assuming they share the same meta-
community and the dataset based on EC (72 plots) from MC- high. 
Sampling of the local communities was repeated for a range of mi-
gration parameters (see Table S1). For details on the number of time 
steps used see the Appendix S2. After the construction of the simu-
lated datasets, migration was estimated using the above- mentioned 
estimation methods.

2.4 | Spatially semi- explicitly simulated data

Spatially semi- explicit simulations were carried out by modeling 
a lattice of 20 × 20 plots, each with 500 individuals. We assume 
no spatial explicit arrangement of individuals within a plot. Taking 
a random sample from the metacommunity creates the forest at 
time t0. Each time step (t+1) one individual from each plot to be 
replaced was chosen at random from the MC_spatial metacommu-
nity, and this was repeated for 10,000 time steps. Recruitment was 
generated from either of three sources: (1) migration from adja-
cent plots (m.adj), (2) migration from the MC_spatial metacommu-
nity (m.meta), or (3) local recruitment (1−(m.adj + m.meta) = 1 − m). 
According to studies on long- distance dispersal of seeds (LDD), 
the majority of seeds (>99%) often fall within ca. 100 m of their 
origin (Nathan & Muller- Landau, 2000), depending on among oth-
ers, seasonal conditions, wind speed, turbulence initiated by the 
canopy, and particle fall velocity, which is obviously also affected 
by seed mass and shape (Bohrer, Katul, Nathan, Walko, & Avissar, 
2008; Maurer, Bohrer, Medvigy, & Wright, 2013). As the plots 
from the field data used in this study are 1 ha in size, it is reason-
able to assume that migration either does not occur but there is 

local recruitment, or there is migration mostly from adjacent plots 
when the tree of origin would be on the edge of a plot, with oc-
casionally seeds ending up further away. Hence, this subdivision 
in dispersal categories using a discrete probability mass function 
seems a likely approximation of the actual dispersal of individuals 
and allows for much faster calculations by the computer. Values 
for both m.adj and m.meta were based on an arbitrary division of 
the range of migration used for the spatially implicit simulations 
(see also Table 2).

2.5 | Species composition of field data

Three different sets of field data from the Amazon Tree Diversity 
Network (ter Steege et al., 2013) were used for analysis. Two sets 
belong to the Guiana Shield: Guyana/Suriname combined and French 
Guiana, and the third set contains data from forests in Ecuador. 
Hereafter, they are referred to as GS, FG, and EC, respectively. All 
three sets are completely independent and nonoverlapping (Pos 
et al., 2014). Datasets are composed of 63–72 one- hectare plots 
with all trees ≥10 cm DBH inventoried. Species names of all data-
sets were standardized with the W3 Tropicos database within each 
dataset, using TNRS (Boyle et al., 2013), as described in more de-
tail in ter Steege et al. (2013). The EC dataset has 72 plots of 1 ha, 
yielding 34,544 individuals and 2,021 morphospecies. The GS and 
FG datasets are composed of 67 and 63 one- hectare plots, respec-
tively. In GS, 37,446 individual trees were distributed among 1,042 
morphospecies, and FG had 35,075 individuals belonging to 1,204 
morphospecies.

3  | RESULTS

3.1 | Comparing parameter estimation methods: 
spatially implicit and explicit

Sanity checks on each method showed that the Inference method 
and Gst statistic were able to approximate the complete range of mi-
gration parameters based on each different field dataset accurately. 
Etienne’s one- stage sampling method showed larger deviations. The 
two- stage sampling by Etienne was only used for the spatially im-
plicit dataset based on EC due to extreme long computation time (see 
details in the Appendix S1) but also generated accurate estimations. 
Average difference between given and estimated migration was .08, 
.007, .02, and .004 for the Gst statistic, Inference method, Etienne’s 
one- stage sampling, and Etienne’s two- stage sampling, respectively 
(see Table 1 for a summary and Table S1 for details). All methods 
except the one- stage sampling by Etienne thus showed very good 
accuracy when given migration parameters were plotted against 
the estimated migration (Figure 1). Next, we tested the robustness 
of each of the methods when applied to slightly different models. 
Etienne’s one- stage sampling formula was not used for estimating 
data from spatially explicit simulation because of the larger devia-
tions found with the spatially implicit simulations. The corrected plot 
geometry method was also excluded because estimation of migration 
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would be constant over the range of parameters used. The two- stage 
estimation method by Etienne was also not used due to practical 
limitations as explained earlier. Hence, we were only able to use the 
Inference method and Gst statistic. The migration estimates from the 
spatially semi- explicit simulations were the additive effect between 
migration from the adjacent plots and the metacommunity (Table 2). 
As both methods generate a single migration value, they were only 
able to estimate the joint migration probability. As example, in one 
of the simulated sets, the parameters were set such that 1% of re-
placements were drawn from the eight cells surrounding the cell in 
which an individual died and 20% of replacements are drawn from 
the metacommunity surrounding these adjacent cells (m.adj of .01 
and m.meta of .20, dataset 3). Both the Gst statistic and the Inference 
method estimated a migration probability of .21, indicating that these 
probabilities are additive in the estimation, and it is still unknown 
whether migration is from close by or far away. Estimation of the 
joint migration probability was only accurate when migration from 
the metacommunity was higher than from the adjacent plots. In the 

contrasting situation (m.adj > m.meta), estimations were generally 
an underestimation of the joint migration probability (Table 2 and 
Figure 2).

3.2 | Parameter estimation from field data

The Gst statistic, Inference, and Etienne’s two- stage sampling for-
mula were used to estimate migration from the three field datasets. 
Calculation of migration using the corrected plot geometry method 
was based on the following parameters: edge length of plot (w) 100 m 
for all three sets (as each plot is 1 ha) and mean absolute dispersal dis-
tances in the ranges 15–25 m for GS, 25–35 m for FG as it has more 
pioneer species in comparison with the first, and 40–50 m for EC as 
it is relatively comparable to the BCI plot in Panama having rich soils 
sustaining rapid dynamics (i.e., fast growth). This yielded migration pa-
rameters of .237 with a confidence interval (CI) of .182–.293, .344 (CI 
.293–.396), and .489 (CI .444–.533) for GS, FG, and EC, respectively 
(see also Table 3). After applying the correction as explained in the ap-
pendix, this was .071 (CI .055–.088), .103 (CI .088–.119), and .147 (CI 
.133–.160). Here, CI is given instead of SD as the corrected plot geom-
etry method gives a single estimate depending on plot geometry and 
mean dispersal distance, and the CI is then related to the lower and 
upper limit of the dispersal range. In the same order (GS, FG, and EC), 
the Gst statistic yielded estimates of .046, .11, and .17 (SD: .044, .058, 
and .152). Using the Inference method, this was .075, .22, and .26 (SD 
.050, .085, and .153), and for Etienne’s two- stage sampling, this was 
.084, .170, and .246 (SD .074, .062, and .114), see also Table 3 and 
Figure 3.

3.3 | Comparing parameter estimation from field and 
simulated datasets

We implemented all migration parameters from the spatially implicit 
simulations in the spatially implicit model and compared the results 
of the relative abundance distribution (RAD), number of species 
and singletons (i.e., species with one individual), and Fisher’s alpha 
generated from the simulations to the actual field data (Figures S5, 
S6 and Table 4). As example, for GS (having 1,042 morphospecies 
and 210 singletons), the simulated dataset based on the MC_low 
metacommunity using a migration of 0.046 (Gst statistic  estimation 
from field data) yielded a total number of 826 species  belonging 

TABLE  1 Summary of Table S1, with the mean difference between given and estimated migration (Δm), using spatially implicit simulations. 
Results from the corrected plot geometry method by Chisholm & Lichstein are not shown as they yield a single value with a confidence interval 
shown in Table S1

Summary difference m.given versus m.est and range SD of estimations

Dataset

One- stage est. Inference method Gst statistic two- stage (Etienne)

Δm SD range Δm SD range Δm SD range Δm SD range

Guyana/Suriname .044 .032–.06 .0075 .009–.016 .0200 .043–.382 — —

French Guiana .071 .033–.060 .0078 .009–.016 .0240 .044–.325 — —

Ecuador .132 .022–.061 .0070 .008–.018 .0160 .043–.418 .004 .017–.046

F IGURE  1 LOESS regressions of the migration parameter used 
for input versus the estimated migration from the spatially implicit 
simulations. Results from each method indicated by color with broken 
lines indicating the 95.5% confident interval, polynomial degree and 
span used for the LOESS regression was 2 and .75, respectively
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F IGURE  2 Given joint migration probability with either migration predominantly coming from the metacommunity (left) or from adjacent 
plots (right) plotted against the estimated joint migration by both the Inference method (blue) and Gst statistic (red). Broken lines indicate the 
estimation plus or minus the standard deviation of the average over all plots used in the simulation. It is clear that when migration mostly comes 
from the metacommunity, both estimation methods are very accurate, and when migration from adjacent plots is dominant, both estimation 
methods are underestimations
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TABLE  2 Estimates of migration based on a semi-spatially explicit neutral model. Probability of migration was determined from adjacent 
plots (m.adj), the metacommunity (i.e., all other plots except the local and adjacent plots; m.meta) or the local plot. Number of plots was 400 
with a runtime of 1e8 for all datasets

Spatial semi- explicit

Simulation parameters and yielded variables Estimated migration

dataset Nr. sp. Nr. sing m.local m.adj m.meta

Inference method Gst statistic

m2 SD m3 SD

1 1,777 244 0 0 1.00 .990 .028 1.011 .0057

2 1,088 37 .79 .20 .01 .140 .015 0.156 .0012

3 1,529 142 .79 .01 .20 .209 .021 0.210 .0015

4 1,542 147 .75 .05 .20 .244 .024 0.247 .0017

5 1,282 73 .75 .20 .05 .200 .019 0.205 .0014

6 1,093 48 .69 .30 .01 .197 .019 0.215 .0013

7 1,609 169 .69 .01 .30 .310 .027 0.312 .0020

8 1,277 74 .65 .30 .05 .260 .023 0.270 .0017

9 1,077 50 .59 .40 .01 .254 .021 0.277 .0016

10 1,666 182 .59 .01 .40 .416 .034 0.419 .0024

11 1,315 97 .55 .40 .05 .325 .027 0.341 .0019

12 1,056 36 .49 .50 .01 .310 .028 0.330 .0019

13 1,690 186 .49 .01 .50 .512 .040 0.517 .0028

14 1,301 96 .45 .50 .05 .380 .032 0.400 .0023

15 1,706 187 .39 .01 .60 .615 .046 0.621 .0034

16 1,727 220 .29 .01 .70 .716 .050 0.721 .0039

17 1,748 224 .19 .01 .80 .819 .050 0.822 .0042
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to 41,875 individuals (67 plots times 625 individuals) with 83 
 singletons and an average Fisher’s alpha of 146. When using .075 
as the probability of migration (as estimated by the Inference 
method), this was 885 species, 69 singletons, and a Fisher’s alpha 
of 158. For a migration of .084 (Etienne’s two- stage sampling 

method), this was 896 species, 78 singletons, and a Fisher’s alpha of 
164, and finally with a migration parameter of .071 (corrected plot 
geometry method), this was 801 species, 97 singletons, and 151 as 
a Fisher’s alpha. Using the spatially implicit simulations with the es-
timation migration probabilities hence tended to show less species 

Dataset

Inference 
method Gst statistic

two- stage 
(Etienne) Cor. Plot Geometry

m2 SD m3 SD m4 SD m5 CI

Guyana/Suriname .075 .050 0.046 .044 .084 .074 .071 .055–.088

French Guiana .22 .085 0.11 .058 .170 .062 .103 .088–.119

Ecuador .26 .153 0.17 .152 .246 .114 .147 .133–.160

TABLE  3 Parameter estimation for the 
three field datasets. For the corrected plot 
geometry method by Chisholm and 
Lichstein (2009), the following parameters 
were used: Guyana/Suriname w = 100, 
d = 15–25 m, French Guiana, w = 100 m, 
d = 25–35 m, Ecuador, w = 100 m and 
d = 40–50 m

F IGURE  3 Estimated migration 
probability from each empirical dataset (GS, 
FG, and EC) for the Inference method, Gst 
statistic, Two-stage Sampling estimation 
and the Corrected Plot Geometry method. 
For the first three methods, whiskers 
indicate standard deviation of the 
estimation. For the corrected plot geometry 
method, they are representative of the 
confidence interval for the estimationInference Method Gst Statistic Two-stage Sampling Core Plot Geometry
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TABLE  4 Results from the spatially implicit model- based estimates of m using the three separate field datasets

Dataset Method Migration Metacommunity Plots Species Singletons Fisher’s alpha

Guyana/Suriname — — — 67 1,042 210 198

Guyana/Suriname Inference method .075 MC- low 67 885 69 158

Guyana/Suriname Gst statistic .046 MC- low 67 826 83 146

Guyana/Suriname Two- stage Etienne .084 MC- low 67 896 78 164

Guyana/Suriname Cor. Plot Geometry .071 MC- low 67 801 97 151

French Guiana — — — 63 1,204 208 177

French Guiana Inference method .220 MC- low 63 1,045 113 197

French Guiana Gst statistic .110 MC- low 63 964 105 179

French Guiana Two- stage Etienne .170 MC- low 63 975 116 188

French Guiana Cor. Plot Geometry .103 MC- low 63 910 95 169

Ecuador — — — 72 2,021 518 468

Ecuador Inference method .260 MC- high 72 1,667 243 126

Ecuador Gst statistic .170 MC- high 72 1,333 167 289

Ecuador Two- stage Etienne .246 MC- high 72 1,489 196 324

Ecuador Cor. Plot Geometry .147 MC- high 72 1,373 196 292

Fisher’s alpha was averaged over all plots; first row of each set shows actual field data.
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and a smaller amount of singletons than the actual field data, which 
was the case for FG and EC as well (see Table 4). For the compari-
son of RAD’s from field data and simulations see Figures S5 and S6.

4  | DISCUSSION

Most methods used for estimating migration rates of neutral models 
are based on Hubbell’s original spatially implicit model or its derivations 
(Beeravolu et al., 2009; Etienne, 2005, 2009a,b; Jabot & Chave, 2009; 
Jabot et al., 2008; Munoz et al., 2007, 2008). This implicit approach 
contrasts strongly with reality for tropical trees, as the morphology of 
for example fruits and seeds, and also, different strategies play an im-
portant role in defining the average dispersal distance of plants (Gitay, 
Noble, & Connell, 1999; Swaine & Whitmore, 1988; Westoby, 1998). 
In addition, in real life, dispersal limitation is also not neutrally distrib-
uted among species. Although this disagreement is quite apparent, the 
inference of migration using such estimation methods is often done 
to study forest dynamics and the relative importance of niche versus 
neutral processes shaping communities. Here, we show that although 
the estimation methods we compared were able to correctly estimate 
migration from models of which they were derived, they fail to do 
so for models in which there is a spatially explicit relationship. For 
the spatially implicit simulations, the Inference method (Jabot et al., 
2008) and Gst statistic (Munoz et al., 2008) yielded comparable results 
and were able to estimate migration very precisely (Table 1 and S1). 
The two- stage sampling method by Etienne was only used for the 
spatially implicit datasets based on EC due to long computation time, 
but showed comparable results. The only exception was the one- 
stage estimation method by Etienne (2005), which in particular for 
higher probabilities of migration showed a larger deviation (see also 
Figure 1). This method is based on the likelihood calculation of P[D|θ, 
m, J], the multivariate probability of observing a current specific spe-
cies abundance distribution given the constraints of the parameters 
(see also Appendix S1). This in essence is the sum of all possible spe-
cies–ancestry–abundance distributions. The problem that could occur 
here, although we did not test this explicitly, is that this may be a re-
sult of the way m is related to I by m = I/(I + J − 1) with J the size of the 
community. Hence, I = m(j − 1)/(1 − m), and when m approaches unity, 
I reaches infinity. Thus, as migration approaches one and I becomes 
increasingly large, the expression (4) from Etienne (2005) is reduced 
to become only dependent on one term, namely A = J. Intuitively, this 
means that all individuals in the community are a potential ancestor, 
thus coming from the metacommunity, and likelihood estimates of 
migration could potentially deviate substantially from what is given. 
Other problems might be caused by the way this method is imple-
mented in the software as used in this study (R. S. Etienne, personal 
communication). Perhaps further study into this phenomenon could 
shed more light on these results.

When we turn to the semispatial explicit simulations, we see a 
different result. Each method yields only a single estimation for mi-
gration per sample. As such, it was obvious they would only estimate 
a joint migration probability instead of those from separate sources of 

migration. This total migration rate, however, could still be the “cor-
rect” total migration, if it would in fact measure actual migration or at 
least approximate it. Given that there is no spatial relationship in the 
model from which the methods are derived, however, we expected 
that estimation methods based on a spatial implicit reality would 
struggle to infer migration when this is larger from nearest neighbor 
communities than that from the larger metacommunity. Although in-
tuitively this makes sense, as far as we know this has not been tested 
with actual large- scale field data before nor has it been shown to what 
extent it would deviate using a quantitative modeling approach. Our 
results supported our expectation and showed that this joint esti-
mation was accurate only when migration from the metacommunity 
was higher than from the adjacent plots. In contrast, if m.adj > m.meta 
which would be the normal situation in reality for tropical trees, esti-
mations were consistently found to be an underestimation of the joint 
migration probability (see Table 2 and Figure 2). Although only the 
Inference method and Gst statistic were used for the latter, we assume 
given the earlier results on the spatially implicit simulations that the 
two stage sampling by Etienne would generate similar results.

Here, we show the consequences of using estimation methods 
based on a spatially implicit model to estimate migration from a spa-
tially explicit reality. When the majority of migration is coming from 
the metacommunity, even spatially semi-explicit simulations approach 
a spatially implicit reality. One could ask whether we would ever expect 
estimations of migration to be accurate when we are using spatially 
implicit models. Given the model’s assumptions and rules, we think this 
would only be the case if the actual system approaches a spatially im-
plicit system, that is, when there is no true spatial relationship between 
composition and geographical distance. In this case, these methods 
would estimate migration correctly (i.e., m = m.adj + m.meta). In bryo-
phytes, this may be the case, or at least the data were consistent with 
the predictions of the spatially implicit neutral model (Mota de Oliveira, 
ter Steege, Cornelissen, & Robbert Gradstein, 2009). When spores get 
in the upper wind layers, they are capable of traveling almost across the 
entire Amazon, although the majority of replacement will still be local 
recruits. In such a spatially implicit reality, each local community is con-
sidered a sample from the metacommunity, and how much it actually 
resembles the metacommunity depends on the migration parameter 
(estimated to .2 for the bryophytes). In Hubbell’s original UNTB, species 
abundances deviate from the expected abundance (its proportional 
abundance in the metacommunity) because migration determines the 
time that ecological drift operates within the local community. In other 
words, the migration parameter determines differences in species diver-
sity between the plot under consideration and the diversity of the total 
sample used for analysis and hence has a direct relationship with beta-
diversity found in the total sample. This is meaningful when estimating 
from neutral spatially implicit simulations, where the only relationship 
is that of migration between each plot and the metacommunity. When 
it comes to the real world, it is a different matter as betadiversity can 
be the result of many neutral and non- neutral processes (Figure S9). As 
such, it also becomes apparent why the neutral model shows such good 
fits when estimating migration and implementing it in a neutral model, 
even though we know the world is not neutral. Migration as estimated 
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from a spatially implicit model encompasses not only dispersal but is in 
fact an ecological aggregate of all processes determining betadiversity: 
dispersal, time, competition, habitat selectivity, predation, frequency- 
dependent mortality, etc. It is the link between the (summed) regional 
species pool and each local community.

For example, different forest dynamics can play an important role 
in determining forest diversity and hence the estimation of migration. 
Wood density, relative growth rate, and seed mass are related to dis-
persal, shade tolerance and are considered indicative for difference 
between pioneering or nonpioneering species (Hammond & Brown, 
1995; Phillips, Hall, Gentry, Sawyer, & Vásquez, 1994; Seidler & 
Plotkin, 2006; ter Steege & Hammond, 2001; ter Steege et al., 2006). 
High wood density, slow growth, and large seed mass are reflected 
in slower forest dynamics (Malhi et al., 2004; Phillips et al., 2004). In 
contrast, low wood density, low seed mass, and faster turnover of indi-
viduals are reflecting faster forest dynamics. Marzluff and Dial (1991) 
showed that turnover and seed mass influence the ability to colonize 
new resources, leading to a potential higher diversity for forests having 
higher turnover and smaller seed mass. On the other hand, strong se-
lective pressures or a very homogeneous environment in combination 
with fast turnover might cause plots to look more similar to each other 
due to natural selection, hence decreasing differences in species com-
position or even decreasing total species richness. In both cases, es-
timation of migration would potentially be relatively high as similarity 
between plots is also fairly high (low betadiversity), but again, neither 
neutral processes nor dispersal had little to do with it. Strong natural 
selection and a very heterogeneous habitat can also cause high beta-
diversity, decreasing estimates of migration. The above- mentioned 
processes shape species composition and have an influence on the 
connection between the regional species pool and the local species 
pools, but have no neutral fundament. To be fair, the stochastic (neu-
tral) counterpart of selection, ecological drift, can obviously also cause 
differences in species composition. Similar to population genetics, if 
drift is very pronounced, rare species will disappear and systems will 
lose diversity. But we know that this is by far not the only mecha-
nism responsible for differences in community composition and that 
estimates of migration do not tell us specifically how much influence 
this stochastic mechanisms has in shaping diversity. Regarding this 
mechanism, we did observe an interesting pattern in the ratio between 
observed and expected singletons according to Fisher’s logseries. As 
communities are structured according to Fisher’s logseries, we can cal-
culate the expected number of singletons based on the total number 
of species and individuals and compare this with the observed number 
of singletons in each sample. When forests are well mixed in the case 
of little dispersal limitation, the observed number of singletons should 
approach the expected number of singletons dependent on sample 
size. When this ratio deviates from one, this indicates that local plots 
are less connected to each other over larger distances resulting in a 
clumpier distribution. This eventually means fewer singletons than 
expected according to Fisher’s logseries based on the number of 
individuals and species. We showed that there indeed was a strong 
relationship between the amount of migration from the metacommu-
nity and this ratio of expected versus observed singletons. This idea is 

further explained and studied in the Supporting information (Appendix 
S4 Further analysis of migration using Fisher’s logseries). A last note 
on interpreting estimates of migration focuses on the aspect of time. 
Given enough time on an ecological time scale, a collection of local 
communities will potentially have shared much of their species overall, 
even when having low direct migration between each local commu-
nity. This is the result of each local community acting as a stepping 
stone, if individual species travel short distances each generation, they 
can still travel great distances. This inevitably increases the theoretical 
value of migration. Small differences in species composition (and thus 
high estimates of migration) can thus be the result either of low mi-
gration over a long period of time or high migration in a short period 
of time.

4.1 | Reinterpreting estimation of migration from 
field data

We showed that estimates of migration from all three regions differed 
markedly (see Table 4). Although there were small differences be-
tween estimations when using different methods, relative differences 
between each dataset within one method were comparable. Guyana 
and Suriname showed the lowest migration probabilities, followed 
by French Guiana and finally Ecuador. Knowing that these estimates 
of migration are actually ecological aggregates, what differences in 
these forests can we attribute to these differences in migration prob-
ability? The relationship between community dynamics and alpha- 
diversity was already shown for forests within Guyana (ter Steege 
& Hammond, 2001). Ter Steege et al. (2003) furthermore showed 
that on average, Western Amazonian forests are 150 individuals/ha 
denser than Eastern Amazonian forests and also have a higher alpha- 
diversity. Forests of the Guiana Shield also experience a less hetero-
geneous environment and a more climax species composition having a 
higher seed mass and higher wood density in comparison with forests 
of Ecuador (ter Steege et al., 2006). This all suggests that forests of 
the Guiana Shield probably experience an overall stronger selection 
pressure, slower dynamics, and potentially also a higher impact of eco-
logical drift due to smaller population sizes and less dispersal ability. 
All of these potentially lead to a stronger distance decay of similarity 
and a higher betadiversity, both also shown earlier (Pos et al., 2014). 
This would also explain a lower estimate of migration of forests of the 
Guiana Shield in comparison with Western Amazonian forests such as 
those of Ecuador.

5  | CONCLUSIONS

We have shown that estimation of migration using methods based 
on species composition fails when estimating from spatially (semi- )
explicit simulations. Estimation was only correct when our spatially 
semi-explicit model approached a spatially implicit world. We summa-
rize that there are three major problems when using estimation meth-
ods based on spatially implicit models on a spatially explicit reality: (1) 
Estimations of migration relate to the differences in species diversity 
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between plots and the diversity of the total sample used for analysis 
as it is based on a spatially implicit model, not an actual mechanism of 
dispersal; and (2) as differences in species diversity can be the result 
of a number of potential causes, the migration parameter does not 
solely reflect neutral dynamics as it is assumed to do so in neutral 
models. It is an aggregated ecological parameter, capturing a myriad 
of different processes. And (3) even if the migration parameter could 
actually be considered being reflective of the migration of individuals 
and not including any other mechanisms, these methods still only look 
at the “end result” of the homogenization. Hence, it does not shed any 
light on actual current forest dynamics, as it can be the effect of much 
migration in a short period or little migration over a long period.

The only method used in this study not based on species compo-
sition and hence not influenced by the problems mentioned above 
is the (corrected) plot geometry method by (Chisholm and Lichstein 
(2009). This uses plot geometry and absolute dispersal distances of 
individuals. It therefore attempts to estimate the actual amount of mi-
gration per time index as migration, although the original authors still 
implemented this into a spatially implicit model. For spatially (semi- )
explicit models, it offers a much more intuitive implementation of mi-
gration and shows promising results (ter Steege et al., in press). We 
propose that the next steps would be to study the real importance 
of migration implementing such a mechanistic estimate of dispersal 
into semispatially explicit models (Pos et al., in preparation). By doing 
so, we not only investigate the influence of dispersal directly but also 
have a more objective way to study the influence of neutral processes 
and to distinguish between sources of betadiversity. If dispersal would 
be the only mechanism driving diversity, such models should be able 
to predict community composition to a good degree. If not, then other 
mechanisms must be invoked. The interesting question is how this dif-
fers between different regions, for example, between more dynamic 
and slow forests such as Ecuador versus the Guyana Shield (Pos et al., 
in preparation). A different interesting question is regarding the influ-
ence of species richness and the ratio between species richness of 
the metacommunity and the local communities. Here, we focused on 
tropical forest systems as we have access to large- scale datasets to 
test these models. But asking similar questions across multiple scales 
of diversity would most likely yield even more questions on the impor-
tance of regional diversity and the size of the species pool, which may 
prove a significant challenge.

Our main conclusion here is that spatially implicit models mimic 
the real world in a very good way simply because they make us of 
an aggregated ecological parameter, incorporating not only disper-
sal but everything determining the connection between a regional 
species pool and a local species pool. But the world simply is not 
spatially implicit; at least not for tropical tree species, and we should 
reject all inferences from such models on whether communities be-
have neutrally or not. Knowing this contains all possible filters that 
have been proposed, it does not further our knowledge of forest 
dynamics as we can only infer whether there is strong or weak fil-
tering, it being either dispersal or establishment or both. Obviously, 
if we feed non- neutral (assuming the real world is non- neutral) data 
into a neutral model, models will still create output and methods for 

estimation of parameters will still generate parameter values. The im-
portance, however, lies in the interpretation of these estimates. In 
neutral models, the emphasis lies on limited migration of individuals 
for explaining differences in composition. Many biologists thus in-
terpret migration from such models as a mechanistic explanation for 
said differences. What we have tested here is whether this is reason-
able or not and show that it is not and that we should be careful with 
these interpretations. As such, either assuming neutral dynamics or 
not, we cannot be sure what we are actually estimating from our spa-
tially explicit world using methods based on species composition: low 
migration, high selective pressures, slow dynamics or fast dynamics, 
stronger drift, weak or strong natural selection, effects over short 
or long periods? The only thing we know is that we are estimating 
how much difference there is between the plots and the overall pool 
of diversity, and it is unlikely this is based solely on implicit neutral 
dynamics.
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