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Superstatistical distribution of 
daily precipitation extremes: A 
worldwide assessment
Carlo De Michele  1 & Francesco Avanzi 1,2

Maximum annual daily precipitation is a fundamental hydrologic variable that does not attain 
asymptotic conditions. Thus the classical extreme value theory (i.e., the Fisher-Tippett’s theorem) 
does not apply and the recurrent use of the Generalized Extreme Value distribution (GEV) to estimate 
precipitation quantiles for structural-design purposes could be inappropriate. In order to address this 
issue, we first determine the exact distribution of maximum annual daily precipitation starting from 
a Markov chain and in a closed analytical form under the hypothesis of stochastic independence. As a 
second step, we formulate a superstatistics conjecture of daily precipitation, meaning that we assume 
that the parameters of this exact distribution vary from a year to another according to probability 
distributions, which is supported by empirical evidence. We test this conjecture using the world GHCN 
database to perform a worldwide assessment of this superstatistical distribution of daily precipitation 
extremes. The performances of the superstatistical distribution and the GEV are tested against 
data using the Kolmogorov-Smirnov statistic. By considering the issue of model’s extrapolation, 
that is, the evaluation of the estimated model against data not used in calibration, we show that 
the superstatistical distribution provides more robust estimations than the GEV, which tends to 
underestimate (7–13%) the quantile associated to the largest cumulative frequency. The superstatistical 
distribution, on the other hand, tends to overestimate (10–14%) this quantile, which is a safer option for 
hydraulic design. The parameters of the proposed superstatistical distribution are made available for all 
20,561 worldwide sites considered in this work.

Daily precipitation is the most sampled and investigated variable in the hydrologic literature1. Instrumental meas-
urements of daily precipitation cover the last 100–250 years2 and have inspired and fed several daily precipitation 
models3. Data of daily precipitation are also a useful start point for disaggregation techniques aimed at estimat-
ing sub-daily precipitation4,5, which is important for both the design of water-engineering infrastructures and, 
more broadly, the understanding6–8 and modeling9–11 of precipitation dynamics at various scales. The design of 
hydraulic structures based on extreme values of daily precipitation amount requires the determination of daily 
precipitation amount with a given level of probability, or return period. This amount of precipitation is usually 
called quantile; its estimation requires in turn the determination of the probability distribution of extremes, like 
the maximum annual daily precipitation, defined as the maximum daily amount within a temporal window of 
one year.

This distribution can formally be obtained from that of the largest sample observation within the same tem-
poral horizon, if (a) the sample size N, representing the number of precipitation days within the year, is given12,13, 
and (b) the distribution of daily precipitation amount is known a priori (so-called parent distribution). These 
conditions are rarely satisfied: for example, N is not constant and it is in fact a random variable. Another impor-
tant issue is that the parent distribution is not known a priori, or its parameters are not constant, but statistically 
variable from a year to another. The statistical variability of parameters has been recently acknowledged in the lit-
erature as superstatistics14,15. This term, originated in the physics realm, in essence means “statistics of statistics”; 
it accounts for the temporal variability of the parameters of a given probability distribution by means of additional 
probability distributions14. Superstatistics is also known in the statistical realm as compound or contagious distri-
butions, [16, chap. 8], [17, sec. 3.5.3].
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To overcome the problem of a variable sample size, an asymptotic (i.e. large N) theory has been developed. 
According to the Fisher-Tippett’s theorem18, also known as the extremal types theorem, the asymptotic distri-
bution of maxima of independent, and identically distributed, random variables can be of three types: EVI, or 
Gumbel distribution, EVII, or Fréchet distribution, and EVIII, or reversed Weibull distribution. These three 
asymptotic distributions may be combined into a single probability distribution, that is, the Generalized Extreme 
Value distribution19 (also indicated as GEV). Since then, the GEV has been used as the main candidate to fit 
observed time series of maximum annual daily precipitation under the implicit assumption of large sample sizes. 
Table S1 reports a list of recent papers that exclusively used the GEV (or its three asymptotic laws) to describe the 
behavior of maximum annual daily precipitation. Some investigations have also been made to understand which 
of the three asymptotic laws is the most appropriate to represent the statistical variability of maximum annual 
daily precipitation20–22. An extensive analysis22 using 15,137 sites worldwide showed that EVII is the most suitable 
asymptotic distribution to describe the maximum annual daily precipitation.

The applicability of this asymptotic extreme value theory to maximum annual daily precipitation has been 
recently questioned23,24. The main objection is that the number of precipitation days (N) in any given year is the-
oretically bounded to 365 (366 in leap years); the actual number is even smaller than that because precipitation 
events tend to be separated by days with no precipitation (intermittency). While the GEV can always be fitted to 
data, the information related to the estimated parameters (viz, the value of the shape parameter) may be a result 
of mere numerical fit, with no direct link with the statistical properties of the parent distribution (in other words, 
the shape parameter of the GEV does not necessarily represent the shape parameter of the parent distribution). 
Starting from previous studies25,26, Marani and Ignaccolo24 proposed an approximated distribution of maximum 
annual daily precipitation for Weibull-distributed (and independent) variables, which relaxes the asymptotic 
assumption. This is also called penultimate approximation. Successively, Zorzetto et al.27 have further relaxed 
this penultimate approximation based on the Weibull distribution, still proposing an approximate distribution 
for the maximum annual daily precipitation. Table S2 shows a list of papers where the GEV and a broad pool of 
non-asymptotic probability distributions are used to represent the maximum annual daily precipitation. Using 
standard goodness-of-fit tests, or statistical indicators, many of these experiments (which often involve a large 
number of alternatives–even more than 3028) came to the conclusion that the GEV is not always the best proba-
bility distribution to represent the maximum annual daily precipitation; in some cases the GEV works better in 
humid sites than in dry sites29–31. While comparing extreme-value-type distributions versus standard probability 
distributions might be questionable32,33, we argue that, from a statistical point of view, it is always possible to test 
the agreement between a data sample and a probability distribution and a better agreement for a non-asymptotic 
distribution should be critically addressed in view of possible non-asymptotic conditions.

Finding the most suitable probability distribution for maximum annual daily precipitation has strong practical 
and theoretical implications, as a wrong choice can lead to (under)oversizing of key components of hydraulic 
structures (for example, levees), or to a highly uncertain quantification of structural safety. Because these struc-
tures are generally designed using quantiles with high return periods, extrapolation to unobserved values is also 
frequent. Approaches that can go beyond numerical fitting and embed the dominant statistical properties of 
precipitation are therefore highly needed to solve ambiguity in parameters’ estimation and provide sound design 
tools.

We contribute to the statistical modeling of daily precipitation extremes by (1) determining the exact distri-
bution of maximum annual daily precipitation over a Markov chain and obtaining a closed analytical form in 
hypothesis of independence, (2) testing the superstatistics conjecture of daily precipitation by using the world 
GHCN database, and thus proposing a superstatistical distribution of daily precipitation extremes that both con-
siders an exact formulation (point 1) and takes into account the annual variability of its parameters in statistical 
terms (the latter being the pure superstatistics conjecture), (3) comparing the performance of the superstatistical 
distribution versus the GEV against data using the Kolmogorov-Smirnov (KS) statistic, with a focus on model’s 
extrapolation, (4) making publicly available the dataset of estimated parameters for this new distribution at world 
scale.

Results and Discussion
We used stations belonging to the Global Historical Climatology Network (GHCN) daily (see also Materials 
and Methods Section). The selected stations have at least 25 years of quality-controlled, complete daily data and 
passed a preliminary screening to detect the presence of changing points, monotonic trends, and autocorrelation 
in annual maxima (all undesired features, see Data and preliminary tests Section).

Using this reduced, but still large database, we also checked if the original time series of daily precipitation 
were autocorrelated. Autocorrelation could adversely influence our daily precipitation model based on a Markov 
chain and thus the resulting distribution of annual maxima. We thus tested if the binary 0–1 time series, where 
“0” means a day with no precipitation, while “1” a day with precipitation, were serially dependent by checking if 
the sample lag-one autocorrelation was statistically different from zero34 for each site (also referred to as station), 
each year, and a selection of thresholds to define nonzero precipitation (xT between 0 and 16 mm). The motiva-
tion for considering different threshold values and details about the role of this parameter in our framework are 
provided in the Materials and Methods Section, to which the reader is referred.

Over all the database, the median value of the percentage of years (calculated for each site) during which data 
are not serially dependent is 5% for xT = 0, but this statistic increases to 52% for xT = 16 mm. Thus, the series of 
daily precipitation present autocorrelation, which becomes weaker when increasing the threshold value. This 
means that a first-order Markov chain seems more appropriate to represent the observed time series than the 
simpler case of zero-order Markov chain. However, for simplicity, in the next we will make use of results (Eq. 5) 
strictly valid in the case of zero-order Markov chain, still obtaining satisfactory performances in modeling max-
imum annual daily precipitation.
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Starting from the time series of daily precipitation, we estimated the parameters of the Weibull distribution 
for nonzero daily precipitation at each station. We checked the agreement between the cumulative distribution 
function (CDF) of Weibull and the cumulative frequency (also referred as empirical cumulative distribution 
function) using the Kolmogorov-Smirnov (KS) test with a 1% significance level. Parameters were calculated for 
every year with at least 25 days of precipitation using L-moments35, assuming, as before, different thresholds xT. 
We treated the presence of repeated values of nonzero precipitation (viz ties) through their randomization36. 
This operation is necessary because the presence of ties can lead to a misidentification of the probability distri-
bution. Randomization adds to all the repeated values a set of suitable random perturbations in the range of the 
instrumental resolution adopted during data sampling. In order to avoid unverifiable assumptions, the noise was 
chosen to be Uniform (i.e., a least-informative approach).

For each site, we calculated the percentage of the years during which the Weibull distribution passed the KS 
test. Table 1 reports the 1st, 2nd, and 3rd quartiles of the percentage of the years during which the Weibull was 
accepted as distribution, for different thresholds. The number of stations considered is also reported, again as 
a function of the threshold. Results show that the number of stations decreases from 20,561 (xT = 0) to 6,421 
(xT = 16 mm) with an increasing threshold, whereas the percentage of acceptance increases rapidly to 100% with 
an increasing threshold. Thus, Table 1 supports the use of Weibull as distribution of daily precipitation, world-
wide, as speculated by Wilson and Toumi37.

The main idea behind the superstatistics conjecture for daily precipitation is that the yearly variability of the 
parameters of daily precipitation can be described by probability distributions. Eq. (5) in Materials and Methods 
Section summarizes the resulting probability distribution for maximum annual daily precipitation, which 
depends on λ and β (Weibull parameters of the probability distribution of nonzero daily precipitation) and p0, 
an “intermittent parameter” describing the probability of precipitation during any given day. This superstatistics 
conjecture was tested for each threshold, and each station, by using a Normal distribution for each of the three 
parameters (λ and β, p0). We estimated the parameters of the Normal distributions (i.e., mean and standard devi-
ation) with the method of moments over the samples of annual estimated values of λ, β, and p0. Figure 1 shows an 
example of annual variability of p0, λ and β, for Cagliari, Italy (site IT000016560), with a threshold xT = 3.7 mm. 
More specifically, panels (a), (c), and (e) show the temporal variability of parameters, while panels (b), (d), and (f) 
compare the cumulative frequency of these parameters with the CDF of Normal distribution.

Considering the threshold xT = 0, over the whole worldwide dataset, the median value of the mean of p0 is 
0.746 (1st quartile 0.651, 3rd quartile 0.830), whereas it is 7.35 mm for λ (1st quartile 4.6, 3rd quartile 10.57), and 
0.766 for β (1st quartile 0.71, 3rd quartile 0.823). The estimate of β looks different from the constant value of 2/3 
speculated in37. For xT = 0, the median value of the standard deviation of p0 is 0.042 (1st quartile 0.034, 3rd quar-
tile 0.052), whereas it is 1.81 mm for λ (1st quartile 1.05, 3rd quartile 2.84), and 0.122 for β (1st quartile 0.095, 3rd 
quartile 0.16). Figure S2 gives the variability of mean and standard deviation of p0, λ and β with latitude (xT = 0). 
The mean of p0, and both the mean and standard deviation of λ exhibit some patterns with latitude, while the 
other statistics are substantially constant.

We checked the agreement between the Normal CDF and the cumulative frequency of sample estimates of the 
three parameters p0, λ, and β using the KS test with a 1% significance level. The Normal distribution is accepted 
as distribution of p0 in 20,554 out of 20,561 stations (99.97%), whereas it is accepted in 20,466 stations (99.54%) 
for λ and β (all results with xT = 0). These percentages of acceptance for the Normal distribution increase when 
increasing the value of the threshold xT. Similar percentages of acceptance can be obtained using the Gamma dis-
tribution, but we preferred the use of Normal distribution because it is more robust in the generation of synthetic 
samples. Overall, these results support the superstatistics conjecture for daily precipitation parameters and the use 
of a superstatistical distribution (given in Eq. (5)) for maximum annual daily precipitation.

After validating the superstatistics conjecture, we finally focused on extremes. For each station, we extracted 
the annual maxima and estimated the GEV parameters with L-moments method [38, chap. 18] by following the 
standard, operational procedure to calibrate a probability distribution from data. The median value for the shape 
parameter κ (over all the database) is −0.082 (1st quartile −0.166, and 3rd quartile 0.006), whereas it is 15.5 mm 
for the scale parameter α (1st quartile 10.9, and 3rd quartile 22.0), and 49.9 mm for the position parameter ε (1st 
quartile 32.8, and 3rd quartile 68.7). These values are in agreement with the estimates given in Papalexiou and 
Koutsoyiannis39. As an example, Fig. 1, panel (g), gives the temporal variability of annual maxima for Cagliari, 
while panel (h) compares the cumulative frequency of its annual maxima against the CDF of GEV. We checked 
the agreement between the GEV and the cumulative frequency of annual maxima using the KS test with a 1% 
significance level. We found that the GEV was accepted as distribution of annual maxima in the 100% of cases.

For each station, and each threshold, we also calculated the superstatistical distribution (given in Eq. (5)). For 
a fixed threshold, we performed the calibration if at least five years of data were available, each with at least 25 

Threshold xT (mm) 0 0.1 0.5 1 5 10 16

1st quartile (%) 78 87 92 95 98 100 100

2nd quartile (%) 91 95 97 98 100 100 100

3rd quartile (%) 97 98 100 100 100 100 100

Num. stations 20,561 20,559 20,520 20,466 18,757 12,825 6,421

Table 1. Quartiles (1st, 2nd, 3rd) of the percentage of acceptance of the Weibull as distribution of nonzero daily 
precipitation, F1(x), according to the Kolmogorov-Smirnov test at 1% significance level. Results are reported 
for different thresholds xT and with the indication of the number of stations where it was possible to make the 
calculations.
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above-threshold observations. This condition reduced the amount of stations on which we calculated the param-
eters to 20,561. We selected the best threshold using the smallest value of the Kolmogorov-Smirnov statistic, 
i.e., the smallest value of the vertical distance between the empirical and theoretical (superstatistical) CDF (see 
Materials and Methods Section). As an example, Fig. 2 compares the CDF of superstatistical distribution with 
the one of GEV and the cumulative frequency (the site is again IT000016560 for consistency with Fig. 1). We 
report results using both the best threshold (xT = 3.7 mm) and the range of thresholds 0–6.5 mm used in this case. 
Figure 2 shows how the choice of the threshold affects the central body and the left tail of the distribution of max-
ima rather than its right tail. The median value of the best threshold worldwide is ~5 mm (1st quartile ~1 mm, and 
3rd quartile ~10 mm). For small values of xT, the autocorrelation as well as the number of data used for calibrating 
the parameters of Weibull is high, conversely for high values of xT, both the autocorrelation as well as the number 
of data decrease. The calibration of xT can be viewed as a trade off between neglecting the temporal dependence 
of daily precipitation and maximizing the agreement with annual maxima. We checked the goodness-of-fit of the 
selected superstatistical distribution and found that in 20,518 out of 20,561 (99.8%) the superstatistical distribu-
tion passed the KS test at 1% level of significance.

Figure 3a gives the violin plot (i.e. a mirrored sample density plot) of the Kolmogorov-Smirnov statistic 
obtained for both the GEV and the selected superstatistical distribution over the entire sample of 20,561 stations. 
The median value of the KS statistic for the GEV is 0.067, while the one for the selected superstatistical distribu-
tion is 0.079, with a wider variability range. While the parameters of the GEV are directly calibrated on annual 
maxima, those of the superstatistical distribution are not, except for the threshold xT, so it is expectable that the 
value of the KS statistic for the GEV will be smaller than the one for the superstatistical distribution. Figure S3 
shows the threshold selected by minimizing the Anderson-Darling statistic against the threshold obtained by 
minimizing the KS statistic, for the 20,561 stations. In 51% of the cases, the selected threshold with the 
Anderson-Darling (AD) statistic is within the interval (xT ± 0.1xT) of ±10% of the threshold selected with the KS 
statistic. This percentage increases to 64%, 71%, 77%, or ~90% if the interval is ±30%, ±50%, ±80%, or ±100% 
of the threshold, supporting the selection made using the KS statistic.

Figure 1. Example of the superstatistics conjecture for Cagliari, Italy (station IT000016560). Panels (a), (c), and 
(e) show time series of the annual values of p0, λ, β, respectively. Panel (g) gives time series of maximum annual 
daily precipitation. Panels (b), (d), (f), and (h) provide, for the parameters of the left column, the comparison 
between empirical (dots) and theoretical (line) CDF. Red line represents the Normal distribution in panels 
(b), (d), (f), the blue line the GEV in panel (h). A threshold xT = 3.7 mm has been selected (see Materials and 
Methods Section).
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Figure 3a poses a significant challenge to the superstatistics conjecture: why one should use Eq. (5), rather 
than the GEV, if its performances are worse, even if slightly? Is the increased complication of Eq. (5) really justi-
fied? The competitiveness of Eq. (5) is in its more robust predictive power, compared to the one of the GEV, when 
predicting unobserved values. In order to illustrate this point, we considered a subsample (357 sites) of the data-
base composed by the longest time series (>100 years). We used the first 25 yrs of each sample to estimate both 
the parameters of the GEV and those of the superstatistical distribution; then we compared these distributions 
with annual maxima of the remaining part of the sample.

Figure 4 gives an example, using Milan data (ITE00100554). Panel (a) reports the variability (dots) of annual 
maxima. Panel (b) shows the comparison between the cumulative frequency (dots), the CDF of GEV (blue line), 
and the one of the selected (xT = 13.3 mm) superstatistical distribution (red line) when all the data are used in 
calibration (1858–2008). Panel (c) reports the comparison between data and the same distributions when using 
the first 25 years (1858–1882) of data in calibration mode. Panel (d) compares the performance of the GEV and 
the superstatistical distribution (calibrated using the first 25 years) in extrapolation mode, that is, over the period 
1883–2008. This corresponds to the well-known split-sample validation protocol used for hydrologic models. In 
panel (b), both models describe well the cumulative frequency; in panel (c), the GEV performs better than the 
superstatistical model; in panel (d), the superstatistical model performs better than the GEV over the unobserved 
part of the sample, i.e., the one not used in the calibration.

Figure 3b gives the violin plot of the Kolmogorov-Smirnov statistic obtained for the GEV and the super-
statistical distribution calculated for the 357 longest stations when using only the first 25 years of data in cali-
bration mode (note that the KS statistics of this violin plot refer to the validation phase). The median value of 
the KS statistic for the GEV is now 0.139 (1st quartile 0.099, 3rd quartile 0.192), while the one for the selected 

Figure 2. Comparison between the empirical (dots) and theoretical (line) CDF for the GEV (blue) and the 
superstatistical distribution (red, xT = 3.7 mm). The station is the same as that in Fig. 1. We also reported the 
variability (area in light red) of the superstatistical distribution when varying the threshold xT in the range 
0–6.5 mm. For values of maximum annual daily precipitation smaller than ~80 mm, xT = 0 and xT = 6.5 mm 
represent the left and right boundaries of this range. For values of maximum annual daily precipitation greater 
than ~80 mm, xT = 0 and xT = 6.5 mm represent the right and left boundaries of this range.

Figure 3. Violin plots (i.e. mirrored sample density plots) of the KS statistic for the GEV and the selected 
superstatistical distribution. Panel (a) gives these statistics when all years at each site (20,561) are used for the 
calibration of the parameters. Panel (b) shows the results when the calibration is restricted to the longest sites 
having more than 100 years of data (357). In panel (b), only the first 25 years are used in calibration, while the 
remaining sample is used in blind validation. Red segments indicate the median, while black ones the mean.
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superstatistical distribution is 0.124 (1st quartile 0.090, 3rd quartile 0.156). We provide also the median values 
obtained in the calibration phase: 0.083 (1st quartile 0.068, 3rd quartile 0.101) for the GEV, 0.119 (1st quartile 
0.095, 3rd quartile 0.147) for the superstatistics. In addition, Fig. S4 in the Supporting Information reports an 
extensive comparison between performances in calibration and validation for both the GEV (left panels) and the 
superstatistical distribution (right panels), again for the 357 sites. This comparison was performed by varying the 
amount of information used in the calibration phase between 10 and 50 years.

Overall, these results clearly show that the performance of the GEV tends to decrease when passing from 
calibration to validation, whereas the superstatistical model shows a remarkable robustness. In addition, the 
performances in validation of the GEV get worse when decreasing the number of years used in calibration, while 
those of the superstatistical model are constant. Figure S4 also clearly shows the better performances of the super-
statistical model in validation, especially for small data samples (say < 25 yrs), while when increasing the samples 
(>25 yrs) the performances of the GEV and the superstatistical model in validation are equivalent. This is due 
to the fact that the superstatistical distribution is calibrated using all the available information, whereas the GEV 
only exploits annual maxima. The superstatistical distribution is more resilient to the sample variability in case 
of small sizes.

Using the subsample of 357 sites having more than 100 years, we also investigated the performances of the 
GEV and the proposed superstatistical distribution in reproducing extremes and in particular the quantile asso-
ciated to the highest cumulative frequency. This analysis used a varying amount of years in calibration for both 
distributions (first m years of the samples). Performances are quantified in terms of the median difference (in %)  
between the theoretical and the empirical quantiles (Table 2). We also reported the percentage of cases when 
the difference between theoretical and empirical quantiles is negative (viz, the distribution is underestimating 
quantiles, see the number in parentheses). Results show that, independently from the amount of data used in 
calibration, the GEV tends to underestimates the quantile associated to the highest cumulative frequency by 7% 
to 13% in 60% to 70% of the cases. On the other hand, the superstatistical distribution tends to overestimate the 
quantile associated to the highest cumulative frequency by about 10% to 14% in 65% to 67% of the cases. Thus, 
the superstatistical distribution is more precautionary than the GEV when estimating the quantile associated to 
the highest cumulative frequency.

The parameters of the proposed superstatistical distribution for all the 20,561 sites considered in this work 
can be found at the following link: http://ecohys.blogspot.com/p/data.html. For each station, this dataset includes 
annual observations of parameters p0, λ, β as well as the optimal threshold xT. These data represent the necessary 
information to readily apply Eq. (5) at any of the sites considered in this work. While no regular update or revision 
of this database is scheduled for the future, authors are open to feedback, suggestions, and comments. Any feed-
back will be incorporated in the database as soon as possible by clearly marking new releases with a progressive 
number.

Figure 4. Example of models’ validation using Milan (ITE00100554) data. Panel (a) gives the annual variability 
(dots) of maximum daily precipitation. Panel (b) shows the comparison between the empirical (dots) and 
theoretical (line) CDF for the GEV (blue) and the superstatistical distribution (red, xT = 13.3 mm) when all 
the data are used in calibration (1858–2008). Panel (c) reports the comparison between data and the same 
distributions when only the first 25 years (1858–1882) of data are used. Panel (d) compares the performance of 
the GEV and the superstatistical distribution (calibrated using the first 25 years) in extrapolation mode, that is, 
over the period 1883–2008.

http://ecohys.blogspot.com/p/data.html
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Materials and Methods
Data and preliminary tests. In this work, we considered the world database Daily Global Historical 
Climatology Network (version 3.2), available at ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/. The database 
includes more than 75,000 stations with daily precipitation data during the period 1797–2015. This dataset has 
been already used by previous works on extreme precipitation and therefore represents a good benchmark for 
judging improvements to existing theory. We selected 21,510 stations with at least 25 years of quality-controlled, 
complete data (viz, without missing data and/or quality flags). Before performing any further statistical analysis, 
each dataset of annual maxima was further pre-screened to check possible non-stationarities such as changing 
points or monotonic trends, detected using the Pettitt test40, and the Mann-Kendall test41,42, respectively. We also 
preliminarily tested the independence assumption of annual maxima by checking if the lag-one autocorrelation 
was significantly different from zero43. The presence of autocorrelation could induce the detection of a spurious 
monotonic trend. A 1% significance level was used in order to limit the type-I error. We removed from our anal-
ysis any time series that did not pass at least one of these three tests.

The autocorrelation of annual maxima was significantly (1% significance level) greater than zero in 1% (210 
time series) of the data, whereas 1.8% of them (389 time series) presented a changing point. The median of this 
changing-point year across all these 389 sites was 1957, which is in agreement with findings in Southern-East 
Europe43 and about 10 years earlier than the changing point found in Austria44 (late 1960s - early 1970s). 2.7% of 
data (589 time series) showed a monotonic trend, wheres 0.3% (58) presented both autocorrelation and changing 
point, 0.2% (51) presented autocorrelation and a monotonic trend, and 1.2% (264) presented a changing point 
and a monotonic trend. Overall, 4.0% (859) of time series were removed from our analysis, as a result of these 
preliminary screenings. The number of considered stations was thus reduced to 20,651. Their location is given 
in Fig. S1 in the Supplementary Material. The stations have a number of years of complete data (i.e., without no 
data) varying between 25 and 196 yrs, with a median of 46 yrs, a 1st quartile of 34 yrs, and a 3rd quartile of 60 yrs. 
Rejected stations are evenly distributed around the world, with no evident spatial pattern.

Distribution of maximum annual daily precipitation starting from a Markov chain. Due to the lack 
of asymptotic conditions for the maximum annual of daily precipitation, the results of Fisher-Tippett’s theorem13  
are not valid, even if they are assumed as reference. Pre-asymptotic results25,26, also known as penultimate approx-
imations, have been recently considered in the analysis of daily precipitation extremes24, as well as an approximate 
distribution27. Here, differently, we provided some exact results.

We started from the abundant literature34 about the representation of daily precipitation occurrence through 
a Markov chain. We determined the distribution of the daily precipitation extremes as the law of the annual 
maximum of variables over a Markov chain, using some general results given in statistical literature45. The daily 
precipitation has been described by a bivariate sequence of random variables, r.v.’s, {(Jn, Xn), n ≥ 0}. The marginal 
sequence {Jn} is a two-state {0, 1} first-order Markov chain with P[Jn = j|Jn−1 = i] = pij and i, j = {0, 1}. Jn = 1 means 
that precipitation occurs on day n, Jn = 0 means that no precipitation occurs on day n. The r.v.‘s {Xn} are condition-
ally independent given {Jn}, describing the amount of precipitation. P[Xn ≤ x|Jn = i] = Fi(x), with i = {0, 1} is the 
cumulative distribution function of Xn conditioned by the status Jn. In particular, F0(x) is a degenerate function at 
zero (i.e., it has all its probability at zero: F0(x) = 1 if x = 0, F0(x) = 0 otherwise), while F1(x) is not. P[Jn = j, Xn ≤ x
|Jn−1 = i] = P[Jn = j|Jn−1 = i]⋅P[Xn ≤ x|Jn = i] = pij⋅Fi(x) = Qij(x).

Let NT = 365 be the number of days in the year, and = …M X Xmax { , , }N1 T
, the maximum annual value of 

the r.v.s Xn. The conditional probability can be written as

= ≤ | = = =P J j M x J i x U xQ[ , ] [ ( )] ( ) (1)n
N

ij ij0
T

where xQ[ ( )]N
ij

T  is the element ij of the NT-th power of the matrix Q = {Qij}. From Eq. (1),

∑≤ | = = .
=

P M x J i xQ[ ] [ ( )]
(2)j

N
ij0

0

1
T

m GEV Superstatistical dist. (Eq. 5)

10 −7% (60%) +10% (35%)

15 −8% (63%) +13% (33%)

20 −12% (66%) +13% (33%)

25 −12% (65%) +14% (33%)

50 −13% (70%) +10% (34%)

Table 2. Performances of the GEV and the proposed superstatistical distribution in reproducing the quantile 
associated to the highest cumulative frequency for the 357 sites having more than 100 years. m represents 
the number of years used in calibration for both distributions (first m years of the samples). Performances 
are quantified as median difference (in %) between the theoretical and the empirical quantiles. The number 
in parentheses is the percentage of cases when the difference between theoretical and empirical quantiles is 
negative (viz, the distribution is underestimating quantiles).
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If NT is large (as it happens with NT = 365), then P[M ≤ x|J0 = i] = P[M ≤ x] = FM(x) being the marginal distri-
bution of M. The calculation of xQ ( )NT  can be obtained using the Cayley-Hamilton theorem [46, chap. 3]. However, 
the mathematical expression of P[M ≤ x] is too complicated to be used for practical applications. In the particular 
case, when Jn is a two-state {0, 1} zero-order Markov chain (i.e., stochastic independence), analytical results are 
determined. p11 = p01 = 1−p0 and p00 = p10 = p0. p0 is denominated the “intermittent” parameter, and represents 
the probability of zero precipitation in a day. The matrix

=





− ⋅

− ⋅






p p F x
p p F x

Q
(1 ) ( )
(1 ) ( )

0 0 1

0 0 1

has a determinant equal to zero, and = ⋅−Q Q Q(Tr( ))N N 1T T , where the trace Tr(.) of the matrix Q is Tr(Q) = [p0 
+ (1−p0)⋅F1(x)]. The distribution of the maximum annual daily precipitation, M, is then

= + − ⋅F x p p F x( ) [ (1 ) ( )] (3)M
N

0 0 1
T

where NT is fixed and known.
Eq. (3) is a mixture distribution with a mass in zero, which accounts for the intermittent behavior of pre-

cipitation through the parameter p0. In the standard literature13, the distribution of the maximum annual daily 
precipitation is calculated as [F1(x)]N, where N is a random variable, representing the number of days in the 
year with nonzero precipitation. Since N is variable, asymptotic (also known as ultimate), penultimate, or other 
approximations are necessary. Conversely, Eqs (2–3) are exact results, which generalize the existing literature. As 
distribution of daily precipitation in days with J = 1, F1(x), we considered the Weibull (or stretched Exponential) 
distribution, following the motivations given by Wilson and Toumi37; this distribution is also adopted in24,27. 
In particular, we used a shifted Weibull, having the following expression, F1(x) = 1 − exp[−((x−xT)/λ)β], where 
λ > 0 is the scale parameter, β > 0 the shape parameter, and xT > 0 is the shift or threshold parameter.1

This threshold parameter aimed at distinguishing precipitation events from spurious, or low nonzero precipi-
tation events. Accordingly, a given day was considered “wet” if the precipitation was greater than xT. Because the 
value of this threshold could be both site- and instrument-specific, we performed all computations using values in 
the range [0, 16] mm and then selected the best threshold for each site by minimizing the Kolmogorov-Smirnov 
(KS) statistic13 between the cumulative distribution function of maximum annual daily precipitation (see Eq. (5) 
below) and the cumulative frequency (calculated using the Weibull plotting position13) of annual maxima. This 
approach allows each site to choose a different optimal threshold based on data fitting. The range for xT is broader 
than the interval [0, 10] mm considered in the literature37, however it is in line with the range of precipitation 
threshold considered to generate runoff (see Table 1 in47). In any case, our results show that the optimal value of 
this threshold is smaller than 10 mm in 80% of the sites, which represents a good trade-off between rejecting noise 
and preserving precipitation events that are usually significant for hydrologic processes.

Eq. (3) can be written as

λ β λ| = + − ⋅ − − − βF x p p p x x( , , ) [ (1 ) (1 exp( (( )/ ) ))] (4)M T
N

0 0 0
T

with FM(x|p0, λ, β), making explicit the variability of FM with the three parameters, p0, λ, and β.
Figure 5a shows the variability of FM(x|p0, λ, β) with the intermittent parameter p0 (blue lines), compared to 

F1(x) (the continuous black line), namely the parent distribution (Weibull). Parameters are as follows: β = 0.6, 
λ = 10, xT = 0. p0 varies between 0.10 and 0.90. The two extremal conditions of FM are: p0 = 0 (the wettest condi-
tion) and p0 = 1−1/365 = 0.997 (the driest–non-trivial–condition, both in red dashed). If p0 = 1−1/365, there will 

Figure 5. Variability of FM(x|p0, λ, β). Panel (a) shows Eq. (4) (blue lines) compared to the parent distribution 
(black line), i.e., the distribution of precipitation days F1(x). Parameters are as follows: β = 0.6, λ = 10, xT = 0. 
p0 varies between 0.10 and 0.90. The two extremal conditions p0 = 0 and 0.997 are in red dashed (right and left, 
respectively). Panel (b) gives Eq. (5) (red lines) compared to the parent distribution (black line) and with Eq. (4) 
(blue line). The red lines are obtained considering Normal distributions for the three parameters, with means 
equal to the values used in panel (a), and a variable coefficient of variation (CV) between 0.10 and 0.90.



www.nature.com/scientificreports/

9SCIentIfIC REpoRTS |  (2018) 8:14204  | DOI:10.1038/s41598-018-31838-z

be (on average) only one day per year with nonzero precipitation and the distribution of maximum annual daily 
precipitation will be close to the parent distribution F1. This suggests that in (very) dry climates the distribution 
of maximum annual daily precipitation could be very similar to the parent distribution, which supports the use 
of non-extreme type distributions as found in some references of Table S2. If p0 = 0, all days will be characterized 
by nonzero precipitation and the distribution of maximum annual daily precipitation will be represented by the 
most distant condition from the parent distribution F1(x) (with regard to p0 variability).

The parameters, p0, λ, and β, are estimated year-by-year. p0 can be estimated as the ratio n0/NT where n0 is 
the number of dry days in the year, while λ and β can be estimated through the L-moments method35, which is 
more robust than the method based on ordinary moments when dealing with outliers in data or with extremes. 
The agreement between the Weibull distribution and the nonzero daily precipitation data has been checked 
year-by-year using the KS test13 with a 1% significance level.

The superstatistical distribution of maximum annual daily precipitation. A complication of 
expressing daily precipitation extremes using Eq. (4) is that its parameters can vary form year to year due to 
weather and climate24,27. To fully include this variability in the estimation of quantiles, we leveraged the supersta-
tistics conjecture for daily precipitation, i.e., we assumed that the parameters of its distribution are described by 
probability distributions. This conjecture, even if considered in the literature for daily precipitation48,49, has not 
been tested extensively yet.

Using the Kolmogorov-Smirnov test, we checked if the fluctuations of the yearly values of p0, λ, β parameters 
could be represented by Normal distribution, which was selected among other distributions like χ2, or Gamma 
after a preliminary check. While a right and left truncated distribution could be more appropriate for the param-
eter p0∈[0, 1], and a left-truncated distribution for λ and β, we considered Normal distributions, both for sim-
plicity and as a first approximation. The parameters of these three Normal distributions are estimated using the 
method of moments.

In hypothesis of superstatistics, the resulting distribution of M must be calculated as E[FM(x|p0, λ, β)], where 
the expectation is with respect to the (joint) distribution of the three parameters. Given m years of data, empiri-
cally, the distribution of the variable M can be calculated as the arithmetic mean of the m distributions in Eq. (4):

∑ λ= 


+ − ⋅ − − − 


.β

=
F x

m
p p x x( ) 1 (1 ) (1 exp( (( )/ ) ))

(5)M
i

m

T i

N

1
0 0i i

i
T

Eq. (5) is the superstatistical distribution. Figure 5b shows the variability of Eq. (5) (red lines), compared to F1(x) 
(black line), and Eq. (4) (blue line). We assumed Normal distributions for the three parameters: the average values 
are the same as those used in panel 4(a), whereas the coefficients of variation are assumed equal for all the param-
eters in the range between 0.1 and 0.9. We have checked the goodness-of-fit between Eq. (5) and data using the 
KS test with a 1% significance level.

The GEV distribution. The cumulative distribution of the GEV is

κ ε α= − − − κF x x( ) exp[ (1 ( )/ ) ] (6)M
1/

where ε ∈ R, α > 0 and κ ∈ R are the position, scale and shape parameters, respectively. If κ = 0, then the GEV 
coincides with the Gumbel distribution, if κ > 0 it is the reversed Weibull distribution, and if κ < 0 it is the Fréchet 
distribution. The GEV parameters are estimated using the L-moments method [38, chap. 18]. We have checked the 
goodness-of-fit between Eq. (6) and data using the KS test with a 1% significance level.
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