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Influenza  virus  research  has  recently  undergone  a  shift  from  a  virus-centric  perspective  to  one  that
embraces the  full  spectrum  of  virus–host  interactions  and  cellular  signaling  events  that  determine  disease
outcome.  This  change  has  been  brought  about  by  the  increasing  use  and  expanding  scope  of  high-
throughput  molecular  profiling  and  computational  biology,  which  together  fuel  discovery  in systems
biology.  In  this  review,  we  show  how  these  approaches  have  revealed  an  uncontrolled  inflammatory
response  as  a  contributor  to  the  extreme  virulence  of  the  1918  pandemic  and  avian  H5N1  viruses,  and

how this  response  differs  from  that  induced  by  the 2009  H1N1  viruses  responsible  for  the  most  recent
influenza  pandemic.  We  also  discuss  how  new  animal  models,  such  as  the  Collaborative  Cross  mouse
systems  genetics  platform,  are  key  to the  necessary  systematic  investigation  of  the impact  of  host  genet-
ics on  infection  outcome,  how  genome-wide  RNAi  screens  have  identified  hundreds  of  cellular  factors
involved  in  viral  replication,  and  how  systems  biology  approaches  are  making  possible  the  rational  design
of  new  drugs  and  vaccines  against  an  ever-evolving  respiratory  virus.
. Introduction

Each winter brings a new flu season and with it the possi-
ility of unpleasant surprises for the human population. Most
ears, influenza outbreaks are relatively predictable, causing
0,000–40,000 deaths in the United States. More serious threats
ome in the form of exceptionally transmissible or virulent
nfluenza virus variants, which can give rise to worldwide pan-
emics and greatly increased morbidity and mortality. New viral
ariants arise through a combination of antigenic drift—gradual
hanges brought about by point mutations in viral genes—and anti-
enic shift—abrupt changes brought about by the reassortment of
omplete viral gene segments. But while the mechanisms under-
ying the evolution of new influenza virus variants are relatively

ell understood, comparably less is known about the virus–host
nteractions that determine disease outcome.

Traditionally, research on viral pathogenesis has focused on the
ontribution of viral genes and gene products, with little emphasis

n the host. In the case of influenza virus, which encodes less than

 dozen genes, hundreds of papers have been published on the viral
S1 protein, which has been reported to have numerous functions
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that can potentially impact virulence [1]. The viral hemagglutinin
(HA) and neuraminidase (NA) genes have also been implicated
as virulence determinants, as have components of the viral poly-
merase. Although knowledge of viral protein function has been
instrumental in the development of anti-influenza drugs, which
include inhibitors of NA (oseltamivir and zanamivir) and the viral
M2 ion channel (amantadine and rimantadine), drug-resistant
influenza viruses continue to emerge and there remains a need
for new and effective antiviral therapies [2]. Similarly, challenges
remain in developing influenza vaccines that are protective across
a broad range of strains, as the most effective vaccines promote
an immune response against HA, which is the most variable of the
viral proteins [3].

The advent of high-throughput genome-based technologies
brought the ability to expand from a virus-centric perspective to
one that encompasses the entire spectrum of virus–host interac-
tions and their impact on the global host response to infection.
We  were among the first to bring this approach to influenza virus
research with genome-scale analyses of the host response to active
or heat-inactivated influenza virus [4], to a deletion mutant lack-
ing the NS1 gene [5], and to recombinant viruses containing the HA
and NA genes from the 1918 pandemic virus [6]. Our group was also
the first to use genomic approaches to analyze a macaque model

of influenza virus infection [7]. These studies showed the power of
genomic analyses to provide a global view of the host transcriptio-
nal response to infection [8], but only hinted at the complexities of
the response that remains to be uncovered.

dx.doi.org/10.1016/j.smim.2012.11.001
http://www.sciencedirect.com/science/journal/10445323
http://www.elsevier.com/locate/ysmim
mailto:honey@u.washington.edu
dx.doi.org/10.1016/j.smim.2012.11.001
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Fig. 1. Overview of advances in the use of high-throughput approaches to study influenza virus–host interactions and viral pathogenesis. Advances in computational methods
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re  now beginning to provide the means to integrate the diverse types of data and in
nteractions, the antiviral response, and innate and adaptive immunity.

Despite these early advances, as late as 2007, a review of the use
f genomics to study influenza virus–host interactions yielded only

 handful of additional studies [9]. Over the past 5 years, however,
he landscape has changed dramatically. Gene expression profiling
s being augmented by proteomics and metabolomics, global RNAi
creens are being used to identify host factors involved in influenza
irus replication, and gene knockout and Collaborative Cross mouse
odels are providing new insights into the host genetic deter-
inants that regulate disease outcome (Fig. 1). Moreover, new

echnologies, such as next-generation sequencing, are allowing us
o peer ever deeper into the host response, and computational
pproaches are becoming increasingly sophisticated.

In this review, we touch upon each of these topics as well
s provide an overview of what systems biology approaches are
evealing about the host response to highly pathogenic viruses,
uch as the reconstructed 1918 pandemic virus and avian H5N1
trains, and to newly emerging viruses, such as the H1N1 virus
esponsible for the 2009 pandemic. We  also discuss how systems
iology and predictive methodology approaches are contributing
o drug and vaccine development and speculate on what the future
olds for the systems biology of influenza virus–host interactions.

. 1918 and avian H5N1 viruses: pandemics of the past and
uture?

Why  do some influenza viruses cause severe, even fatal disease,
hile others cause relatively mild respiratory infections? While

his is not a new question, finding the answer took on renewed
rgency with the first reports of human infection with avian H5N1
iruses [10,11]. In the initial outbreak in Hong Kong, 6 of 18 infected
ndividuals died, and “bird flu” became an international concern.
ince then, highly pathogenic avian H5N1 viruses have continued to
ppear throughout Southeast Asia and into Europe and Africa with

undreds more human infections and a mortality rate of up to 60%
12,13]. The possibility that such a virus could acquire the ability to
eadily transmit between humans is justifiable cause for concern.
esearch on the mechanisms underlying highly virulent influenza
tion obtained from these approaches to yield systems-level insights into virus–host

virus infection gained further momentum with the reconstruction
of the 1918 pandemic virus [14], a virus responsible for the greatest
infectious disease outbreak in human history and over 50 million
deaths worldwide [15]. Not surprisingly, the reconstructed 1918
virus and avian H5N1 strains have also become a prominent focus
of genomic and systems-level analyses aimed at understanding the
virus–host interactions underlying severe respiratory virus infec-
tion.

2.1. Animal models: inflammation gone awry

Genomic analysis of the host response to the reconstructed 1918
pandemic virus (r1918) began in 2006 with studies using a mouse
infection model [16]. Mice infected with r1918 developed severe
lung pathology, including intense infiltration of neutrophils, and
died within 5 days of infection. At the genomic level, the lungs of
these animals exhibited an early (day 1) increase in the expres-
sion of cytokine, chemokine, and apoptosis-related genes, including
genes associated with death receptor, IL-6, type I IFN, and Toll-like
receptor responses. This response was  unique to the r1918-infected
animals and was  not observed in the lungs of mice infected with a
contemporary (and less pathogenic) H1N1 strain. Increased inflam-
matory gene expression paralleled destruction of the respiratory
epithelium and was sustained until the death of the animals, pro-
viding a first glimpse of an inflammatory signature that has since
become pathognomonic with severe respiratory virus infection
(Fig. 2).

Whereas the virulence of r1918 in mice was unusual—most
influenza viruses require adaptation to cause lethal infection in
mice—its virulence in macaques proved to be exceptional. The
first experimental infection of cynomolgus macaques with r1918
resulted in acute respiratory distress and death, with all ani-
mals euthanized by day 8 due to the severity of symptoms [17].

Genomic analysis of bronchial tissue from r1918-infected animals
(chosen because of less immune cell infiltration than in the lung)
also revealed an early and sustained induction of inflammatory
cytokine (particularly IL-6) and chemokine genes, including CXCL1
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Fig. 2. Differential induction of inflammatory gene expression by influenza viruses causing mild or severe respiratory disease. Shown are changes in inflammatory gene
expression profiles over time in the lungs of mice infected with A/Texas/36/91 (a nonpathogenic seasonal isolate), A/CA/04/2009 (a mildly pathogenic 2009 H1N1 pandemic
isolate),  or highly pathogenic mouse-adapted 2009 H1N1, r1918, or avian H5N1 viruses. Expression values are represented as the average of the log2 ratio of infected to
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espective mock-infected samples for three biological replicates per condition. Re
espectively.

nd CXCL6, which are important for the recruitment of neutrophils.
n contrast, macaques infected with a less pathogenic H1N1 strain
howed increased expression of DDX58 (RIG-I), IFIH1 (MDA5), type

 IFN, and IFN-stimulated genes (ISGs) early after infection, but this
esponse was down-regulated at later time points as the animals
ecovered. Fewer ISGs were induced in r1918-infected macaques,
ut those that were induced retained high levels of expression until
he death of the animals. Interestingly, a similar lack of attenu-
tion of early immune activation leading to death is observed in
acaques infected with simian immunodeficiency virus, indicating

hat uncontrolled immune responses might be a general mecha-
ism of pathogenicity across a wide range of viruses and hosts [18].

Studies using the macaque model to examine the host response
o H5N1 viruses have also reported severe lung pathology and
he induction of a strong innate immune transcriptional response,
lthough macaques infected with H5N1 viruses typically recover
19]. In a direct comparison of the host response to r1918 and
5N1 infection, both viruses were found to cause early and severe

ung pathology and both induced similar ISG expression at 12-h
ost infection. However, by 24-h post infection, while both viruses
eached similar titers, only the r1918 virus induced the expression
f numerous genes related to cell death and inflammation, includ-
ng the inflammasome components NLRP3 and IL-1� [20]. Although
he inflammasome has been reported to be an essential component
f the innate immune response to influenza A viruses [21–23], the
xcessive activation of this response appears to be detrimental.

Whereas r1918 has repeatedly been found to be more virulent
han H5N1 viruses in macaques, the opposite is seen when using a

ouse model of infection, where H5N1 viruses exhibit greater vir-
lence. In a study by Cilloniz et al. [24], both viruses reached similar

iters in mice and both elicited an early and marked increase in
he expression of IFN-regulated and inflammatory response genes.
owever, in mice, it is the H5N1 virus that elicits strong induction
f inflammasome genes. The H5N1 virus also disseminated to
 green indicate that gene expression is increased or decreased relative to mock,

the brain and spleen, and a computational approach identified a
correlation between tissue dissemination and the up-regulation
of pro-inflammatory responses and the down-regulation of anti-
inflammatory genes. Most notable was the down-regulation of
Alox5, responsible for the biogenesis of lipoxins—eicosanoids
with anti-inflammatory properties [25]—and Socs2, encoding a
suppressor of cytokine signaling that can be induced by lipoxins
to control the inflammatory response [26].

H5N1 infection of ferrets also induces the strong up-regulation
of IFN response genes [27], including the expression of CXCL10, a
chemoattractant for activated Th1 lymphocytes and natural killer
cells. Treatment of ferrets with an antagonist of CXCR3, the recep-
tor for CXCL10, resulted in reduced viral loads and pathology, but
only delayed eventual mortality. Thus, multiple genomic profiling
studies using a variety of animal models have pointed to an early,
sustained, and excessive inflammatory response as a hallmark of
severe influenza virus infection.

2.2. In vitro systems: transcriptional regulation of inflammation

Although animal models arguably provide the most biologi-
cally relevant system for analyzing the host response to infection,
in vitro systems using lung epithelial cells [28] and primary human
macrophages [29] have also provided evidence for the early up-
regulation of pro-inflammatory cytokine genes in response to
infection with highly pathogenic or modified H5N1 viruses. In vitro
systems have further been used to examine the extent to which
the transcription factor NF-�B, a major regulator of inflamma-
tory gene expression, has on the host response to H5N1 infection
[30]. Infecting primary human endothelial cells in the presence or

absence of a dominant negative mutant of I�B kinase 2, which
blocks the activation of NF-�B, revealed that the majority of
H5N1-induced genes were NF-�B-dependent. Some genes, such as
IFN-�, were strictly NF-�B-dependent, whereas others were only
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artially dependent upon NF-�B for their induction. In contrast, a
ess pathogenic influenza virus, A/WSN/33, induced a weaker over-
ll host response that was less dependent upon NF-�B.

In an extension of these studies, promoter analyses were used to
dentify additional transcriptional regulators necessary for H5N1-
nduced gene expression in endothelial cells [31]. These analyses

ere performed using the gene expression profiles induced by
5N1 infection but not by infection with mildly pathogenic H7N7
vian or H1N1 viruses. Coupled with targeted siRNA knockdown,
hese analyses confirmed the role of IRF3 in H5N1 induction of
FN response genes and also identified a requirement for the tran-
cription factors HMGA1 and NFATC4 in mediating the strong
nflammatory response induced by H5N1 infection. The combina-
ion of NF-�B, HMGA1, and NFATC4 signaling may  therefore be
f particular importance in the inflammatory response induced in
ndothelial cells by highly pathogenic H5N1 viruses.

More recently, weighted gene correlation network analysis
WGCNA) was  used to identify the host regulatory network
esponse to H5N1 infection of human bronchial epithelial (Calu-3)
ells [32]. This method identifies gene expression patterns on the
asis of underlying correlation structures and groups genes into
ignaling networks or modules. The two most prominent networks
dentified included genes associated with the immune response
r keratinization processes. The mechanisms by which changes in
eratin gene expression contribute to the host response to H5N1
irus infection are not clear, but alterations in keratin may  impact
uch processes as intracellular viral transport and budding. As dis-
uss later, several quantitative proteomic studies have also shown
ncreases in the abundance of keratin in response to influenza virus
nfection.

.3. Therapeutic implications: targeting the inflammatory
esponse

The finding that an excessive and uncontrolled inflammatory
esponse—frequently referred to as a cytokine storm—is a common
actor in the virulence of r1918 and avian H5N1 viruses suggests
hat therapy to limit the inflammatory response may  be beneficial
n treating infections caused by highly pathogenic influenza viruses.
et as reviewed elsewhere [33], despite efforts to target the host
esponse with a variety of anti-inflammatory drugs, this approach
as been largely unsuccessful. At least part of the difficulty may  rest
ith the timing at which anti-inflammatory or immunomodulat-

ng drugs are administered. Just as genomic profiling studies have
evealed that the timing and duration of the inflammatory response
s an important factor in disease outcome, so too is it likely that the
iming at which elements of the host response are suppressed or
nhanced through drug therapy needs to be carefully controlled.
ith the increasing sophistication of computational approaches,

ne challenge for the future will be to garner a deeper understand-
ng of the rapidly changing dynamics of the immune response (see
ection 10). This may  lead to rational improvements in both the
argets and timing of immunomodulatory therapy.

. The 2009 H1N1 pandemic: emergence of a novel
nfluenza virus

In early 2009, interest in the 1918 and H5N1 viruses took a
emporary back seat with reports of unusually severe influenza out-
reaks in Mexico. By April 2009, the virus appeared in the United
tates, causing clusters of illness in schools and communities.

lthough most infections were mild, some individuals had severe
ymptoms, and the virus was clearly capable of rapid human-to-
uman transmission. By June 2009, the World Health Organization
nnounced that a global pandemic was underway. The virus was
unology 25 (2013) 228– 239 231

determined to carry a unique reassortment of gene segments from
avian, human, and swine influenza viruses [34,35], resulting in a
virus for which few people under age 60 had any significant level
of preexisting immunity [36]. Such rapid emergence of new reas-
sortment viruses by genetic shift illuminates the challenges for the
host immune system as well as for vaccination and therapeutic
strategies.

3.1. Animal models: macaques, mice, and pigs too

The cynomolgus macaque model used to study r1918 and H5N1
pathogenesis has also proven useful in characterizing the host
response to 2009 H1N1 pandemic viruses [37,38]. In particular,
infection of macaques with either of two  genetically similar but
clinically distinct human isolates resulted in clinical disease that
ranged from mild to severe pneumonia, closely mimicking human
infection with these viruses [38]. Gene expression profiling of
lung tissue from these animals revealed the induction of numer-
ous genes related to the inflammatory response, and in animals
infected with the virus causing more severe clinical symptoms,
there was  also up-regulation of a network of NF-�B signaling
molecules, which correlated with increased pro-inflammatory
plasma cytokine levels (e.g., IL-6 and MCP-1) early after infec-
tion. However, unlike r1918 or H5N1 infection, these responses
resolved and the animals recovered from infection. Comparing the
host response to highly pathogenic and 2009 H1N1 viruses might
therefore lead to the identification of immune activation atten-
uation signals that could represent potential targets for therapy
against r1918 and H5N1 infection.

Most 2009 H1N1 pandemic viruses cause only mild disease in
mice [37,39]. However, serial lung passage can be used to gen-
erate mouse-adapted viruses with markedly increased virulence
[40]. Genomic profiling of the host response to a mouse-adapted
virus—containing a total of five mutations in HA, PB2, and NP
and causing 100% lethality—provided an opportunity for compar-
ative analyses of the host response to mild or severe 2009 H1N1
infection [41]. Perhaps not surprisingly, the mouse-adapted virus
elicited an early and sustained inflammatory response, reminis-
cent of that induced by r1918 and H5N1 viruses (Fig. 2). This
observation was  confirmed computationally using nonparametric
multidimensional scaling to visualize global gene expression con-
cordance across the transcriptional profiles elicited by these viruses
(Fig. 3). In addition, animals infected with the mouse-adapted virus
exhibited perturbation in the expression of lipid metabolism genes
later in infection, as was observed previously in macaques infected
with H5N1 virus. Transcription factor activation state prediction
identified IRF1 and NF-�B as the primary drivers of the sustained
inflammatory response along with inhibition of the negative regu-
lator TRIM24.

Because the 2009 H1N1 virus derived in part from swine
influenza viruses, there has also been interest in determining the
extent to which these viruses are able to cause disease in pigs
[42,43]. In a study by Ma  et al., pigs were infected with a human
2009 H1N1 isolate, a 2009 swine isolate, or with a 1918-like clas-
sical swine influenza virus [42]. Both of the 2009 viruses caused
mild clinical symptoms, whereas the classical swine virus induced
only fever. Animals infected with the 2009 viruses exhibited an
increase in the transcription of inflammatory and immune response
pathways that included genes associated with pattern recogni-
tion receptor signaling. By day 5 after infection, these animals also
exhibited increased expression of genes associated with cell death
and lipid metabolism. In contrast, these responses were largely

absent in animals infected with the classical swine virus, and the
expression of genes associated with lipid metabolism was actually
suppressed. It is possible that the suppression of lipid metabolism
genes may  be due in part by the actions of the NS1 protein of the
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Fig. 3. Comparison of transcriptional profiles elicited by A/Texas/36/91 (a non-
pathogenic seasonal isolate), CA/04/2009 (a mildly pathogenic 2009 H1N1 pandemic
isolate), or highly pathogenic mouse-adapted 2009 H1N1, r1918, or avian H5N1
viruses. Nonparametric multidimensional scaling was  used to represent the Euclid-
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the host genome be used to study host determinants of disease
an  distance between samples on each day post infection. The matrix distance was
alculated using the list of genes that are represented in Fig. 2.

918-like virus. Previous transcriptional studies have shown that
nfection of a lung epithelial cell line with a recombinant seasonal
irus containing the 1918 NS1 gene results in the down-regulation
f a network of genes associated with lipid metabolism [44].

The differential response of pigs to the 2009 H1N1 viruses and
he 1918-like classical swine influenza virus is particularly intrigu-
ng in light of the fact that pigs infected with r1918 exhibit only
ransient fever and mild respiratory disease [45], in stark contrast
o the rapidly lethal infections that result in macaques and mice
hen infected with the r1918 virus. This makes the pig a unique
odel for the future generation of more detailed high-throughput

nd systems level analyses that may  help to identify unique aspects
f the host response that make pigs largely resistant to the effects of
he r1918 virus. Such knowledge could be used to rationally design
herapeutic approaches to suppress or augment targeted aspects
f the host response in macaques or other animal models (and
ventually humans) to mitigate pathogenic outcome.

.2. Animal models: bacterial co-infection

Morbidity and mortality associated with primary influenza virus
nfection is often exacerbated by a secondary bacterial infection, an
vent that was common during the 2009 pandemic [46]. To study
he relationship between viral and bacterial infection, Kash et al.
sed a model in which mice were infected with either a 2009 sea-
onal isolate or a 2009 pandemic virus followed by inoculation with
treptococcus pneumoniae [47]. All mice infected with virus alone
urvived the infection and exhibited similar lung transcriptional
rofiles characterized by moderate increases in inflammatory gene
xpression. Animals infected with the seasonal virus plus S. pneu-
onia also survived infection, whereas bacterial co-infection with

he 2009 pandemic virus resulted in 100% mortality. Interestingly,
ethal bacterial co-infection was not accompanied by a significant
ncrease in the inflammatory response, but rather was character-
zed by increased basal epithelial cell apoptosis and a lack of cellular
ene transcription associated with re-proliferation and repair (a
ranscriptional response that was elicited by the seasonal virus).
hus, the extent to which bacterial co-infection increases morbid-

ty and mortality appears to be at least in part dependent upon
he virus–host interactions that lead to lung injury and subsequent
epair.
unology 25 (2013) 228– 239

In general, gene expression profiling of macaques, pigs, mice,
and ferrets [48] infected with 2009 H1N1 pandemic isolates has
revealed an early increase in inflammatory and innate immune
gene expression that correlates with mild-to-moderate lung
pathology. In all cases, this increase in gene expression resolves
during later stages of infection and tissue repair and recovery
responses ensue. In vitro analyses using a lung epithelial cell line
[49] or primary human alveolar epithelial cells [50] have also
revealed a transient increase in inflammatory and IFN response
genes. These observations once more point to the dynamics of the
host immune response as being essential to outcome and underline
the importance of good timing of therapeutic intervention. With
increasing evidence of synergy between different pathogens, the
infectious history of the host also emerges as a major determi-
nant of pathology. Taken together with the evident impact of host
genetic variation (see Section 5), considerable challenges lie ahead
for the development of broad-spectrum vaccines and therapies.

4. Viral genetic determinants of pathogenesis

In the studies described above, high-throughput and computa-
tional approaches were used to study influenza virus pathogenesis
primarily by analyzing and comparing the host response to wild-
type viruses. This approach can be augmented, however, to gain
additional insight into the viral and host genetic determinants of
virulence. One tactic for studying viral determinants is to gener-
ate recombinant viruses in which a gene (or genes) from a highly
pathogenic virus replaces the corresponding gene of an otherwise
less virulent strain.

Several studies have used this approach to better understand
the contribution of the NS1 gene to r1918 virulence. For example,
when used to infect lung epithelial cells, an A/WSN/33 (mouse-
adapted) virus containing the 1918 NS1 gene efficiently blocked the
expression of IFN-regulated genes, whereas the parental A/WSN/33
virus elicited significant induction of IFN-regulated gene expres-
sion [5]. This approach was  also taken a step further by swapping
the NS1 genes of the 1918 and seasonal A/Texas/36/91 viruses [44].
Again, the recombinant virus containing the 1918 NS1 gene induced
cytokine and chemokine gene expression, but blocked the tran-
scription of many IFN-regulated genes and genes associated with
lipid metabolism. In contrast, the opposite effect was observed in
cells infected with r1918 engineered to contain the A/Texas/36/91
NS1 gene. Similarly, infection of primary human tracheobronchial
epithelial cells with an A/Texas/36/91 virus containing a deletion of
the C-terminal effector domain of NS1 was used to define the con-
tributions of this domain in the suppression of IFN signaling [51].
Together, these studies have demonstrated the importance of the
NS1 protein in regulating the host response to infection, particu-
larly with regard to IFN-regulated gene expression, and point to
this protein as a key contributor to the high virulence of the 1918
pandemic virus. In the same way, additional studies have focused
on recombinant viruses expressing HA and NA from the 1918 virus
[6] and H5N1 viruses containing single amino acid substitutions in
the viral polymerase (PB2) [52] or PB1-F2 protein [53] that result
in increased virulence.

5. Host genetic determinants of pathogenesis: knockout
and Collaborative Cross mice

Just as alterations to the viral genome can be used to study viral
determinants of pathogenesis, so too can systematic changes to
outcome. A common method in this regard is the use of targeted
gene knockout mice. While not a new concept, the addition of
genomic profiling adds an important dimension by providing the
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Fig. 4. Genetic diversity across pre-Collaborative Cross mouse lines results in differ-
M.J. Korth et al. / Seminars in

bility to learn how loss of function in one aspect of the host
esponse affects other aspects of viral recognition or innate immune
ignaling. One of the first studies to profile the transcriptional
esponse of a knockout mouse to influenza virus infection looked at
he role of P58IPK, an inhibitor of the eIF2� kinases PKR and PERK,
hich respectively function to regulate protein synthesis during

irus infection and the unfolded protein response [54]. Infection
f P58IPK-knockout mice with a mouse-adapted virus, or with
1918, resulted in greatly amplified expression of inflammatory and
poptotic response genes, providing the first evidence that P58IPK

unctions during virus infection to inhibit the over-activation of
nflammatory and cell death responses.

Whereas the use of P58IPK-knockout mice represented the
rst use of a mammalian infection model to demonstrate the
ole of P58IPK in protection against virus infection, a number of
dditional studies have examined the transcriptional response of
ice containing knockouts in genes well known for their role

n the antiviral response. To examine the impact of deficiencies
n the key inflammatory mediators TNF and IL1 on virus infec-
ion, mice containing gene knockouts in the receptors for these

olecules were infected with the r1918 virus [55]. Although the
irus was lethal in all animals, TNF receptor knockout mice survived
tatistically longer than wild-type mice and exhibited delayed
r decreased expression of genes associated with antiviral and
nnate immune signaling and negative acute-phase response. IL1
eceptor knockout mice, in contrast, exhibited an increase in the
xpression of genes associated with dendritic and natural killer
ell processes and a compensatory increase in TNF expression.
ignaling through the IL1 receptor therefore appears to be pro-
ective, whereas signaling through the TNF receptor increases the
everity of infection.

Similar approaches have been used to examine the role of the
x1  protein, which is lacking in most laboratory strains of mice

56], and signaling through the IFN receptor, a primary mediator
f innate immunity. Mx1+/+ mice are partially protected against
1918 infection, and when treated with IFN, fully survive infection
nd exhibit down-regulated expression of cytokine and chemokine
enes normally induced by the r1918 virus [57]. With respect to IFN
ignaling, infection of mouse embryonic fibroblasts lacking the �/�
FN receptor results in decreased expression of antiviral genes (e.g.,
LR3, PKR, and STAT1) and increased viral replication, but there is
o effect on the induction of genes related to inflammatory and
poptotic responses, which are induced to the levels observed in the
resence of the receptor [58]. This study, and the above-mentioned

nterplay between IL1 and TNF, also reveals a significant amount
f redundant and compensatory signaling in antiviral and innate
mmune responses. While informative, such redundancy can also
omplicate and lead to misleading interpretation of data resulting
rom the use of gene knockout animals.

A more recent and comprehensive approach to identifying novel
ost genetic determinants associated with disease susceptibility
nd outcome is the mouse Collaborative Cross systems genetics
latform [59]. The Collaborative Cross is a panel of recombinant

nbred mouse lines derived from a genetically diverse set of eight
nbred founder strains. The approach is designed to yield high levels
f genetic variation uniformly across the genome and to capture the
ajority of genetic variation in this animal. This unique collection

f animals can be used to identify individual and multiple genetic
raits that contribute to complex immune phenotypes and the gen-
ration of protective or pathologic outcomes following influenza
irus infection (Fig. 4).

Although the Collaborative Cross resource is not yet fully

eveloped, Bottomly et al. used 44 pre-Collaborative Cross lines,
etermined to have extreme high or low responses to influenza
irus infection based on clinical readouts, to identify expression
uantitative trait loci (eQTL)—genes that regulate the expression of
ential host response to influenza virus infection. Shown is the relationship between
weight loss and viral titer for 209 pre-Collaborative Cross mouse lines infected with
influenza virus A/PR/8. Dashed line indicates limit of detection for viral titer.

mRNAs—associated with the host transcriptional response to infec-
tion [60]. This approach yielded 17 validated eQTLs, which were
then used for structural equation modeling to identify additional
genes with putative downstream relationships with the validated
eQTLs. The genes identified belonged to a variety of functional
categories, including immune response, tissue regeneration, and
cellular adhesion. Thus, the approach enables the generation of
networks of gene relationships that can drive the discovery of addi-
tional genes important to the host antiviral response.

A similar approach, using BXD recombinant inbred mice [61] and
genome-wide linkage analysis, identified genetic elements respon-
sible for survival following H5N1 infection [62]. This study yielded
five quantitative trait loci associated with disease severity, and gene
expression analysis identified candidate genes within these loci
with functions related to innate immunity and inflammation. How-
ever, in comparison to the Collaborative Cross, the BXD platform
does not capture the full genetic diversity present in outbred popu-
lations [63], and it is therefore less suitable for a systems genetics
approach aimed at identifying multiple genetic elements, including
small-effect-size and modifier genes that can significantly impact
phenotypic outcomes.

6. Proteomics and metabolomics: proteins and processes

The studies described so far have relied extensively upon the
use of microarray-based genomic profiling. However, additional
high-throughput data types are necessary for building a true
systems-level view of the events that occur in a virus-infected
cell or tissue. Proteomics, with its focus on the biologically active
products of genes and the post-translational modifications that reg-
ulate protein function; and metabolomics, with its focus on small
molecules and cellular processes; are essential to systems biol-
ogy and are becoming increasingly integrated into the study of
influenza virus–host interactions.

Despite the challenges of profiling mammalian tissues, the first
use of global proteomics to study influenza virus infection was
directed at the nonhuman primate model, where tandem mass
spectrometry identified over 3500 proteins in macaque lung tis-
sue [64]. Quantitation by relative peptide abundance revealed that
infection with the mildly pathogenic A/Texas/36/91 seasonal iso-

late led to increases in the abundance of a variety of proteins
involved in innate immune signaling. The approach also identi-
fied changes in the abundance of proteins that were not predicted
from transcriptional profiling, thereby demonstrating the utility
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f proteomics for both confirming and expanding upon the views
rovided by genomic analyses.

A subsequent and more in-depth profiling of the macaque lung
roteome identified over 4200 proteins, 400 of which increased in
bundance in response to infection with A/Texas/36/91, a recombi-
ant virus containing the HA and NA genes from the 1918 virus, or

 highly pathogenic avian H5N1 isolate [65]. The increased abun-
ance of these 400 proteins was considered to represent a “core”
esponse to influenza virus infection. Linear regression analysis
urther revealed that increased abundance of 96 of these proteins
orrelated with severe disease (caused by the H5N1 virus), includ-
ng such proteins as PKR, MX1, and RIG-I (DDX58). In addition,

hile the abundance of proteins involved in the immune response,
etabolism, and transport increased rapidly after infection with

he H5N1 virus, this response was delayed in the animals infected
ith the less pathogenic viruses. To a large extent, these find-

ngs mirror the results of genomic analyses [19] and reinforce the
ypothesis that the dynamics of immune activation are essential to
isease outcome.

A range of proteomic approaches, including two-dimensional
ifferential in-gel electrophoresis (2-D DIGE) coupled with tan-
em mass spectrometry [66,67], stable isotope labeling by amino
cids in cell culture (SILAC) [68–70], and subcellular proteome
nalysis using iTRAQ (isobaric tag for absolute and relative quanti-
ation) [71] have also been used to analyze influenza virus-induced
hanges in protein abundance in a variety of cultured cell types. Col-
ectively, these studies have identified changes in the abundance
f numerous IFN-regulated proteins, components of the cytoskele-
on, keratin, and other processes. Proteomic approaches have also
een used to identify protein interaction partners, including cel-

ular factors that associate with the viral ribonucleoprotein [72]
nd the trimeric viral RNA polymerase complex [73]. In addition,
he mass spectrometric approaches common to proteomics are
eing extended to metabolic and lipidomic profiling, yielding new

nsights into the effects of influenza virus infection on intermedi-
tes of glycolysis and the tricarboxylic acid (TCA) cycle [74], fatty
cid biosynthesis and cholesterol metabolism [75], and the role of
almitoylation on the activity of innate immune effector proteins,

ncluding IFITM3 [76].
Given the considerable technical and computational challenges

ssociated with high-throughput proteomics and metabolomics,
any of these studies have pushed the envelope in terms of bring-

ng new approaches to the difficult problems of peptide, protein,
nd metabolite detection, identification, and quantification and the
pplication of these approaches to complex model systems. Nev-
rtheless, these approaches to date have provided only modest
ains with respect to our knowledge of influenza virus biology.
echnical and algorithmic improvements that allow the identi-
cation and quantification of ever greater numbers of proteins,
rotein post-translational modifications, and metabolites will cer-
ainly continue to move the field forward. However, significant
dvances in biological knowledge are only likely to come with
omputational approaches that can successfully integrate diverse
ypes of high-throughput data into meaningful network models of
ignaling pathways and inter-molecular interactions.

. Genome-wide screens: host factors involved in influenza
irus replication

Like all viruses, influenza virus depends upon cellular factors
nd machinery to support its replication. While high-throughput
omic” technologies provide a wealth of information regarding the

hanges in gene transcription and protein and metabolite abun-
ance that occur during infection, they provide comparatively little

nformation about the identity of host factors required for influenza
irus replication. Yet knowledge of such factors should help to put
unology 25 (2013) 228– 239

high-throughput data into context as well as provide new targets
for therapeutic intervention.

In an attempt to fill this knowledge gap, half a dozen studies
have reported the use of genome-wide screens to identify host fac-
tors involved in influenza virus replication. The majority of these
screens have used RNA interference (RNAi) to direct homology-
dependent gene suppression on a genome-wide scale. The first
such study established an influenza virus infection system using
Drosophila cells, and after screening a RNAi library against over
13,000 genes, identified 110 genes whose suppression impacted
reporter gene expression from a modified influenza virus [77]. Sub-
sequent studies using mammalian cell RNAi screens identified 133
[78], 295 [79], and 287 [80] genes encoding proteins that affected
various steps in the viral life cycle ranging from entry and uncoating
to assembly and budding. In a variation on this approach, Shapira
et al. [81] used the results from yeast two-hybrid analysis and gene
expression profiling of influenza virus-infected primary human
bronchial epithelial cells to computationally predict factors and
pathways that affect the viral life cycle. These predictions were
then tested by suppressing the expression of these genes through
RNAi, resulting in 616 genes whose products affected influenza
virus replication. Together, these studies identified cellular fac-
tors involved in a variety of functions, including cellular signaling,
translation initiation, and nuclear transport.

As an alternative to RNAi screening, Sui et al. used the technique
of random homozygous gene perturbation (RHGP) to identify host
genes that prevent influenza virus-mediated killing of the host cell
[82]. This technique uses a lentiviral-based genetic element that
can integrate at a single site in one allele of a gene in either a
sense or anti-sense orientation. No prior knowledge or annotation
of the gene is necessary, and the result can be either knock-down
or over-expression of the gene. The approach generates a library of
independent clones that can be screened for a desired phenotype.
In this case, the isolation of clones resistant to killing by influenza
virus yielded 110 human genes. Only four of these genes had been
previously linked to influenza virus infection (MDN1, GRK6, AKT1,
and STXBP1), demonstrating the potential of the approach to iden-
tify novel targets.

The combined results of these studies have been the subject
of extensive review [83,84]. In general, meta-analysis exposed a
striking lack of overlap in the genes identified by these screens.
Pair-wise comparisons revealed only 128 genes (out of a total of
1449 identified) that affected influenza virus replication in at least
two  screens, and the number of genes in common between pairs
of screens is even smaller, ranging from zero to 32 genes [83]. This
low degree of overlap could be due to a variety of factors, including
differences in screening systems, cell types, and viruses and was
also observed in RNAi screens used to identify host factors for HIV-
1 replication, where only three genes were identified by all three
screens [85]. Importantly, concordance might also be affected by
the statistical prioritization approaches used and might be gen-
erally hampered by a large number of host factors falling within a
narrow band of positive or negative correlation with pathogenicity,
reminiscent of the challenges faced by gene signature definition
[86]. Moreover, only a handful of the genes identified have been
subjected to functional analyses to confirm their role in influenza
virus replication. These studies, while impressive in the number of
genes identified, therefore represent only the initial steps in a much
longer road toward a deeper understanding of the virus–host inter-
play necessary for viral replication and the identification of new
drug targets.
8. Vaccine development: predicting immunogenicity

Vaccines against influenza virus are strain-specific (targeted
against one influenza A H1N1 strain, one influenza A H3N2 strain,
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nd one influenza B strain), and the formulation may  be changed
nnually on the basis of global surveillance and the emergence of
ew strains [87]. The effectiveness of the vaccine depends upon
he similarity between the viruses in the vaccine and the viruses
n circulation as well as upon individual variation among vaccine
ecipients. The development of influenza vaccines is therefore an
ngoing process, as is the search for improved efficacy and broad-
pectrum protection. Over the past few years, the application of
igh-throughput and computational approaches to vaccine devel-
pment, variously termed systems vaccinology [88] or vaccinomics
89], has increasingly come to the forefront with the goal of rational
accine development and the identification of useful predictors of
accine efficacy.

Genomic approaches were first applied to influenza vaccine
esearch in a nonhuman primate study aimed at evaluating the
rotective efficacy of a live influenza virus vaccine produced by
runcating the NS1 gene of the human H1N1 isolate A/Texas/36/91
90]. The live vaccine was highly immunogenic and transcriptional
rofiling of bronchial cells revealed the strong induction of IFN-
egulated genes. After challenge, animals receiving the live vaccine
ad reduced viral replication and lung pathology and less activation
f cytokine, chemokine, and IFN-regulated genes compared with
hat observed in animals vaccinated with a formalin-killed wild-
ype virus. The study therefore demonstrated the vaccine potential
f live influenza virus attenuated through modification of the NS1
ene as well as the use of gene expression profiling to identify
ranscriptional signatures after both vaccination and challenge.

More recently, a combination of traditional, high-throughput,
nd computational approaches have been used to evaluate immune
esponses to vaccination against influenza virus in human vaccine
tudies. Genomic analysis of peripheral blood samples from 119
ndividuals immunized with a trivalent influenza vaccine revealed
n early increase in the expression of genes associated with IFN
ignaling and antigen presentation, which correlated with the mag-
itude of the antibody response [91]. In a more comprehensive
pproach, Nakaya et al. evaluated innate and adaptive immune
esponses to vaccination against influenza virus using blood sam-
les obtained over a 3-year period from individuals receiving a
rivalent inactivated vaccine or a live attenuated vaccine [92].
lthough the clinical effectiveness of these vaccines was  similar,
nly the live attenuated vaccine induced robust expression of genes
ssociated with an IFN response (as did only the live vaccine in
he macaque study described above). In contrast, the inactivated
accine induced higher antibody titers, and only the inactivated
accine induced the expression of genes associated with a plasma

 cell response. Using the computational approach of discriminant
nalysis via mixed integer programming, this gene expression sig-
ature was shown to be predictive of later antibody titer.

Together, these studies demonstrate the ability of molecular
rofiling and computational approaches to predict immunogenicity
as measured by antibody titers) and to provide new insights into
he mechanisms of action of vaccines. Such information is clearly
f value to future vaccine development and evaluation (including
he rapid identification of individuals who fail to respond to vacci-
ation), and systems-level approaches are destined to play an ever

ncreasing role in vaccine research.

. Digging deeper into the data: analysis across
xperiments and model systems

The rapidly rising numbers of studies using high-throughput
pproaches (both within and outside of the influenza virus field)

re generating enormous amounts of data. Unfortunately, this
ata is often only analyzed for a single publication and is sub-
equently archived, perhaps never to be used again. Although
ene expression databases such as the Gene Expression Omnibus
unology 25 (2013) 228– 239 235

(GEO) [93] have been in existence for over a decade, new database
resources, such as the Influenza Research Database [94] and the
Virus Pathogen Resource [95] promise to put multiple data types
relevant to influenza virus research in a centralized location. This
should provide increased opportunities for data integration and
the analysis of data across multiple experiments or experimental
systems.

As an example, Chang et al. used meta-analysis—statistical
methods to combine and contrast findings from multiple indepen-
dent studies—to derive gene expression signatures from 12 studies
that used mouse models to measure transcriptional responses to
influenza virus, respiratory syncytial virus, mengovirus, or SARS
coronavirus [96]. The viruses used in these studies caused clin-
ical outcomes that ranged from 100% survival to 100% lethality,
and the goal of the analysis was to identify gene expression sig-
natures with the capacity to segregate and predict mild or highly
pathogenic infections. A series of computational techniques gen-
erated signatures that were either oppositely expressed (referred
to as a “digital” relationship) or that were expressed on a contin-
uum (referred to as an “analog” relationship) when comparing mild
and highly pathogenic infections. The best predictor of a highly
pathogenic infection was  a 57-gene analog signature that included
the induction of genes associated with the inflammatory response
and chemokine signaling and decreased expression of genes associ-
ated with lung repair. The analog nature of this signature indicates
that highly pathogenic viruses (including r1918, avian H5N1
viruses, and SARS coronavirus) induce or suppress the expression
of many of the same genes as mildly pathogenic viruses, but to a
much greater degree. The magnitude of the host response, rather
than the induction or suppression of a unique set of genes, therefore
appears to be a critical factor in determining disease outcome.

Whereas the above study looked at a single infection model
and a range of respiratory viruses and clinical outcomes, McDer-
mott et al. analyzed the host transcriptional response to a single
avian H5N1 strain across cell culture, mouse, and macaque
infection models [97]. This study used three complementary
approaches: functional similarity analysis, the identification of
patterns of coexpression between systems, and a network infer-
ence method to identify conserved regulatory influences. Because
these approaches do not rely on matching comparable time points
between experiments, they can be used to compare data from sys-
tems with different sampling times and dynamics. These combined
approaches identified functions and pathways that displayed sim-
ilar behavior or regulation across all three systems, most notably
in IFN and inflammatory responses, indicating that significant por-
tions of the response to influenza virus are conserved across cell
culture, mouse, and macaque models. Predicted regulatory influ-
ences driving this response included GTF2B (a factor also known
as TFIIB and targeted by a number of viruses to disrupt trans-
criptional initiation) and ATF4 (a transcription factor involved in
the endoplasmic reticulum stress response). Overall, this study
demonstrates the ability of computational approaches to reveal
relationships between in vitro and in vivo systems and for gain-
ing deeper insight into biological responses to infection through
the use of pre-existing data sets. It also serves to bolster the much-
debated relevance of cell culture systems for predicting responses
in animal models. In the future, it will also be interesting to focus
on host-specific differences and to gain insight into the variability
of pathogenicity as a function of host genetics.

10. Necessary paradigm shifts
Just as systems biology contributed to the shift from a virus-
centric view to the integrated study of virus–host interactions,
a similar paradigm shift will be necessary in the upcoming, sec-
ond phase of computational analysis of viral pathogenicity. Three
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Fig. 5. The kinetics of virus-driven immune activation is a central component
of  virus–host interactions and a key factor in viral pathogenesis. Mathematical
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pproaches discussed in the text for studying highly time-resolved data, time-
ependent therapeutic intervention, and virus–host interactions are indicated.

omewhat unexpected themes of viral pathology have emerged
rom the initial application of systems approaches: (i) patho-
enicity is to a larger-than-expected extent a function of host
enetics and likely infectious history [13], (ii) low versus high
athogenicity is not so much a function of different host gene
etworks responding to the infection but rather similar or identi-
al networks responding to a different degree [96], and (iii) chronic,
on-attenuated activation of these networks highly correlates with
utcome, and attenuation might be kinetically controlled as a
unction of the dynamics of the virus–host interaction [18]. All
hree observations can be reconciled into a single hypothesis of
ime-dependent encoding of host responses, making the timing
f components of the host response of utmost importance for the
irus–host interactions themselves and for disease outcome and
reatment (Fig. 5).

An understanding of the time-dependency of immune activa-
ion and its control is therefore likely to be key to understanding
athogenicity and our ability to alter disease outcome. Few data
re currently available that follow molecular events over time, and
ven less so on the appropriate time scales. Immune activation
s a process that happens on a single-cell level within minutes
o hours rather than hours to days. It will therefore be neces-
ary to generate omics data with high time resolution during the
arly and relevant transition phases of immune activation. Acqui-
ition of such data faces technical challenges and is limited by
roblems of synchronization of events, cells, and tissues. However,
ovel computational approaches should be able to overcome these
ifficulties. Geometric approaches, for instance low-dimensional,
on-linear representations of gene networks based on their
ctivity [98], can be used to renormalize poorly time-resolved
ata to absolute references (pre-infection versus post-infection;

ow-pathogenicity versus high-pathogenicity; ressortant versus
ild-type viruses) and therefore reinterpret activity differences

s differences in observation time. Even more interesting in this
ontext are continuous-time Markov processes defined on a path
pace spanned by low-resolution experiments. Here, the few avail-
ble experimental data points over time are expanded through
nference methodology allowing approximation and subsequent
omparisons of the system’s internal time dynamics across dif-
erent viruses or genetic variants. In order to be successful, these

ethods will require, in addition to the available data sets, the gen-
ration of data from controlled experiments in cell culture systems
here key components of immune activation networks are studied
ndividually.
Future research will also have to address the local robustness

f virus–host networks. Today, robustness (a measure of the
unology 25 (2013) 228– 239

system’s tolerance against external and internal variability) is only
studied superficially with respect to detail and quantity. Typically,
survival or other global properties of the system are quantified
over large time intervals as fractions of affected individuals in a
given experiment with at best hundreds of individuals. In order to
better understand the molecular network structure and dynamics
leading to immune responses, redundancy in these networks,
and the relative importance of highly connected (“hubs”) as well
as sparse regions of the networks (“bottlenecks”), is required to
quantify robustness at the level of individual network compo-
nents. To this end, Collaborative Cross mice and human population
genetic studies will provide sources of genetic variability of the
host. These will have to be combined with systematic studies of
reassortant viruses to explore in detail the interactions between
virus and host genetics. It will also be important to focus on subtle
variations rather than extreme cases in order to better appreciate
the contribution of individual network components.

Furthermore, in order to better appreciate robustness, it will
be necessary to quantify not only differences but also similarity or
equivalency under noise [99]. In addition, computational research
will have to focus on developing better approaches for the infer-
ence of network dynamics from network topology similar to what
has recently been achieved for metabolic networks [100], as it is
not possible to measure all relevant network sub-dynamics in suf-
ficient detail for lack of accessible experimental systems. Finally, we
will need to better establish causality in the virus–host networks.
Current computational methodology largely focuses on statistical
correlations between observables. In order to understand cause and
effect relationships in the networks, the above mentioned time-
series analyses will need to be accompanied by network inference
methodology based on first principle physics [101,102].

Finally, the generation of detailed molecular models is needed
to be able to simulate parts of the virus–host networks in silico.
Such modeling will be required to develop better screening of effec-
tive drugs once high-priority targets have been established through
the above approaches. To this end, the multi-agent systems (MAS)
paradigm shows great promise. MAS  aims to model complex sys-
tems by the use of autonomous programs, named agents, which
have independent behaviors and which interact among each other
or with a virtual environment [103,104]. MAS  has been applied
in social science, economics, and ecology to solve problems such
as collective decision making, process optimization, or the analy-
sis of emerging properties. In the context of system biology, MAS
represents a system that can simulate the biological mechanisms
involved between the major actors of the host immune response
across different scales. On a macroscopic level, cell-to-cell and
virus-cell interactions and communications can be modeled and
integrated with a microscopic level that captures the dynamics of
signaling and the triggering of metabolic pathways. Such modeling
will help to refine the most important components involved dur-
ing infection and contribute to a better understanding of emerging
properties. Different MAS  platforms [105–107] have already been
used to model host immune responses and physical interactions at
a single-cell level [108–111]. Once a better understanding of net-
work sub-structures and dynamics is achieved, better parameter
sets will be available to increase the effectiveness of such mod-
els in the systematic in silico exploration of virus–host networks
in view of possible drug targets and theoretical targeting strate-
gies.

11. Conclusions
The types of computational analyses just described will need to
play an increasing role in the future, as ever-expanding amounts
and types of high-throughput data are generated. In addition, it
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ill be critical to develop computational methods and visualiza-
ion techniques capable of integrating diverse types of data, in

 quantitative manner, and displaying them in a meaningful and
nderstandable fashion. Computational biology has become quite
dept at generating giant “hairball” networks, but such visualiza-
ions provide too little in the way of helping us understand the
iology of the system or in providing targets for future experimen-
ation.

Similarly, improved computational methods, predictive mod-
ls, and more targeted experimentation are needed to find the
weet spot between broad conclusions made on the basis of func-
ional categories (such as hypercytokinemia, inflammation, and
ell death) and the identification of changes in the expression of
ndividual genes or the abundance of individual proteins. Focus-
ng on the former provides too high level a view, and focusing on
he latter brings us back to a reductionist approach that fails to
ake advantage of the bigger picture provided by global analyses.

oreover, it is difficult to know whether targeting an individ-
al component of a system—and knowing which one to pick—will

mpact disease outcome, as there are many examples of compen-
atory pathways and responses. Nevertheless, progress is being
ade in this regard, including the development of methods for

dentifying important genes or proteins (network hubs or bot-
lenecks) on the basis of topological analysis of protein-protein
nteraction or inferred networks [112,113], and targets identified
y this approach have been successfully validated through gene
nockdown [114].

Computational approaches must also evolve to deal with
ew high-throughput technologies that are bringing different
ypes of data into play. For example, next-generation sequencing
echnologies have recently revealed that influenza virus infec-
ion induces the differential expression of a variety of long
greater than 200 nucleotide) noncoding RNAs [115]. Many of
hese RNAs are similarly regulated by IFN treatment, suggest-
ng that long noncoding RNAs may  be involved in regulating
he host response, including innate immunity. Similarly, there
s increasing evidence that microRNAs play a role in the host
esponse to numerous viruses [116], including influenza virus
117]. Next-generation sequencing has also revealed that addi-
ional forms of small noncoding RNAs, such as small nuclear
NAs (snoRNAs) and piwi-associated small RNAs (piRNA), are also
ifferentially expressed in response to influenza virus infection
118]. Moreover, noncoding RNAs have been found to directly
egulate protein function, as exemplified by the identification of
he 7SK snRNA as a regulator of HMGA1 function [119]. Next-
eneration sequencing is therefore adding a critical new analytical
omponent that may  alter the way we think about virus–host
nteractions and gene regulatory mechanisms. It is likely that a
etailed knowledge of noncoding RNA regulation and function will
e necessary for a full understanding of influenza virus pathogen-
sis.

Systems biology, while not without its critics, has become
ell established in biomedical research, particularly in the areas

f drug development and cancer biology. Although slower to
ome to the infectious disease field, the approach has made
ubstantial inroads into influenza virus research, as the studies
escribed in this review attest. An influx of new investigators,
ogether with ongoing improvements to computational methods
nd technologies, should continue to propel the field forward.
s an additional driver, the approach has also received support

rom the National Institute of Allergy and Infectious Diseases,
hich has funded four systems biology centers, including two
ocused on influenza virus [120]. Influenza virus, with its ability
o evolve in surprising new ways, is certain to be a threat well
nto the future. Similarly, the methods used to study this virus

ust continue to evolve if we are to develop the methods of
unology 25 (2013) 228– 239 237

surveillance, vaccination, and therapy needed to protect the public
health.
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