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1.  INTRODUCTION

Progressive neurodegenerative conditions that lead to 
dementia affect 50 million people globally and this num-
ber is expected to double every 20  years, to approxi-
mately 66 million in 2030 and 115 million in 2050 (Prince 
et al., 2013). The global cost of dementia is currently esti-
mated at over US$1 trillion per year. Neurodegenerative 

conditions such as Alzheimer’s disease (AD) and Hun-

tington’s disease (HD) progress through various clinical 

and para-clinical changes, measurable through a range 

of biomarkers as the underlying disease pathology 

evolves. For example, current understanding of the 

pathological cascade in AD regards amyloid-β  (Aβ ) and 

tau pathology, captured by cerebrospinal fluid (CSF)  
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protein levels or positron emission tomography (PET) 
imaging, as early pathological changes, followed later by 
morphological changes in the brain, observable in struc-
tural magnetic resonance imaging (sMRI), then reduced 
performance on cognitive tests scores, and widespread 
personality changes and loss of cognitive function 
(Knopman et al., 2021). Although researchers have broad 
consensus on the ordering of these events, we have 
much less clarity on the absolute timing of transitions and 
how these timescales vary among patients.

Identifying the right time to recruit patients into clinical 
trials is a key challenge that has hindered the development 
of effective disease-modifying therapies. Almost all clinical 
trials in AD and HD have failed, at immeasurable human 
cost and financial cost in billions of dollars; the exceptions 
are a recent trial in AD that showed marginal treatment 
effects (https://clinicaltrials​.gov​/ct2​/show​/NCT02477800); 
and a recent trial in HD that showed initial promise but  
had to be stopped due to adverse side effects (https://
clinicaltrials​.gov​/ct2​/show​/NCT03761849). A major barrier 
to the success of clinical trials is the inability to identify 
patients within the window of opportunity of a treatment to 
prevent, slow, or mitigate the pathological cascade. A 
quantitative timeline, based on measurable biomarkers, of 
how and when an individual’s disease is likely to progress 
would enable clinical trialists to maximise the statistical 
power of detecting a treatment effect (i.e., the primary aim 
of clinical trials) by enriching trial cohorts for individuals 
likely to be at a disease stage amenable to treatment, and 
by more precisely quantifying a treatment effect against 
expected progression times.

Data-driven models of disease progression estimate 
long-term trajectories of biomarker changes using snap-
shots of biomarker measurements from collections of 
patients (Oxtoby & Alexander, 2017). Discrete disease 
progression models consist of a sequence of disease 
states, which capture the degree of biomarker abnormal-
ity at a discrete point along the disease trajectory (Fonteijn 
et  al., 2012; Hadjichrysanthou et  al., 2020; Liu et  al., 
2015; Sun et al., 2019; Williams et al., 2020; Young et al., 
2018). The archetypal discrete disease progression 
model, the event-based model (EBM) of disease progres-
sion, describes disease progression as a sequence of 
biomarker events in which biomarkers transition from 
within some “normal” range to detectably abnormal 
(Fonteijn et al., 2012). The EBM and its extensions have 
revealed new insights in a range of diseases including AD 
(Firth et  al., 2018; Fonteijn et  al., 2012; Oxtoby et  al., 
2018; Venkatraghavan et  al., 2019; Vogel et  al., 2021; 
Young et  al., 2014, 2018), HD (Wijeratne et  al., 2018, 

2021), multiple sclerosis (Eshaghi et al., 2018), Parkinson’s 
disease (Oxtoby et  al., 2021), prion disease (Pascuzzo 
et  al., 2020), and amyotrophic lateral sclerosis (Gabel 
et  al., 2020). They are also used practically to provide 
data-driven patient stratification (Eshaghi et al., 2021) and 
validate early biomarkers (Byrne et al., 2017, 2018). How-
ever, the EBM provides only an ordering of biomarker 
events; it contains no information on the time between 
events, which is a key limitation for stratifying patients 
suitable for clinical trials, that is, those likely to progress in 
the absence of treatment over the timescale of the trial. 
Moreover, the EBM does not naturally exploit longitudinal 
data, particularly when the number of time-points varies 
among individuals; the model treats each snapshot  
from one individual as independent, as if from a different 
individual, thereby ignoring strong within-individual cor-
relations. This can introduce bias in the model, over-
emphasising information from individuals with the most 
time-points.

Continuous disease progression models reconstruct 
continuous biomarker trajectories and are an alternative 
to discrete models (Bilgel & Jedynak, 2019; Donohue 
et  al., 2014; Koval et  al., 2021; Li et  al., 2019; Lorenzi 
et al., 2019; O’Connor et al., 2020; Oxtoby et al., 2018; 
Schiratti et al., 2017; Staffaroni et al., 2022). While contin-
uous disease progression models can theoretically 
encapsulate a more detailed picture of the disease time-
line, discrete models remain popular in practice for two 
key reasons: i) simplicity—since they are defined by rela-
tively few parameters and handle uncertainty and miss-
ing data naturally, they require relatively small data sets 
compared to continuous models, as few as 100 individu-
als (see e.g., Byrne et al., 2017; Oxtoby et al., 2018); and 
ii) interpretability—discrete models provide a discrete 
staging system that closely reflects the state-of-the-art 
staging systems used in clinical practice, e.g., the ATX(N) 
system in AD (Hampel et al., 2021) and the HD-ISS in HD 
(Tabrizi et al., 2022).

Here, we introduce the temporal event-based model 
(TEBM), a new probabilistic model that can uniquely 
learn the timing between biomarker events in progres-
sive diseases and make probabilistic estimates of pro-
gression at the group and individual levels from sparse 
and irregularly sampled datasets (Fig.  1). The TEBM 
combines ideas from continuous-time hidden Markov 
modelling with event-based modelling, and it leverages 
the strengths of each methodology to provide a natural 
framework for learning timelines in progressive diseases. 
Moreover, unlike most disease progression models that 
only learn a disease stage per individual, the TEBM 

https://clinicaltrials.gov/ct2/show/NCT02477800
https://clinicaltrials.gov/ct2/show/NCT03761849
https://clinicaltrials.gov/ct2/show/NCT03761849
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allows us to learn both a disease stage, and a progres-
sion risk per individual, which can improve predictive 
utility. We use the TEBM to chart timelines of biomarker 
evolution in two neurodegenerative conditions, AD and 
HD, for which clinical trials of a variety of treatment strat-
egies are highly active. We show the first discrete time-
lines of each disease that include transition times and 
ranges, providing new insight on the timescales and 
their variability over patient cohorts. With this in mind, 
we also benchmark the TEBM against the EBM and a 
state-of-the-art continuous-time disease progression 
model, the Gaussian Processes Progression Model 
(GPPM) (Lorenzi et al., 2019). Finally, we show how the 
TEBM can be used to enrich simulated clinical trials in 
AD with individuals who are most likely to progress rap-
idly and hence show a significant treatment effect during 
the trial. Crucially, we use the full capabilities of the 
TEBM to enrich preventative clinical trials, that is, trials 
on pre-clinical individuals, which are typically very diffi-
cult to power using standard methods.

2.  RESULTS

First, we use simulated data to demonstrate the TEBM’s 
ability to recover event timelines and its improvements 
over the EBM (see Supplementary Material Section  3). 
Next, we learn biomarker timelines and their temporal vari-
ability in AD and HD using the TEBM with data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), and 
the TRACK-HD study in HD (Section 2.1). We replicate and 
validate the timelines in both diseases using external data-
sets: the Open Access Series of Imaging Studies (OASIS) 
in AD and the PREDICT-HD study in HD (Section 2.1).

As mentioned in the Introduction, the two key vari-
ables the trained TEBM assigns to each individual are i) 
disease stage and ii) progression risk; Methods section 
4.11 defines both mathematically. We demonstrate the 
added power of this pair of predictive variables over the 
single stage variable of most current disease progression 
models. First, we demonstrate that they provide improved 
utility over two benchmark disease progression models 

Fig. 1.  The TEBM is designed to work with a typical semi-longitudinal dataset (left of figure). Patient measurements 
follow an underlying set of biomarker trajectories, which have some uncertainty in terms of timescale and ordering.  
A typical study will acquire data over a relatively short timescale compared to the full timeline of the disease. Thus, we 
acquire from each individual a number of biomarker snapshots at each of several time-points. Each time-point may miss 
some biomarker measurements; the number of time-points and their relative timings can vary among individuals. From 
such real-world data sets, the TEBM (right of figure) reconstructs an ordering of biomarkers showing abnormality together 
with mean and variance of times between consecutive events. This captures group-level behaviour and its variation. Given 
new data from a previously unseen individual, even a single time-point, the model provides an estimate of future transition 
times together with uncertainty for an individual.
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Fig. 2.  Timelines of biomarker events in (a) AD, and (b) HD. The order of events on the vertical axis is obtained from the 
most likely sequence estimated by the TEBM and the mean time at which each event occurs relative to the first, shown 
by black dots on the horizontal axis, is calculated from the fitted transition generator matrix (S and Q in the Methods 
section 4.8). The uncertainty in the event duration, shown by black braces, represents 95% confidence intervals, and the 
uncertainty in the event timing relative to the first event is shown by colour bars, which are calculated as the cumulative 
uncertainty in the event duration propagated through the event sequence (described in the Methods section 4.12). 
Timelines are anchored at disease time equal to zero, which corresponds to the first event in the sequence. ADNI Dataset 
1 and OASIS are used in (a), and TRACK-HD and PREDICT-HD in (b). The colour bars are coded according to the type of 
biomarker: green for CSF; blue for sMRI; and orange for clinical test score.

(Section  2.2). Next, we use them to stratify by genetic 
burden in HD (Section 2.3), and by clinical progression 
rate in AD (Section 2.4), using only baseline data. Finally, 
we demonstrate how the TEBM’s progression risk can be 
used to enrich simulated clinical trials in AD by dichoto-
mising slow and fast progressing groups; and how  
both the TEBM’s progression risk and disease stage can 
be used to enable preventative clinical trials by dichoto-

mising slow early-stage and fast early-stage groups 
(Section 2.5).

2.1.  TEBM provides the first disease stage models with transition 
times in AD and HD

Figure 2a and b show unique timelines of events inferred 
by the TEBM in AD and HD, respectively. The timelines 
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are anchored at disease time equal to zero, which corre-
sponds to the first event in the sequence estimated by 
the TEBM. In AD, we use a selection of biofluid (CSF-
based Aβ , CSF-based phosphorylated tau and total tau), 
imaging (PET-based Aβ , sMRI-based regional brain vol-
umes), and cognitive markers (ADAS13, MMSE, RAVLT) 
from the ADNI dataset. In HD, we use a selection of imag-
ing (sMRI-based regional brain volumes), motor (TMS), 
cognitive (SDMT), and functional (TFC) markers from the 
TRACK-HD dataset. For details on the biomarkers and 
datasets, see the Methods section. Supplementary Fig-
ure S1a and b show individual event-based trajectories 
predicted by the TEBM using only baseline data, from (a) 
the ADNI test dataset and OASIS dataset in AD, and (b) 
the PREDICT-HD dataset in HD. We estimate the disease 
time for MCIs in the OASIS dataset and PreHDs in the 
PREDICT-HD dataset at baseline, then compute the pro-
gression risk as a function of future time, which provides 
an estimated trajectory through the progression model. 
We also estimate uncertainty on that trajectory, as 
described in the Methods section 4.12.

In AD, the TEBM finds a fine-grained chain of bio-
marker events occurring over a mean period of 17.3 years 
(95% confidence intervals (CIs): 11.4-27.1 years). In the 
ADNI dataset, we find that CSF- and PET-based Aβ  
markers become abnormal approximately simultane-
ously within 0.03 years (95% CIs: 0-0.1 years); followed 
by CSF-based tau markers which also occur approxi-
mately simultaneously after 2.65 (95% CIs: 0.5-5.8 years) 
and 2.7 years (95% CIs: 0.5-5.9 years); followed by struc-
tural regional volume changes starting with the hippo-
campus at 5.1  years (95% CIs: 2.1-9.3  years) and  
the entorhinal at 5.7 years (95% CIs: 2.7-10 years); then 
first cognitive changes after 7.5  years (95% CIs: 4.1-
12.3 years); followed by a chain of structural brain volume 
changes starting with the mid-temporal at 10.4  years 
(95% CIs: 6.5-15.7 years); and finally ventricular abnor-
mality. We replicate the findings in a subset of biomarkers 
using an entirely independent dataset (OASIS), where we 
find the same ordering of changes and timings within 
95% CIs. In HD, the TEBM finds a chain of biomarker 
events occurring over a mean period of 21.9 years (95% 
CIs: 11.6-35.4 years). In the TRACK-HD dataset, we find 
putamen volume abnormality occurs first; followed by 
caudate volume abnormality, which occurs after 4.2 years 
(95% CIs: 1-10.5 years); followed by motor abnormality 
after 7.9 years (95% CIs: 3.1-15.3 years); then functional 
abnormality after 13.3 years (95% CIs: 6.3-22.6 years); 
and finally cognitive abnormality. Again, we replicate 
our findings in an entirely independent HD dataset 

(PREDICT-HD), where we find the same ordering of 
changes and timings within 95% CIs. In both AD and HD, 
we find that individuals progress along the predicted 
group-level timeline within 95% CIs, and that individuals 
within the same stage can progress at different rates.

Figure 3 contrasts the information content of current 
state-of-the-art models estimated using the ADNI data-
set with the output of the TEBM from Figure 2. We find 
that the EBM recovers a similar overall ordering as the 
TEBM, but the TEBM also obtains both the mean and 
variability of transition times between consecutive events, 
plus an individual progression risk, which is not possible 
with the EBM. We find that the GPPM provides a broadly 
similar overall ordering of changes, though note that it is 
not primarily designed to estimate orderings but rather 
biomarker trajectories.

2.2.  TEBM improves predictive utility over benchmark models in AD

To compare the practical utility of the TEBM to other mod-
els, we consider the task of identifying individuals who 
convert from a clinical diagnosis of MCI to AD at any time 
after their baseline measurement. First, we compare pre-
dictions of conversion using the TEBM stage only with pre-
dictions using stage from the EBM and GPPM. A simple 
approach uses the conversion rate of training individuals at 
each model stage to classify test individuals. With this 
approach, the area under the receiver operating character-
istic curve (AU-ROC) and 95% confidence intervals from 
5-fold cross-validation is 0.799 ± 0.762, 0.835( ) for TEBM; 
0.792 ± 0.762, 0.822( ) for EBM; and 0.777 ± 0.728, 0.825( ) 
for GPPM. However, the TEBM also provides an 
individual-level progression risk, which further informs 
the classification. Incorporating the additional progres-
sion risk into the classification task (see the Methods  
section 4.11), we obtain a substantially increased AUROC 
of 0.82 ± 0.766, 0.873( ) .

To further compare the TEBM to other models, Sup-
plementary Figure  S2a shows the observed age of AD 
conversion against the age of conversion predicted using 
the baseline metrics for each model. While the EBM is 
time-agnostic—and hence cannot predict age of conver-
sion directly—the individual stage estimated using the 
EBM can be used with the observed age of conversion to 
train a model that predicts age of conversion (see the 
Methods section 4.14). Using this approach, the TEBM 
predicts conversion with an RMSE  =  1.81  years; EBM 
with an RMSE  =  1.9  years; and the GPPM with an 
RMSE = 2.14 years. However, we note that this approach 
depends on known age of conversion, as it uses models 
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Fig. 3.  Biomarker timelines and sequences estimated by two reference disease progression models in AD.  
(a) Biomarker trajectories obtained by the GPPM from ADNI Dataset 2. Variability in the average trajectories, shown by 
partially transparent lines, is obtained by taking 200 samples from the model posterior. (b) Timeline of biomarker changes 
estimated by the GPPM using the point of maximum rate of change across all biomarker trajectories. (c) EBM event 
sequence obtained from ADNI Dataset 1. Uncertainty in the sequence ordering is represented by shaded boxes, and was 
estimated using 100 bootstrap samples of the data. To facilitate easy comparison between (b) and (c), the ordering of 
biomarker labels on the vertical axis in (b) is set identical to the ordering in (c).

that are trained on observed conversion data, that is, we 
use longitudinal data to estimate conversation rates for 
individuals classified at baseline into each model stage. 
To provide an alternative measure of time-to-event, Sup-
plementary Figure S2b shows the time-to-event residual 

(difference between observed and predicted) for the 
three models, calculated by defining the event as the 
model stage or time-shift that corresponds to all cogni-
tive markers being abnormal. We find that the TEBM pro-
vides both the most accurate prediction (TEBM mean 
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Fig. 4.  Within- and out-of-sample model validation in HD. (a) 2D heatmap of the number of individuals distributed 
according to their disease time (or stage) and progression risk, as estimated by the TEBM using only baseline data  
from the PreHD group in TRACK-HD. The cut point on progression risk used in (b) is shown by a red dashed line.  
(b) Genetic burden, as measured by CAP score, for the fast and slow progressing groups. (c) and (d) are the same as (a) 
and (b) but using the PreHD group from PREDICT-HD with the model trained on TRACK-HD data. The three stars (***) 
indicate significant difference of the means at p < 0.001, under a two-tailed paired t-test. HD, Huntington’s disease; TEBM, 
Temporal Event-Based Model; PreHD, pre-manifest Huntington’s disease; CAP, cytosine-adenine-guanine age product.



8

P.A. Wijeratne, A. Eshaghi, W.J. Scotton et al.	 Imaging Neuroscience, Volume 1, 2023

residual  =  -0.6  years; EBM mean residual  =  4.8  years; 
GPPM mean residual = -3 years) and the highest preci-
sion (TEBM RMSE = 3.1 years; EBM RMSE = 6.6 years; 
GPPM RMSE = 3.8 years).

2.3.  TEBM dichotomises by genetic burden in HD using only 
baseline data

Figure 4a and c show 2D heatmaps of the number of indi-
viduals distributed according to the two predictive vari-
ables provided by the TEBM; the disease time (or 
equivalently, stage), and the progression risk, as esti-
mated by the TEBM trained on TRACK-HD data and 
tested using only baseline data from PreHD individuals in 
(a) TRACK-HD (i.e., within-sample), and (c) PREDICT-HD 
(i.e., out-of-sample).

We observe substantial variability in the progression 
risk even within a single stage; this information would not 
be available to staging-only models like the EBM. We use 
genetic burden, as measured by the cytosine-adenine-
guanine (CAG) age product (CAP) score, to validate the 
predicted progression risk at the group level, under the 
hypothesis that the fast progressing group will have a 
higher genetic burden. We use the TEBM to dichotomise 
the samples into fast and slow progressing groups using 
a data-driven threshold equal to the mean progression 
risk across the samples in each dataset (Fig. 4b, d). We 
find significant differences in mean genetic burden 
between the groups under a two-tailed paired t-test 
(p  < 0.001 in both datasets), with the fast progressing 
groups having higher genetic burden, as expected. These 
results provide within- and out-of-sample model valida-
tion of the TEBM’s ability to predict progression using 
only baseline data.

2.4.  TEBM stratifies by clinical progression rate in AD using only 
baseline data

Figure  5a shows a 2D heatmap of the number of MCI 
individuals distributed according to their disease time (or 

stage) and progression risk, estimated by the TEBM 
using only baseline data from the ADNI test set. As in 
Section  2.3, we again observe substantial variability in 
the progression risk even within a single stage.

We then compare clinical progression, measured by 
the hold-out variable Clinical Dementia Rating scale Sum 
of Boxes (CDRSB), between either Figure 5b the fast pro-
gressing group (N = 145; “TEBM: prog”) and the same 
number of individuals randomly selected from the whole 
sample (“Random”); or Figure 5c the fast progressing and 
early-stage group (N = 64; “TEBM: stage + prog”) and the 
same number of individuals randomly selected from the 
early-stage group (“TEBM: stage”). The thresholds used 
to define the “fast” and “fast and early stage” groups are 
shown in Figure  5a by dashed red lines, where “early 
stage” means having a TEBM stage < 7, that is, before 
the first cognitive event (ADAS13; see Fig. 2). We again 
dichotomise into fast and slow progressing groups using 
a data-driven threshold equal to the mean progression 
risk across the samples in each dataset. The thresholds 
on progression risk for the “fast” and “fast and early” 
groups are slightly different; this is because we calculate 
the threshold for the latter group after applying the stage 
cut. We use CDRSB as the outcome variable because it 
was used as the primary outcome variable in a recent 
clinical trial in AD (https://clinicaltrials​.gov​/ct2​/show​
/results​/NCT02477800), and hypothesise that the fast 
progressing group will have a higher rate of change. It is 
clear from Figure 5b and c that that is the case. To con-
firm, using linear fixed effects models with CSRSB as the 
dependent variable and observation time, group, and the 
interaction between observation time and group as inde-
pendent variables, we find that the dichotomised groups 
start with approximately equal mean CDSRB and pro-
ceed to show a significant difference in the rate of change 
(β = 1.6, p = 4 ×10−16 in (b); and β = 1.6, p < 2×10−16 in 
(c), for the interaction terms, respectively, where β  is the 
regression coefficient term and p is the p-value).

To demonstrate that the TEBM uniquely dichotomises 
fast and slow progressing groups, we repeat the analysis 

Fig. 5.  Stratifying by clinical progression and enriching clinical trials using the TEBM. (a) 2D heatmaps of the number of 
individuals distributed according to their disease time (or stage) and progression risk, as estimated by the TEBM using 
only baseline data from MCI individuals from the ADNI test set. The cut points on progression risk and stage used to select 
individuals for (b) and (c), respectively, are shown by dashed red lines. (b) CDRSB as a function of observation time, between 
the fast progressing group (N = 145; “TEBM: prog”) and the same number of individuals randomly selected from the whole 
sample (“Random”). (c) CDRSB as a function of observation time, between the fast progressing and early-stage group (N = 64; 
“TEBM: stage + prog”) and the same number of individuals randomly selected from the early-stage group (“TEBM: stage”).  
(d) Simulation results showing the power of detecting a treatment effect in a general trial for different numbers of participants 
and treatment effect magnitudes, using CDSRB as the outcome variable, for the “TEBM: prog” and “Random” groups from 
(b). (e) Equivalent to (d) but for a preventative trial, using the “TEBM: stage + prog” and “TEBM: stage” groups from (c).

https://clinicaltrials.gov/ct2/show/results/NCT02477800
https://clinicaltrials.gov/ct2/show/results/NCT02477800
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shown in Figure 5a, and b using the EBM with post-hoc 
survival models to estimate a progression risk (see the 
Methods section 4.13). We find that the EBM does not pro-
vide significant differences between the rates of CDRSB 
progression and hence cannot dichotomise fast from slow 
progressing groups (Supplementary Fig. S3a, b).

2.5.  TEBM enriches simulated clinical trials

We use the dichotomised groups from Figure 5b to show 
that the TEBM can be used to provide substantial improve-
ment in power in a simulated general clinical trial over 
standard random selection (see the Methods section for 
more details). Figure  5d shows graphs of the power to 
detect a treatment effect of either 20%, 30%, or 40% in 
CDRSB for varying numbers of people in the trial, for three 
observations over a 2-year period (baseline plus 2 yearly 
follow-ups). We find that for both time periods the TEBM-
enriched cohort provides at least double the power of the 
random cohort for the same number of people, and for a 
30% treatment effect over 1 year allows the trial to reach 
power > 0.8 with approximately 750 people, while the equiv-
alent random cohort requires approximately 1750 people.

Finally, we leverage the full predictive capabilities of the 
TEBM and use the dichotomised groups from Figure 5c to 
select a cohort for a preventative clinical trial, that is, 
before cognitive decline. Figure 5e shows graphs of the 
power to detect a treatment effect of 20%, 30%, or 40% 
in CDRSB for varying numbers of people in the trial, for 
three observations over a 2-year period (baseline plus 
2 yearly follow-ups). We find that the combined criteria are 
necessary to power preventative clinical trials, whereas 
the staging-only approach—used by other disease pro-
gression models—is substantially under-powered. We 
also repeat the same simulations but with two observa-
tions per individual and find similar results (Supplemen-
tary Fig. S4).

3.  DISCUSSION

Here, we have introduced the TEBM, a new probabilistic 
model that learns transition times between successive 
biomarker events in progressive diseases. This solves a 
key limitation of event-based disease progression mod-
els and provides new capability to identify windows of 
opportunity to recruit individuals for clinical trials at criti-
cal transition points in their disease timeline. We used the 
TEBM to obtain new timelines of biomarker changes in 
AD and HD. To validate the TEBM results, we used 
entirely independent datasets in both AD and HD, and 

predicted clinical progression in unseen visits of AD 
patients better than comparable state-of-the-art disease 
progression models. We used HD as another exemplar to 
show the utility of our model, and in particular its ability to 
extract useful information from small datasets (of order 
100 individuals).

A key strength of the TEBM is that it can make proba-
bilistic estimates of progression at the group and individ-
ual levels from sparse and irregularly sampled datasets, 
which are commonplace in real-world medical applica-
tions. As such, the TEBM has broad potential application, 
e.g., in clinical decision support, by informing prognosis; 
and clinical trial design, by informing biomarker and cohort 
selection criteria. An additional benefit over deep learning 
methods is the TEBM’s interpretability (we can make clear 
associations between the input data and the output model 
predictions), which provides a comprehensible framework 
for the translation of model predictions to a clinical setting.

We used the TEBM to extract a new timeline of mixed 
biomarker events in AD (Fig. 2a). The ordering and timing 
of key events agrees with clinical observations where 
available, e.g., abnormality in tau and Aβ  (Bateman et al., 
2012; Villemagne et  al., 2011, 2013), hippocampus 
(Frisoni et al., 2010; Villemagne et al., 2013), and cogni-
tive impairment (Villemagne et al., 2013). We also directly 
compared the TEBM AD timeline with the sequence 
obtained from the EBM and the timeline obtained from 
the GPPM (Fig.  S3). The comparison highlights the  
additional information on absolute timescale that the 
TEBM provides over the EBM. Furthermore, the TEBM 
naturally provides the ideal structure for estimating event 
sequences, whereas continuous models such as the 
GPPM are primarily designed to infer biomarker trajecto-
ries (Bilgel & Jedynak, 2019; Koval et al., 2021; Lorenzi 
et  al., 2019; Oxtoby et  al., 2018; Ridha et  al., 2006; 
Staffaroni et  al., 2022). In contrast, the TEBM provides 
the first fine-grained information on the mean and range 
of time taken to progress between consecutive, clinically 
interpretable stages. In particular, timescales for pre-
clinical AD are of the order of decades (Masters et  al., 
2015) but are not well defined, partly due to the difficulty 
in establishing a suitable reference frame. The TEBM nat-
urally provides such a reference frame; e.g., it can define 
the pre-clinical phase of AD between tau abnormality and 
first cognitive impairment (defined by ADAS-13 abnor-
mality in our model) to be 7.5  years (95% CIs: 4.1-
12.3 years). Similarly, it can provide new insight into the 
time between other key outcome measures for clinical 
trials; e.g., the time between Aβ abnormality and tau 
abnormality at 2.7  years (95% CIs: 0.5-5.9  years).  
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These inferences provide new insight into the timescale 
of pre-clinical AD that can be used to identify time win-
dows for testing new treatments.

Using ADNI data, we also demonstrated that the 
TEBM can accurately predict the clinical conversion of 
AD and time-to-event (Supplementary Fig.  S2). When 
trained on time-to-conversion data, we found that the 
TEBM predicts conversion with an RMSE  =  1.8  years, 
better than either the EBM or GPPM, and comparable or 
better than values quoted by Bilgel & Jedynak (2019) for 
their model and other models that arguably use more 
suitable biomarkers for this task (e.g., CDRSB). However, 
prediction of conversion is not the primary utility of the 
TEBM—partly because the model is not directly trained 
on conversion data—and we provide it here to demon-
strate the model’s clinical relevance. A more suitable task 
that utilises the TEBM’s event-based structure is predic-
tion of time-to-event, where we found that the TEBM’s 
predictions agreed well with observations (mean resid-
ual = -0.6 years). The TEBM’s ability to predict time-to-
event supports its use for clinical prognosis, where it 
could inform predictions of the time to an event of inter-
est (e.g., cognitive impairment, or a regional brain abnor-
mality); and in clinical trial design, where it could inform 
biomarker selection criteria.

Another novel finding is that the TEBM can uniquely 
dichotomise slow and fast progressing groups over short 
timescales using only baseline data (Fig.  5b, c). This 
demonstrates a unique capability of the TEBM among 
disease progression models to stratify fast from slow pro-
gressing groups using only baseline data. Identifying so-
called fast progressors is a key challenge in clinical trial 
design (Dorsey et al., 2015), where the aim is to measure 
the effect of a treatment with respect to the rate of change 
of the outcome variable; being able to select fast pro-
gressors increases this rate of change, allowing for 
shorter trials with fewer individuals. We demonstrate this 
in simulation (Fig.  5d, e), where the fast progressing 
group identified by the TEBM showed much larger pow-
ers compared to random selection, even for clinical trials 
with only two observations over a single year (Supple-
mentary Fig. S4). However, for the purposes of designing 
preventative clinical trials, it is necessary to select indi-
viduals at the right time before abnormality has accumu-
lated past the point of being treatable. To this aim, we 
leveraged the full predictive capabilities of the TEBM to 
simultaneously identify a treatment window before cogni-
tive impairment and a group of fast progressors, facilitat-
ing a preventative clinical trial that otherwise would have 
been substantially under-powered (Fig.  5e). While con-

clusive evidence of the TEBM’s ability to enrich clinical 
trials is only possible using data from real-life clinical tri-
als, our experimental design aims to emulate these con-
ditions as closely as possible, e.g., the multi-site nature 
of the ADNI dataset reflects a real-life clinical trial. Future 
work will focus on demonstrating the TEBM subject to 
the availability of real-life clinical trial data. Furthermore, 
we will look in more depth at optimising the treatment 
windows identified by the TEBM (e.g., Fig. 5a), as here 
we chose fairly simple cuts to demonstrate the method.

In our second application, we used the TEBM to 
extract a new timeline of biomarker events in HD (Fig. 2b), 
which we validated with respect to an entirely indepen-
dent dataset. Furthermore, the ordering and timing of 
events found by the TEBM is in strong agreement with 
recently published trajectories of the same markers in HD 
(Tabrizi et al., 2022); for individuals with 42 CAG repeats, 
the authors of Tabrizi et  al. (2022) estimated the time 
between putamen and caudate abnormality at approxi-
mately 2 years (TEBM: 4.2 years, 95% CIs: 1-10.5 years); 
TMS abnormality at 6 years (TEBM: 7.9 years, 95% CIs: 
3.1-15.3  years); TFC abnormality at 14  years (TEBM: 
13.3 years, 95% CIs: 6.3-22.6 years); and SDMT abnor-
mality at 24  years (TEBM: 21.9  years, 95% CIs: 11.4-
27.1 years). The TEBM recapitulates these findings within 
95% CIs using only a small subset of their dataset, 
demonstrating its use in small datasets of order 100 indi-
viduals. We note that the HD-ISS places SDMT before 
TFC in its staging system, which is likely driven by differ-
ences in the definition of abnormality between the HD-
ISS and TEBM. The TEBM also successfully dichotomises 
groups according to HD genetic burden (defined using 
individual CAP score), which was not used to train our 
model (Fig. 4b, d), and which has not been shown previ-
ously using only baseline data. Furthermore, we also 
observed a higher mean progression risk in TRACK-HD 
than PREDICT-HD, which reflects the known higher mean 
disease burden in the former dataset (Wijeratne et  al., 
2020). With respect to model-based analyses, the TEBM 
finds a similar timescale of regional brain volume changes 
to other longitudinal disease progression models 
(Johnson et al., 2020; Wijeratne et al., 2021). In future, we 
plan to extend the HD analysis by including multiple 
datasets (e.g., Wijeratne et  al. (2020) and Scahill et  al. 
(2020)) to improve coverage of the HD timeline.

Future technical work with the TEBM will focus on 
developing the model to account for disease heterogene-
ity, primarily by modelling subtypes of disease progres-
sion. The disease heterogeneity in ADNI data has been 
previously studied by a landmark application of the Sub-



12

P.A. Wijeratne, A. Eshaghi, W.J. Scotton et al.	 Imaging Neuroscience, Volume 1, 2023

type and Stage Inference (SuStaIn) clustering algorithm 
(Young et  al., 2018), which revealed three distinct sub-
types of brain atrophy progression. The TEBM has the 
potential to identify not just distinct trajectories of pro-
gression but also sub-groups of progression rate, which 
could be achieved by integrating the TEBM into the  
SuStaIn algorithm to allow for the inference of both sub-
type and progression rate (see Young et al., 2023, for a 
discrete-time formulation). In addition, future work will 
investigate the broader clinical translation of the TEBM, 
e.g., using the TEBM trained on ADNI to stage and predict 
progression in clinical AD datasets. Previous work has 
demonstrated that EBMs trained on research data can be 
used to obtain classifications on clinical data (Archetti 
et al., 2019, 2021). In practice, one would also need to 
consider potential differences between the training and 
clinical datasets, e.g., differences between MRI scanners; 
such differences could be accounted for using harmoni-
sation methods such as Beer et al. (2020). However, even 
with harmonisation, the datasets used here have substan-
tial ethnic and socio-economic biases (they almost exclu-
sively represent white and middle income people); this 
limits the potential for widespread translation and high-
lights the need to design equitable medical studies.

In summary, the TEBM is a new probabilistic model 
that can extract timelines of biomarker changes in pro-
gressive diseases. The TEBM extends the EBM, which 
found its initial applications in AD and HD but rapidly 
received more widespread usage and development; the 
TEBM naturally extends wherever longitudinal data are 
available, which is becoming more common as commu-
nities pull together to collate large patient data sets. As 
such, the TEBM presents new opportunities for future 
research and practice by leveraging sparse and irregu-
larly sampled datasets to improve disease understanding 
and inform preventative clinical trial design, facilitating 
shorter, smaller trials to accelerate the development of 
new disease-modifying therapies. More broadly, while 
here we focused on neurodegenerative diseases, the 
TEBM could be used to learn timelines in chronic dis-
eases, such as chronic obstructive pulmonary disease, 
osteoarthritis, and age-related macular degeneration.

4.  METHODS

4.1.  AD datasets

We use two AD datasets: the TADPOLE challenge dataset 
(Marinescu et al., 2020), which is a cut of the ADNI data-
set, a longitudinal multi-site observational study; and the 

OASIS-3 dataset from the OASIS study, a longitudinal 
single-site observational study (LaMontagne et al., 2019). 
Basic demographic characteristics of the cohorts used 
here are summarised in Supplementary Tables S1 and S2.

From ADNI, we select 1737 participants (417 CN: cog-
nitively normal; 872 MCI: mild cognitive impairment; 342 
AD: manifest AD; 106 NA: unlabelled), and up to 19 
observations per individual (from baseline to 40 months, 
with a minimum interval of 3 months), corresponding to a 
total of 12,741 observations. Individuals could have par-
tially missing data; this corresponded to a total fraction of 
54% missing data. We use a selection of 13 biofluid, neu-
roimaging, and clinical test score biomarkers. For the 
biofluid data, we use three cerebrospinal fluid markers: 
phosphorylated tau (PTau) and total tau (Tau), and amyloid- 
β1−42 (Aβ ). For the clinical test score data, we use three 
cognitive markers: Mini-Mental State Examination (MMSE), 
Rey Auditory Verbal Learning Test (RAVLT), and the Alzhei-
mer’s Disease Assessment Scale (ADAS13). For the neu-
roimaging data, we select PET-Aβ standardised uptake 
value ratio (SUVR), and a set of sub-cortical and cortical 
sMRI regional volumes—the hippocampus, entorhinal, 
mid-temporal, ventricles, fusiform, and the whole brain—
which have been observed to be sensitive to AD pathology 
(Frisoni et al., 2010).

From OASIS, we select 1332 individuals (949 CN; 22 
MCI; 281 AD; 106 NA), and up to 8 observations per indi-
vidual (from baseline to 13.5  years, with a minimum  
interval of 6  months), corresponding to a total of 3919 
observations. Individuals could have partially missing 
data; this corresponded to a total fraction of 62% miss-
ing data. Because OASIS participants are expected to be 
at an earlier pre-clinical disease stage than ADNI partici-
pants (LaMontagne et al., 2019), we use a subset of the 
ADNI biomarkers that are expected to occur early in the 
disease progression. Furthermore, OASIS does not have 
any biofluid biomarker data, and does not have ADAS13 
and RAVLT. Therefore, we use a selection of four neuro-
imaging and clinical test score biomarkers. For the neu-
roimaging data, we select PET-Aβ SUVR, and two sMRI 
regional volumes—the hippocampus and entorhinal. For 
the clinical test score data, we use MMSE. In both data-
sets, we segment observation times into the minimum 
available time between observations, which for ADNI is 
3 months, and for OASIS is 6 months.

4.2.  ADNI dataset cuts

The GPPM code requires each individual to have at least 
one measurement of each biomarker across all observa-
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tions, otherwise it excludes the individual from the analy-
sis entirely. The TEBM and EBM do not make the same 
requirement; however, in the AD dataset, using the GPPM 
selection criteria severely reduces the dataset size (by 
almost half). Therefore, in the AD analysis, we define two 
cuts of the AD dataset; the first, which includes all indi-
viduals and facilitates unbiased selection of individuals 
(Dataset 1); and the second, which is a subset of individ-
uals who have at least one biomarker measurement at 
each observation and facilitates comparison between the 
TEBM, EBM, and GPPM (Dataset 2). We use Dataset 1 
for the analyses in Sections 2.1 & 2.5, and Dataset 2 for 
the analyses in Section 2.2.

4.3.  HD datasets

We use two HD datasets: the TRACK-HD study (Tabrizi 
et al., 2013), a longitudinal multi-site cohort study; and 
the PREDICT-HD study (Paulsen et al., 2008), a longitudi-
nal multi-site observational study. Basic demographic 
characteristics of the cohort are summarised in Supple-
mentary Tables S3 and S4.

From TRACK-HD, we select 356 participants (114 HC: 
healthy control; 129 PreHD: pre-manifest HD; 113 HD: 
manifest HD), with up to 4 observations per participant, 
corresponding to a total of 1204 observations. From  
PREDICT-HD, we select 948 participants (209 HC: healthy 
control; 716 PreHD: pre-manifest HD; 21 HD: manifest 
HD), with up to 7 observations per participant, corre-
sponding to a total of 1712 observations. Individuals could 
have partially or completely missing data at any time-point; 
this corresponded to a total fraction of approximately 2% 
missing data across both datasets. We use a selection of 
five neuroimaging and clinical test score biomarkers. For 
the neuroimaging data, we use the volumes of two com-
ponents of the basal ganglia (caudate, putamen) from 
sMRI, which are established early markers of HD onset 
(Tabrizi et al., 2013; Wijeratne et al., 2018). For the clinical 
test score data, we use Total Motor Score (TMS) as a mea-
sure of motor ability, total functional capacity (TFC) as a 
measure of functional ability, and Symbol Digit Modalities 
Test (SDMT) as measures of cognitive ability (Tabrizi et al., 
2013). As with the AD analysis, we segment observation 
times into the minimum available time between observa-
tions, which is 1 year for both datasets.

4.4.  MRI processing

To acquire regional brain volumes from T1-weighted 3T 
MRI scans, in the AD datasets the TADPOLE challenge 

team (Marinescu et  al., 2020) segmented scans using 
FreeSurfer v5.3.0 (Fischl, 2012). In the HD datasets, we 
segmented scans using the Geodesic Information Flows 
(GIF) segmentation tool (Cardoso et al., 2015), which is 
more suitable for deep grey matter structures.

4.5.  PET image processing

To acquire an image-based measure of Aβ deposition in 
the brain in AD, we use AV45 PET scans post-processed 
to calculate the standard uptake value ratio (SUVR). In 
the ADNI dataset, we use the variable normalised with 
respect to the cortical composite region, which is rec-
ommended for longitudinal analysis (Landau & Jagust, 
2015); in the OASIS dataset, this variable is not avail-
able, so we use the variable normalised to the whole 
cerebellum.

4.6.  Data transformation and covariate adjustment

In both the AD and HD analyses, we first normalised the 
post-processed regional imaging volumes by the individ-
ual’s total intracranial volume, calculated as the sum of 
grey matter, white matter, and cerebro-spinal fluid. We 
also log normalise the biofluid markers in both datasets 
(ABETA, PTAU, TAU in ADNI; plasma NfL in TRACK-HD). 
Biomarkers were adjusted for covariates by using linear 
regression on the cognitively normal (CN) or health con-
trol (HC) distributions for AD and HD respectively, with 
the biomarker as the dependent variable and covariates 
as the independent variables. The regional volumes were 
adjusted for baseline age, sex, site, MRI scanner field 
strength, and total intracranial volume; the clinical test 
score data were adjusted for baseline age, sex, site, and 
years of education; and the biofluid measures were 
adjusted for baseline age, sex, and site.

4.7.  Mathematical model

The temporal event-based model (TEBM) is the time gen-
eralisation of the event-based model (EBM) (Fonteijn 
et al., 2011, 2012; Young et al., 2014). Here, we provide 
only the key equations for the TEBM; see the Supple-
mentary Material for the full model derivation. To formu-
late the TEBM, we make three main assumptions:  
i ) monotonic biomarker dynamics at the group level; ii ) a 
consistent event sequence across the whole population; 
and iii ) Markov (i.e., “memoryless”) stage transitions at 
the individual level. The TEBM assumes that each indi-
vidual j = 1,...,J provides measurements of a subset of 
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biomarkers i = 1,..., I at each of t = 0,...,Tj time-points. We 
can write the TEBM total likelihood as:

	

P(Y |Θ,S) =

j=1

J

∏
k j,t=0

N

∑ P k j,t=0 |S,π( )
t=1

Tj

∏P k j,t | k j,t−1,S,Δ,Q( )
⎡

⎣

⎢
⎢

t=0

Tj

∏
i=1

k j,t

∏P Yi, j,t | k j,t,θ i
p,S( )

i=k j,t+1

I

∏ P Yi, j,t | k j,t,θ i
c,S( )

⎤

⎦

⎥
⎥
.

	

(1)

Here, S = s 1( ),...,s N( ){ } is a permutation of N events 
that represents the hidden sequence of events defining 
the discrete state space for a continuous-time Markov 
jump process, τ , where an event is the transition of a bio-
marker from a normal to an abnormal state; Θ i = π ,Q,θ i⎡⎣ ⎤⎦ 
are additional model parameters, where π  is the initial 
probability vector with elements πa, where a = 1,...,N, that 
is, πa is the initial probability of being at stage a; Q is the 
transition rate matrix with elements qa,b, where a,b = 1,...,N,  
that is, qa,b is the transition rate from stage a to b; Δ is the 
time period of transitions; θ i = θ

pi ∪θ ci are the distribu-
tion parameters generating the data for biomarker i 
(defined in the next paragraph); k j,t ∈0,...,N is the latent 
disease stage for individual j  observed at time-point t; 
and Yi, j,t is the observed data for biomarker i from individ-
ual j at time t. We emphasise that not every individual is 
required to have more than one time-point; the TEBM can 
handle individuals with irregularly sampled data, and if a 
given individual only has a single measurement then their 
data will inform (1) but not the estimation of P(k j,t | k j,t−1,Δ).

Following Young et  al. (2014), we assume univariate 
normal distributions for the data, Yi ∼N µi,σ i( ), and 
choose a two-component Gaussian mixture model to 
describe the data likelihood:

	

i=1

I

∏P(Yi, j,t | k j,t,θ i,S) =
i=1

k j,t

∏P(Yi, j,t | k j,t,θ i
p,S)

i=k j,t+1

I

∏ P(Yi, j,t | k j,t,θ i
c,S).

	

(2)

Here, θ i
p = µi

p,σ i
p,wi

p⎡⎣ ⎤⎦ and θ i
c = µi

c,σ i
c,wi

c⎡⎣ ⎤⎦  are the 
mean, µ, standard deviation, σ , and mixture weights, w, 
for the “abnormal” (i.e., unhealthy) and “normal” (i.e., 
healthy) distributions, respectively. These distributions 
are fit prior to inference, which requires our data to con-
tain labels for patients and controls (see Section  4.9); 
however, once θ i

p and θ i
c have been fit, the model can 

infer S,π ,Q without any labels. An advantage of using a 

two-component mixture model is that if data Yi, j,t are 
missing, the two probabilities on the right-hand side of (2) 
can be set equal and factorised.

4.8.  Model inference

We aim to learn the sequence S, initial probability vector 
π , and transition generator matrix Q, that maximise the 
complete log likelihood, L S,π ,Q( ) = logP Y ,k;S,π ,Q,θ( ). 
As described in Section  4.7, we first obtain θ  using 
Gaussian mixture models. We then apply a nested appli-
cation of the expectation-maximisation (EM) algorithm, 
which consists of an outer EM algorithm that fits S; and 
an inner EM algorithm that fits π  and Q. For each algo-
rithm, we allow 100 iterations and a tolerance of 1E−3 of 
the likelihood between iterations, which we find provides 
sufficient convergence. Full details of the TEBM inference 
scheme are provided in the Supplementary Material.

4.9.  Model training

To obtain the TEBM data likelihood, we first fit Gaussian 
mixture models (2) to the biomarker distributions of 
clinically-labelled “control” and “patient” sub-groups, 
which we define as the cognitively normal (CN) and Alzhei-
mer’s disease (AD) sub-groups for AD, and the healthy con-
trol (HC) and manifest Huntington’s disease (HD) sub-groups 
for HD. For the application of TEBM to both the AD and HD 
datasets, we set the diagonal elements of the prior on Q 
such that the mean sojourn time for each state is 1 year  
and constrain the transition generator matrix Q to permit 
forward-only first-order transitions, which reflects the 
slowly progressive and monotonic nature of AD and HD; 
and we impose a uniform prior on the initial probability π .

In the AD analysis using OASIS data, we only use the 
CNs to fit the mixture models and do not use them to fit 
S, π , and Q, to enable a more direct comparison with the 
ADNI cohort, which has a ratio of approximately 3:1 cog-
nitively impaired (MCI or AD) to CN, while OASIS has 
approximately the opposite ratio; furthermore, the OASIS 
CNs are younger on average than the ADNI CNs by 
approximately 8 years (see Supplementary Tables S1 and 
S2). In the HD analysis, we again only use the HCs to fit 
the mixture models and do not use them to fit S, π, and Q, 
since HCs are genetically specified and hence should not 
progress along the event sequence. Furthermore, in the 
HD analysis using PREDICT-HD data, we use the mixture 
models fitted to the TRACK-HD data, because there are 
insufficient manifest HD individuals in the PREDICT-HD 
dataset. Finally, we use 24 start-points for the outer EM 
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algorithm for the sequence S, to reduce the chance of 
fitting to local minima.

For the EBM and GPPM analyses, we use the default 
parameters as defined by the respective model codes 
(see Section 4.16) to fit the models, with the exception of 
the “trade-off” parameter used by the GPPM, which we 
set equal to 10, as in, e.g., Wijeratne et al. (2021).

4.10.  Model stage duration

The expected duration of each stage (sojourn time), δa, is 
given by:

	 δa =
0

∞

∫ exp −ΔQaa( )dΔ = −1/qaa.	 (3)

Here, qaa are the diagonal elements of the transition 
generator matrix Q.

4.11.  Model staging and prediction

Given S, π , and Q, we can use the Viterbi algorithm 
(Rabiner, 1989) to estimate an individual’s most likely 
stage sequence k j = k j,0,k j,1,...,k j,Tj{ } and hence their 
most likely stage at time t:

	 k j,t = arg  maxk [P(k j,t |S)].	 (4)

We can predict the most likely next stage (i.e., future 
stage) for a given individual over a time period Δ by mul-
tiplying the probability distribution at time t by the fitted 
transition generator matrix evaluated at Δ:

	

arg maxk [P(k j,t+1 |S)]=arg maxk

[P(k j,t |S) ⋅expm(ΔQ)]. 	

(5)

We also define an individual-level “progression risk,” 
rj,t, that leverages information from both the initial and 
predicted distributions. First, we calculate the maxi-
mum likelihood stage from the initial distribution, 
kmax = arg maxk [P(k j,t |S)], then we calculate the abso-
lute difference between the probability from this stage 
in the initial distribution and the probability from the 
same stage in the predicted distribution:

	 rj,t =|P(k j,t = kmax |S) − P(k j,t+1 = kmax |S) | .	 (6)

For a forward-only transition matrix, rj,t will equal zero 
if the maximum likelihoods from the baseline and pre-
dicted likelihood distributions are equal (i.e., zero pro-
gression risk), and equal one if they are maximally 
different. As such, individuals may have non-zero risk of 

progression at the final stage if they have greater proba-
bility of being at the final stage at the predicted time-point 
than at baseline. This should reflect an increased proba-
bility of abnormality in the corresponding biomarker in 
the final stage, that is, the risk of progression in abnor-
mality, which is what the measure is capturing.

For the classification task in Section 2.2, the incorpo-
rated metric is calculated by multiplying Equations 4 and 6 
for t = 0. For the progression risk in Sections 2.3-2.5, we 
choose Δ = 2 years for the time window and set t = 0.

4.12.  Model uncertainty

In both the AD and HD analyses, we use the training set 
to fit the TEBM parameters S, Q, and π , and calculate the 
mean sojourn time for each event according to Equation 
(3). We estimate the uncertainty in the sojourn time by 
refitting all model parameters S, Q, and π  to 1000 boot-
straps of the data, then calculate 95% confidence inter-
vals using the bias-corrected and accelerated (BCa) 
method. Finally, we calculate the cumulative uncertainty 
in the sojourn time for event sn as the cumulative uncer-
tainty propagated quadratically through the event 
sequence to that event. To calculate the staging uncer-
tainty for a given individual, we take 100 samples from 
the probability on the right-hand side of Equation 4 to 
obtain samples of Yj,t, then stage using these samples to 
obtain a distribution of stages. We use these samples to 
calculate the predicted mean and standard deviation 
times for each individual.

4.13.  Obtaining progression risk from the EBM

To obtain a similar metric of progression as Eqn. 6 from 
the EBM, we stage individuals using the EBM and then fit 
Cox proportional hazard models on their EBM stage and 
observed time, with the event being defined as advanc-
ing in stage (as in Young et al., 2014). We then take one 
minus the survival probability as the progression risk.

4.14.  Predicting age of conversion

Following a similar approach as Bilgel & Jedynak (2019), 
we predict conversion by first estimating baseline TEBM 
stage in the training set, then fit a linear regression with 
observed conversion as the dependent variable and 
baseline stage as the independent variable; finally, we 
input the baseline TEBM stages from the test set into the 
regression model to predict the age of conversion. We 
use the equivalent approach for the EBM and GPPM, 
using EBM stage and GPPM time-shift, respectively.



16

P.A. Wijeratne, A. Eshaghi, W.J. Scotton et al.	 Imaging Neuroscience, Volume 1, 2023

4.15.  Clinical trial simulations

We used mixed effects models to obtain power estimates 
for simulated clinical trials (Jones et al., 2003). Specifi-
cally, we first fit a mixed effects model to data from MCI 
individuals in the test set with the outcome variable of 
choice as the dependent variable, observation time as 
the fixed effect, and random effects on the intercept and 
time. We then use the hyper-parameters of the fitted 
mixed effects model to simulate the outcome variable 
with sample size J. The simulated data are then used as 
the dependent for another mixed effects model, which 
has observation time, treatment effect, X, and the inter-
action between time and treatment as fixed effects, and 
random effects on the intercept and time. We then vary 
J and X to simulate clinical trials of different sizes and 
treatment effects. We simulate each trial 1000 times 
and calculate power for each simulation as equal to one 
if the magnitude of the time-treatment interaction is 
more than twice its uncertainty, or zero otherwise; the 
resulting power is the average over all simulations. We 
adopt the convention that power > 80% is considered 
to have rejected type-II error, with significance assumed 
under a two-tailed t-test with α = 0.05. We use the R 
statistical software (R Core Team, 2017) with the LMER 
package.

DATA AND CODE AVAILABILITY

The version of the ADNI dataset that we use is called 
“Tadpole Challenge Data” and is available to download 
for users with an ADNI account: http://adni​.loni​.usc​.edu​
/data​-samples​/access​-data/. The version of the OASIS 
dataset is OASIS-3 and is available to download here: 
https://www​.oasis​-brains​.org/. Requests to access the 
TRACK-HD and PREDICT-HD (version 4) datasets can be 
made to the CHDI Foundation: https://chdifoundation​
.org​/policies/. Python code for the TEBM and scripts to 
reproduce the results in this paper are available here: 
https://github​.com​/pawij​/tebm. R code to reproduce the 
simulations in this paper is available here: https://github​
.com​/pawij​/ctsimulator. Python code for the EBM is avail-
able here: https://github​.com​/ucl​-pond​/kde​_ebm. Python 
code for the GPPM is available here: https://gitlab​.inria​.fr​
/epione​/GP​_progression​_model​_V2.
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