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Evaluation of the Influence of Head
Movement on Hearing Aid Algorithm
Performance Using Acoustic Simulations

Maartje M. E. Hendrikse , Giso Grimm, and Volker Hohmann

Abstract

Head movements can improve sound localization performance and speech intelligibility in acoustic environments with

spatially distributed sources. However, they can affect the performance of hearing aid algorithms, when adaptive algorithms

have to adjust to changes in the acoustic scene caused by head movement (the so-called maladaptation effect) or when

directional algorithms are not facing in the optimal direction because the head has moved away (the so-called misalignment

effect). In this article, we investigated the mechanisms behind these maladaptation and misalignment effects for a set of six

standard hearing aid algorithms using acoustic simulations based on premade databases; this was done so we could study the

effects as carefully as possible. Experiment 1 investigated the maladaptation effect by analyzing hearing aid benefit after

simulated rotational head movement in simple anechoic noise scenarios. The effects of movement parameters (start angle

and peak velocity), noise scenario complexity, and adaptation time were studied, as well as the recovery time of the

algorithms. However, a significant maladaptation effect was only found in the most unrealistic anechoic scenario with one

noise source. Experiment 2 investigated the effects of maladaptation and misalignment using previously recorded natural

head movements in acoustic scenes resembling everyday life situations. In line with the results of Experiment 1, no effect of

maladaptation was found in these more realistic acoustic scenes. However, a significant effect of misalignment on the

performance of directional algorithms was found. This demonstrates the need to take head movement into account in

the evaluation of directional hearing aid algorithms.
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When listening and talking, people naturally move their
head, and these movements often give benefits. For
example, rotational and translational head movements
can improve localization performance (Lu & Cooke,
2011; Wallach, 1940), and optimizing head orientation
can lead to speech intelligibility benefits when using
better ear listening in both normal-hearing listeners
(Grange & Culling, 2016) and in hearing-impaired listen-
ers with asymmetric hearing loss (Brimijoin et al., 2012).
By optimizing head orientation, people make use of the
head shadow effect, which refers to the phenomenon
that the head casts an acoustic shadow, causing level
differences depending on the frequency and the direction
of incidence of a sound source relative to the head (Van

Wanrooij & Van Opstal, 2004). The head shadow effect
is therefore important for speech perception and hearing
aid performance and is influenced by head and source
movement. There are several examples of hearing aid
algorithms that can use head movement to improve
their performance. For example, in algorithms that
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estimate the direction-of-arrival of sound sources,
knowledge of head movement has been used to
reduce front-back confusion (Archer-Boyd et al.,
2015). Other examples are algorithms that use head
movement and eye movement to estimate the spatial
auditory attention of the hearing aid user, which is
then used to enhance attended sources or suppress unat-
tended ones (Best et al., 2017; Favre-F�elix et al., 2017;
Grimm et al., 2018; Grimm, Luberadzka, et al., 2016;
Hart et al., 2009; Tessendorf et al., 2011).

However, there are other data that demonstrate that
head movements can also reduce the performance of
hearing aid algorithms. Ricketts (2000) found a signifi-
cantly greater speech intelligibility benefit with direction-
al microphones when the hearing aid user was facing 30�

off-axis, and so facing other directions would result in
suboptimal performance. Abdipour et al. (2015) showed
that the performance of existing localization-based
source separation methods was reduced by moving sour-
ces, which can also be caused by head movement, and
Boyd et al. (2013) showed that the performance of
direction-of-arrival estimators can fall due to head
movements. Finally, Hamacher et al. (2005) described
the problem that adaptive beamformers have to adapt
again after head turns, which could limit the benefit in
everyday life.

Two consequences of head movement can be identi-
fied. First, the head movement might result in a head
orientation that is not optimal. As shown by Ricketts,
this could have consequences for directional algorithms,
as their beam might be misaligned with the direction of
optimal benefit. Second, the head movement causes
dynamic changes to the scene. This could have conse-
quences for hearing aid algorithms that use temporal
integration to estimate certain properties of the scene
because the head movement can cause smearing of the
estimated properties during the temporal integration.
Moreover, the update rate of the algorithm also deter-
mines how fast it can adapt to the new situation after
head movement. Instantaneous adaptation is usually not
possible because of artifacts. Therefore, adaptive algo-
rithms need time to adapt to the new situation, which
could lead to maladaptation if the algorithms are not fast
enough or if the situation is constantly changing. Note
that misalignment can apply to any algorithm that uses
direction, but maladaptation is only of relevance to
adaptive algorithms.

The goal of this study was to evaluate the effect of
head movement on noise suppression by hearing aid
algorithms in terms of maladaptation and misalignment
(other properties of the algorithm output, such as sound
quality and speech intelligibility, could also be affected
by maladaptation and misalignment, but they are out-
side our current scope). To understand the impact of the
effect of head movement, it is important to relate it to

the benefit provided by the algorithms in terms of noise
suppression. The study consisted of two experiments
both using entirely simulated methods and analyses so
that the mechanisms behind maladaptation and mis-
alignment could be investigated in detail. Experiment 1
used synthetic (cosine) head movements and analyzed
the noise suppression performance after the end of the
movement (when the head was facing in the direction of
the target source) so that the maladaptation effect could
be singled out. The experiment evaluated how large the
maladaptation effect is and how it is influenced by move-
ment parameters and the complexity of the noise scenar-
io. It also examined how long it took for the algorithms
to recover from maladaptation. Experiment 2 focused on
the combined effect of maladaptation and misalignment
during natural head movements measured in virtual
audiovisual environments (VEs) resembling everyday
life situations (Hendrikse et al., 2019b). It was shown
in an earlier study that the movement behavior recorded
when the participants were watching the animated char-
acters used in these VEs was similar to the movements
made when watching video recordings of real persons
(Hendrikse et al., 2018).

For Experiment 1, it was expected that the adaptation
time would be the most important factor to determine
whether an algorithm is affected by maladaptation and
how long this effect lasts. It is hypothesized that a
fast-adapting algorithm will adapt quickly to the new
situation after head movement, so any potential effect
of maladaptation would be small. A larger effect of
maladaptation was expected for algorithms with an
adaptation time in the same order of magnitude as the
movement duration or for slowly adaptive algorithms.
The duration of the movement was expected to be a
determining factor when the adaptation time was of
the same order of magnitude because this determined
how much the algorithms could adapt during the move-
ment. A slowly adaptive algorithm would not have time
to adapt during the movement and would take longer to
adapt to the new situation after head movement. In this
case, the maladaptation effect would probably depend
on the difference between the initial and the new situa-
tion. To preview the results in Experiment 1, an effect of
maladaptation after head movement was only found in
the most unrealistic noise scenario. Because more realis-
tic acoustic scenes were used in Experiment 2, maladap-
tation was not expected to affect the algorithms’
performance here. To check this, the dependency of
the performance on the rotational head speed was eval-
uated. As maladaptation is affected by dynamic changes,
performance should be independent of the rotational
head speed if there is no effect of maladaptation.
However, misalignment was expected to affect the
algorithm performance in Experiment 2, because
the performance was analyzed during real head
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movements, so the head direction was not always the
same. In this case, the algorithm performance would
depend on the head direction.

In our previous paper (Hendrikse et al., 2019b), dif-
ferences in movement behavior were found between
younger and older normal-hearing listeners. The older
normal-hearing listeners tended to do more of the move-
ment with their heads and less with their eyes compared
with younger normal-hearing listeners. If more of the
movement is done with the head, less misalignment
problems are expected for the directional algorithms.
Therefore, the algorithm performance of the directional
algorithms in Experiment 2 would be expected to be
better for the movement data of the older listeners com-
pared with the younger listeners.

Simulation Procedure

The virtual acoustic environments and head movements
were implemented in an acoustic model, giving the sim-
ulated hearing aid microphone recordings of a simulated
moving listener (Figure 1). These recordings were then
processed with a set of representative hearing aid algo-
rithms, resulting in a simulated binaural hearing aid
output. The performance of each algorithm was ana-
lyzed using a measure of short-time signal-to-noise
ratio (SNR) calculated in a defined window. Details of
the acoustic model, the hearing aid processing, the anal-
ysis method, and of the hearing aid algorithms are given
in the following sections.

Acoustic Model

The virtual acoustic environments were implemented in

TASCAR (Toolbox for Acoustic Scene Creation And

Rendering; Grimm et al., 2019). This played back the

input signals in the simulated acoustic environment

and applied the head movement to a simulated listener

at a sampling rate of 44.1 kHz. The simulated sound field

was rendered to a circular (Experiment 1) or spherical

(Experiment 2) array of simulated loudspeakers, match-

ing the loudspeaker positions in a database of hearing

aid head-related impulse responses. The loudspeaker sig-

nals were then convolved with the hearing aid head-

related impulse responses. For this, two different

impulse response databases were used in the experiments

(see their Methods for details), but both databases used

the same head-and-torso simulator (Brüel & Kjaer Type

4128C with artificial ears: 4158C right and 4159C left,

pre-amplifier 2669) with hearing aid dummies behind the

ears. These hearing aid dummies had three microphones

each (front, center, and rear), as described in Kayser

et al. (2009). Because the acoustic model is linear, we

could process the target and noise signals separately to

allow calculation of the SNR.

Hearing Aid Processing and Performance Measures

The sum of the noise and target signals was processed by

the different hearing aid algorithms to give the simulated

binaural hearing aid output. Here, contrary to the linear

Figure 1. Schematic Drawing of the Simulation Procedure. The input signals and head movement trajectories were implemented in an
acoustic model, which provided the simulated hearing aid microphone recordings of a simulated listener making the defined head
movements in the virtual acoustic environment. These recordings were processed with hearing aid algorithms, resulting in a binaural
hearing aid output. Analysis windows were extracted after compensating for the delay of the system, and the input SNR and output SNR
were calculated in those windows. The difference between these two is the algorithm benefit, quantified by the SNR improvement. Note
that the HA algorithms always processed the superposition of target and noise. For SNR analysis, target and noise were separated
postprocessing using the method of Hagerman & Olofsson (2004). HA¼ hearing aid; SNR¼ signal-to-noise ratio.
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acoustic model, a separate processing of target and noise
signals was not possible due to the nonlinearity of the
hearing aid processing. We took 200-ms windows of
these outputs for the better ear, after compensating for
the delay of the system (see next section), and then cal-
culated the SNR using Hagerman and Olofsson’s (2004)
method. This method allowed access to the target and
noise output separately under the constraint of the non-
linearity of the algorithms, by processing the superposi-
tion of target and noise 2 times: with normal and
inverted phase for the noise, and then adding or sub-
tracting the processed signals. The difference between
the SNR from the front hearing aid microphone record-
ings (“input” SNR) and binaural output (“output”
SNR) quantifies the “algorithm benefit” in terms of
SNR improvement. By comparing the algorithm benefit
for the different head movements, the effect of head
movement on the algorithm performance related to
noise suppression could be investigated. The method of
Hagerman and Olofsson assumes short-time linearity of
the algorithms; whether this assumption is valid for all
algorithms was checked in Supplementary Materials A
using Olofsson and Hansen’s (2006) method. The results
in the Supplementary Materials show that the assump-
tion is valid for all algorithms except the adaptive min-
imum variance distortionless response beamformer
(“AMVDRb,” see next section) because the level of the
estimated nonlinear distortion was more than 20 dB
lower than the level of the processed superposition of
target and noise signals. For the AMVDRb algorithm,
different adaptation time settings were tested (details in
Experiment 1), and the fast and intermediate settings
showed high levels of nonlinear distortion, but the
assumption was valid for the slowest setting.

Hearing Aid Algorithms

Six hearing aid algorithms from different classes, repre-
sentative of algorithms currently used in hearing aids
(Hamacher et al., 2005), were selected for analysis: a
delay-and-subtract beamformer (labelled “D&Sb”), an
adaptive differential microphone (“ADMb”), a static bin-
aural beamformer (“SBb”), an adaptive minimum vari-
ance distortionless response beamformer (“AMVDRb”),
a binaural noise reduction algorithm (“BNR”), and a
single-channel noise reduction algorithm (“SCNR”).
Descriptions of the algorithms follow in the next
paragraphs.

The hearing aid microphone recordings were proc-
essed with the hearing aid algorithms using the open
Master Hearing Aid (openMHA version 4.8.0, http://
www.openmha.org/, Herzke et al. 2017) with the default
settings. Some additional settings were tested for the
ADMb and AMVDRb, as explained in Experiment 1.
The implementations of all algorithms have been used

previously (Baumg€artel, Hu, et al., 2015; Baumg€artel,
Krawczyk-Becker, et al., 2015; Grimm, Kollmeier,
et al., 2016).

Processing signals with the openMHA induces an
algorithm-dependent processing delay. The processing
delays for the algorithms are reported in Table 1, as
calculated by cross-correlating the input and output
for the target signals from Experiment 1. This delay
was compensated for in order to align the hearing aid
microphone recordings with the binaural hearing aid
output. Table 1 also lists the most important properties
of the algorithms regarding their adaptivity, directional-
ity, and the number of microphones used monaurally or
binaurally. The adaptivity and directionality properties
can be verified in the polar plots of the SNR benefit,
target gain, and noise gain provided in Supplementary
Materials C.

Delay-and-Subtract Beamformer. The D&Sb is a fixed (non-
adaptive) monaural beamformer, which was applied to
the left and right hearing aid microphone recordings
separately. On each side, it consisted of a first-order dif-
ferential microphone using the front and rear omnidirec-
tional microphones that were separated by a distance of
14.9mm. The rear microphone signal was delayed by the
time it takes sound to travel over the microphone sepa-
ration distance (4.3824e–5 s) and subtracted from the
front signal to achieve a cardioid pattern. The delay
was achieved by applying a corresponding linear phase
in the frequency domain using an overlap-add method
as described in Grimm et al. (2006). The resulting high-
pass characteristics were not equalized.

Adaptive Differential Microphone. The ADMb is a monaural
algorithm based on two D&Sbs using a single pair of
omnidirectional microphones as described earlier.
These two beamformers generated a front-facing and a
back-facing microphone signal (Elko & Pong, 1995). A
mixing weight was adapted to steer a spatial zero toward
the most prominent sound source in the rear hemisphere,
as the target was assumed to be in the front and the
distractor in the back hemisphere. The optimum value
of the mixing weight was found by minimizing the mean-
square amplitude value of the output. The algorithm was
applied to the left and right hearing aid microphone
recordings separately.

Static Binaural Beamformer. The binaural six-microphone
beamformer (SBb) algorithm (Rohdenburg et al., 2007)
aims to minimize the overall noise output power while
preserving the desired speech component in the frontal
hearing aid microphone channels. It therefore assumed
that the target was coming from the front. The beam-
former is a fixed minimum variance distortionless
response (MVDR) beamformer without a generalized
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sidelobe canceller. Binaural cues of both target and noise

signals were preserved by applying a real-valued time-

variant postfilter of the front microphones controlled by

beamformer output, instead of returning the beam-

former output directly. A wave propagation model

with a sampled head-related impulse responses for fron-

tal direction from the database described in (Kayser

et al., 2009) was used as propagation vector.

Adaptive MVDR Beamformer. This is the adaptive version

(AMVDRb) of the binaural multimicrophone beam-

former algorithm described earlier (Rohdenburg et al.,

2007). It used the generalized sidelobe canceler, which

could adapt to a varying noise field, and used only four

microphones instead of six (front and rear on each side).

In our version, the beamformer output was returned

directly, resulting in a diotic output signal.

Binaural Noise Reduction. The BNR scheme filtered out

signals based on their interaural coherence (Grimm

et al., 2009; Luts et al., 2010). The algorithm used the

left and right front hearing aid microphones. Target

sources were assumed to have a high interaural coher-

ence because their position changes only slowly and their

direct signal path dominates the reverberant part (at

least within the critical distance; Grimm et al., 2009).

Distractor sources were assumed to be incoherent

because they are either beyond the critical distance or

consist of many similar uncorrelated sources distributed

around the listener. This algorithm was thus designed to

filter out diffuse noise. The interaural coherence was esti-

mated from fluctuations in the interaural phase differ-

ence, in third-octave bands with a time constant of

40ms. From the measure of coherence, the attenuation

for the corresponding frequency band and time

frame was calculated so that incoherent signals were

filtered out.

Single-Channel Noise Reduction. The SCNR algorithm

(Breithaupt et al., 2008) used the left and right front

hearing aid microphones. The algorithm aimed to

improve the SNR by identifying speech components in

the signal and filtering out nonspeech components.

This was done by applying temporal smoothing in the

Table 1. Summary Table of the Most Important Properties of the Hearing Aid Algorithms.

Algorithm Processing delay Adaptivity Directionality Microphones (monaural/binaural)

D&Sb 173 samples

3.9 ms

Fixed Beamformer, cardioid

ADMb all settings 17 samples

0.39 ms

Adaptive Beamformer, cardioid

SBb 2,822 samples

64 ms

Fixed Beamformer, narrow

AMVDRb all settings 88 samples

2.0 ms

Adaptive Beamformer, narrow

BNR 176 samples

4.0 ms

Adaptive Omni

SCNR 705 samples

16 ms

Adaptive Omni

Note. The table displays the processing delay of the hearing aid algorithms in the openMHA, their adaptivity properties, directionality properties, the number

of microphones used by the algorithms, and whether they are monaural or binaural (microphones used on one or two sides). ADMb¼ adaptive differential

microphone; AMVDRb¼ adaptive minimum variance distortionless response beamformer; D&Sb¼ delay-and-subtract beamformer; SBb¼ a static binaural

beamformer; BNR¼ binaural noise reduction; SCNR¼ single-channel noise reduction.
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cepstral domain. In the cepstral domain, the noisy
speech signal was decomposed into coefficients related
to the speech envelope, the excitation, and noise.
Cepstral coefficients related to the speech excitation
were identified using fundamental frequency estimation.
Strong temporal adaptive recursive smoothing was
applied to the cepstral coefficients that are dominated
by noise and little smoothing to the cepstral coefficients
representing speech.

Experiment 1

Method

Three virtual acoustic scenarios of increasing acoustic
complexity were implemented. All the scenarios were
anechoic and included a target source at 0� and 1m dis-
tance and, in addition, some noise as follows:

1. one speech-shaped noise source at 120�, 1 m distant
2. five speech-shaped noise sources (�120�, �60�, 60�,

120�, and 180�), 1 m distant
3. five speakers of opposite sex to target speaker (�120�,

�60�, 60�, 120�, and 180�), 1 m distant

In all three scenarios, a range of synthetic rotational
head movements was implemented to simulate the ori-
enting movement of a listener toward a target speaker.
The head movements all ended at specific times such that
the listener faced the target sound source. The analysis
windows were positioned immediately after the end of
the movements, after compensating for the delays caused
by the acoustic model (130 samples), HRIR convolution
(400 samples), and hearing aid processing (see second
column of Table 1). Because the analysis windows
were positioned right after the end of the movement,
any potential effect of the head movement on the algo-
rithm benefit in these analysis windows can only be
caused by maladaptation. Details of the head move-
ments, the stimuli, the database of hearing aid head-
related impulse responses, and the analysis are given in
the following sections.

Head Movement Traces. The simulated head movement
traces were synthesized such that the azimuth followed
a cosine ramp from the starting angle to the target angle
(0�). Although a listener’s head movements might be
better characterized by a sigmoidal curve (Brimijoin
et al., 2014), a cosine was chosen here, because a precise
time was needed for when the movement ended. The
head movement traces started between �180� and
180�, in steps of 30� away from the target and ended
at 0�, facing the target. In all cases, the head stayed ori-
ented toward the initial direction for 5 s before the move-
ment started, to give the hearing aid algorithms time to

adapt. Peak velocities of 50 deg/s, 100 deg/s and 150 deg/

s were implemented, as �50 deg/s has been reported as

the average rotational head velocity for small move-

ments (�30�) and �150 deg/s is the average rotational

head velocity for larger movements (�105�; Brimijoin

et al., 2010). In total, 37 traces were created of which

one trace was the control trace without movement (i.e.,

starting facing the target; see Figure 2).

Stimuli. The target signals were 20 fragments from the

DAPS database (Mysore, 2015), using 10 male and 10

female speakers. The fragments were chosen so that the

signals in the analysis windows were between þ1 dB and

þ5 dB above the root-mean-squared value for the whole

signal without pauses. This was to make sure that

the signal in the analysis windows contained speech,

not just speech pauses. Noise sources were either

unmodulated speech-shaped noise or distractor speak-

ers. Speech-shaped noise signals were created using the

long-term average speech spectrum of the target signals.

Multiple signals were created so that uncorrelated

speech-shaped noise sources could be presented simulta-

neously. The distractor speakers were different frag-

ments from the DAPS database, always of the

opposite sex to the target speaker. The noise signal

was started 200ms before the target signal, allowing

for better algorithm adaptation. All scenarios were mea-

sured at �5 dB and þ5 dB long-term input SNR because

the SNR can also influence the algorithm benefit.

Figure 2. Simulated Cosine Head Movement Traces That Were
Implemented. The parameters starting angle [�180�:30�:180�] and
peak velocity [50 deg/s, 100 deg/s, 150 deg/s] were changed to
create a total of 37 traces, including a control trace without
movement, as indicated by different colors. A 200ms analysis
window is located immediately after the end of the movement in
which the algorithm performance related to noise suppression is
analyzed.
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Database of Hearing Aid Head-Related Impulse Responses.

Hearing aid head-related impulse responses were used

that matched the loudspeaker positions for a circular

array of 90 loudspeakers (starting at 0� azimuth with

4� spacing and at 0� elevation). They were taken from

the database of Thiemann et al. (2015).

Algorithm Settings. To study the effect of the adaptation

time on maladaptation, different settings were tested for

the two adaptive beamformers (ADMb and AMVDRb).

For the ADMb, the parameter m, which determines the

adaptation step size, was set to 1e�4 (standard), 1e�5,

and 1e�6. A smaller value for m results in slower adap-

tation: respectively, 0.23, 2.3, and 23 s. The values were

chosen so that the approximate adaptation time fits the

three categories of faster than movement duration, same

order of magnitude as movement duration, and slower

than movement duration.
For the AMVDRb, two parameters affect the adap-

tation time: m has a direct effect on the adaptation time,

where larger values result in a faster adaptation, and a
influences the variation of the adaptation across time.

In the experiment, only m was changed (0.4, 0.04, and

0.0004) and a was kept constant at the default value of

0.5. For this more complex algorithm, calculation of the

approximate adaptation time for the different settings is

not straightforward, but it can be estimated from the

effect duration (Figure 9).

Analysis. First, the SNR improvement was calculated for

the static control condition. From this, it could be seen

how well the algorithms worked in each scenario.

The movement effect was quantified by calculating the

difference in output SNR (termed “DSNR”) between the

static control condition and the movement conditions.

A negative DSNR indicated that any improvement in

SNR was reduced by the head movement. Situations

with a large negative DSNR were selected for further

investigation by plotting DSNR for different peak veloc-

ities and start angles. Finally, to analyze how long it

took for the algorithms to recover from maladaptation,

new recordings were made in which further time was

added between the end of the movement and the start

of the analysis window while keeping the same signal in

the analysis window.

Results

Algorithm Performance: Static Improvement and

Movement Effect. First of all, we looked at the static

SNR improvement, because if there is no SNR improve-

ment in the first place, there cannot be a reduction due to

movement. The values of the static SNR improvement

and DSNR are plotted in Figures 3 to 5, grouped by

algorithm. It can be seen that not all algorithms provid-

ed a benefit in all situations because the assumptions of

the algorithms are not always met. Furthermore, DSNR

is zero or close to zero for the D&Sb, SBb, BNR, and

SCNR algorithms (Figures 3 and 5) so there is no effect

of head movement for these algorithms. However, for

the ADMb and AMVDRb algorithms, there is an

effect of head movement (Figure 4). The median

DSNR is small compared with the static SNR improve-

ment, but the range of DSNR is large for the AMVDRb

algorithm. So, for this algorithm, there are some

situations where the movement has a large impact.
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Whether this was significant, and in which situations,

was examined by looking at the confidence intervals.
The combinations of algorithm, scenario, and long-

term SNR whose DSNR confidence intervals did not

include zero are listed in Table 2; thus, in these situa-

tions, there was a significant DSNR. This could be either

positive or negative, but only the ADMb and AMVDRb

algorithms showed a significant negative effect of head

movement, and only in the anechoic scenario with one

noise source was the mean DSNR larger than 1 dB.

Effect of Head Movement Parameters. For the ADMb and

AMVDRb algorithms, a significant negative effect of

head movement was found, and this effect was largest

in the anechoic scenario with one noise source at �5 dB

long-term SNR. In this scenario, the influence of the

movement parameters, start angle, and peak velocity

on DSNR was further investigated. The influence of

the movement parameters is shown in Figure 6 for

ADMb and in Figure 7 for AMVDRb. For ADMb

with the intermediate setting, both the start angle and

peak velocity had an influence on DSNR, whereas for

the slowest setting only the start angle had an influence.

For the AMVDRb algorithm, the peak velocity had a

larger influence for the intermediate setting, and the start

angle had a larger influence for the slowest setting, sim-

ilar to the ADMb algorithm. The fastest setting also

gave a significant DSNR, which was influenced mainly

by the peak velocity.

Effect Duration. To study how long the algorithms took to

recover from movements, further recordings were made

in which extra time was added between the end of the

movement and the start of the analysis window.
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Figure 4. As per Figure 3, but for the ADMb and AMVDRb Algorithms for the Different Settings: Fast Setting (1), Intermediate Setting
(2), and Slow Setting (3). ADMb¼ adaptive differential microphone; AMVDRb¼ adaptive minimum variance distortionless response
beamformer; SNR¼ signal-to-noise ratio.
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Figure 5. As per Figure 3, but for the BNR and SCNR Algorithms. BNR¼ binaural noise reduction; SCNR¼ single-channel noise
reduction; SNR¼ signal-to-noise ratio.
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This was done for the individual movement traces that
were shown in Figures 6 and 7: movement starting at
�60� and þ60� with 150 deg/s for the ADMb and move-
ment starting at þ120� and þ60� with 150 deg/s for the

AMVDRb. The DSNR in the shifted analysis windows
was plotted against the time shift on a logarithmic axis
(Figures 8 and 9). We found that the intermediate and
slowest settings, having longer adaptation times, took

Table 2. Combinations of Algorithm, Scenario, and Long-Term Input SNR That Have a Significant Movement Effect (95% Confidence
Interval for the Mean DSNR Does Not Include 0).

Algorithm Scenario

Long-term

SNR (dB)

Mean� standard

deviation static

benefit (dB)

Mean� standard

deviation DSNR (dB)

95% confidence interval

DSNR

ADMb intermediate setting 1 �5 15.5� 2.0 21.1�0.3 [21.6, 20.5]

þ5 12.0� 1.7 0.4� 0.1 [0.3, 0.6]

ADMb slow setting 1 �5 17.9� 1.5 22.9�0.1 [23.0, 22.7]

þ5 12.8� 1.7 2.1� 0.2 [1.8, 2.4]

2 �5 7.9� 1.6 0.2� 0.0 [0.2, 0.2]

þ5 7.8� 1.7 0.3� 0.0 [0.3, 0.3]

3 �5 6.8� 1.8 0.6� 0.0 [0.5, 0.7]

þ5 6.3� 1.8 1.0� 0.0 [1.0, 1.1]

AMVDRb fast setting 1 �5 29.8� 5.2 28.4�0.8 [210.0, 26.8]

þ5 15.3� 3.1 25.4�0.5 [26.5, 24.3]

2 �5 7.0� 1.2 0.5� 0.1 [0.4, 0.7]

þ5 0.7� 2.2 4.4� 0.4 [3.6, 5.2]

3 �5 6.8� 3.7 2.3� 0.4 [1.5, 3.0]

þ5 24.0� 3.9 8.6� 0.6 [7.2, 9.9]

AMVDRb intermediate setting 1 �5 35.1� 3.5 226.0�0.7 [227.4, 224.7]

þ5 23.4� 2.6 214.0�0.6 [215.3, 212.8]

2 þ5 6.7� 1.0 0.9� 0.2 [0.5, 1.2]

3 �5 9.5� 1.5 20.4�0.1 [20.7, 20.1]

þ5 4.7� 1.8 3.2� 0.4 [2.5, 4.0]

AMVDRb slow setting 1 �5 21.4� 0.8 210.4�0.1 [210.6, 10.2]

þ5 20.2� 0.9 28.2�0.2 [28.6, 27.9]

2 �5 8.1� 0.8 20.1�0.0 [20.2, 20.1]

3 �5 9.6� 0.8 20.3�0.0 [20.3, 20.3]

SCNR 2 �5 8.5� 3.3 0.2� 0.1 [0.0, 0.3]

Note. The table displays the means, standard errors and confidence intervals for the DSNR. Values are displayed in boldface if the static algorithm benefit is

negative and when the movement effect thus results in a decreased benefit. ADMb¼ adaptive differential microphone; AMVDRb¼ adaptive minimum

variance distortionless response beamformer; SNR¼ signal-to-noise ratio; SCNR¼ single-channel noise reduction.

Figure 6. Influence of Movement Start Angle and Peak Velocity on the DSNR for the ADMb in Selected Situations. The DSNR is plotted
for different start angles of the movement (x-axis) and peak velocities (line color). The movement traces indicated with the black circle are
selected for the analysis of the effect duration in the next section. ADMb¼ adaptive differential microphone; SNR¼ signal-to-noise ratio.
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Figure 7. As per Figure 6, but for AMVDRb. AMVDRb¼ adaptive minimum variance distortionless response beamformer; SNR¼ signal-
to-noise ratio.
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Figure 8. Movement Effect Duration for the ADMb Algorithm in the Selected Situations and for the Different Settings: Fast Setting (1),
Intermediate Setting (2), and Slow Setting (3). Plotted are the median DSNR (circles), the 25th and 75th percentiles (thick lines), and the
range (thin vertical lines) over all target signals for increasing times between the end of the movement and the start of the analysis window
(x-axis, logarithmic) and different algorithm settings (line color). ADMb¼ adaptive differential microphone; SNR¼ signal-to-noise ratio.
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Figure 9. As Figure 8, but for AMVDRb in the Selected Situations and for the Different Settings: Fast Setting (1), Intermediate Setting (2),
and Slow Setting (3). AMVDRb¼ adaptive minimum variance distortionless response beamformer; SNR¼ signal-to-noise ratio.
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longer to recover; for the slowest setting, it could take 2
or more seconds to recover. The different settings for the
ADMb and AMVDRb algorithms show similar recov-
ery times. It is noticeable that the AMVDRb algorithm
did not fully recover in the anechoic scenario with one
noise source for the movement trace starting at þ120�

(facing the noise source) with a peak velocity of
150 deg/s. This means that the AMVDRb algorithm
potentially has problems in real life when the attention
of the hearing aid user is shifted to a different source, but
this needs to be checked in a more realistic scenario.

Discussion

It was important to check the static SNR improvement
of the algorithms first so that the impact of DSNR could
be assessed. The results in Figures 3 to 5 show that not
all algorithms provided a static SNR improvement in all
situations because their assumptions are not always met.
The BNR algorithm provided a small or negative SNR
improvement in the tested scenarios because none of the
scenarios is really diffuse. This way, there is no room for
a reduction in SNR improvement due to movement. In
future tests, it would be good to include a more diffuse
scenario so that all algorithms have at least one scenario
in which they provide a large SNR improvement.

D&Sb and SBb are nonadaptive algorithms and there-
fore could not be effected by maladaptation. However,
they were included in this experiment to check the
method. No effect of head movement was found for
D&Sb and SBb, which indicates that the recordings,
delay compensation, and analysis were done correctly.
The BNR and SCNR algorithms were also not affected
by head movement, even though they are adaptive. It is
likely that the adaptation of these algorithms was fast
enough to not cause problems. A significant reduction
in SNR improvement larger than 1dB because of head
movement was found for the ADMb and AMVDRb
algorithms but only in the anechoic scenario with one
noise source. In the other two scenarios with more noise
sources, the head movement had a very small (<1dB),
but significant, negative effect on the SNR improvement
of ADMb and AMVDRb, or even a significant positive
effect. A positive effect of head movement indicates that
the algorithms were not performing optimally in the first
place. A possible explanation is that the different initial
condition causes the algorithms to adapt to a different
local minimum for the noise output power.

It was hypothesized that the movement parameters
would affect the algorithms differently depending on the
adaptation time. To check this, the settings of the ADMb
and AMVDRb algorithms were chosen so that the approx-
imate adaptation times were faster, in the range of, or
slower than the movement duration. We found that for
both algorithms, the peak velocity, which affects the

movement duration, had a larger influence than the start
angle for the intermediate setting, whereas the start angle,
which determines the difference between the initial and
final situation, had a larger influence for the slowest setting.
This is in accordance with the expectations. Unexpectedly,
however, the movement effect for the fastest setting of the
AMVDRb algorithm was also large. This could have
something to do with the high levels of nonlinear distortion
that were found for this algorithm setting and the interme-
diate setting, which might make the SNR calculated from
the output of Hagerman and Olofsson’s method inaccu-
rate. The output for the slowest setting, however, was reli-
able, so we can be sure that there really was an effect of
head movement for the AMVDRb algorithm.

Overall, there is thus a significant effect of head move-
ment on the SNR improvement in some situations. The
question remains what the impact of this effect is. An
SNR improvement significantly reduced by more than
1dB was found only in the most unrealistic anechoic sce-
nario with one noise source. Both ADMb and AMVDRb
algorithms provide a very large static SNR improvement
in this scenario, and even with the decreased performance
due to the head movement, the SNR improvement was
still large. Although the analysis of the effect duration
showed that it could take the algorithms several seconds
to recover, the large SNR improvement makes it unlikely
that the head movement will decrease the speech intelli-
gibility. Furthermore, we know that the head movement
effect in Experiment 1 is only caused by maladaptation
because the final orientation of our synthetic head move-
ments is always the same. As no negative effect of head
movement could be found in the more realistic scenarios
with multiple noise sources, it is unlikely that maladapta-
tion plays a role in daily life. However, in Experiment 1,
maladaptation was analyzed only after the end of the
movement. It might be that it results in a larger effect
during movement, when the peak velocity is reached.
Experiment 2 therefore investigated the SNR improve-
ment during recorded natural head movements in virtual
acoustic environments resembling everyday life. In this
case, the head orientation is not always the same, and
misalignment is an additional factor that can potentially
reduce the SNR improvement of directional algorithms.
Experiment 2 thus checks the hypothesis that in more
realistic environments, there is no effect of maladaptation
on the SNR improvement of adaptive algorithms, but
that there is a reduction in SNR improvement of direc-
tional algorithms because of misalignment.

Experiment 2

Method

Recordings were made of a simulated hearing aid user
performing the head movements measured in 21 younger
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normal-hearing and 19 older normal-hearing listeners in
a set of VEs defined in a previous study (Hendrikse et al.,
2019b). Each algorithm’s performance at noise suppres-
sion was again quantified by calculating the improve-
ment in SNR (difference between input and output
SNR), but here it was calculated in 200-ms time windows
during the entire time span of the VEs, without overlap.
For this, the segmental SNR after Quackenbush et al.
(1988) was used. The effect of head movement on the
algorithm benefit was analyzed in terms of maladapta-
tion and misalignment by comparing the different head
movement traces. The effect of head movement can be
analyzed by looking at the variance in algorithm benefit
over the movement traces, here quantified by the range
in SNR improvement. The settings used for
the algorithms were the standard (fastest) setting for
the ADMb and the slowest setting for the AMVDRb.
The latter was not the standard setting because the stan-
dard (fastest) setting showed high levels of nonlinear dis-
tortion (see Supplementary Materials A). The following
paragraphs describe in more detail the VEs, the database
of hearing aid head-related impulse responses and the
analyses that were carried out.

Virtual Environments. For this experiment, we used head
movement data and VEs from Hendrikse et al.
(2019b). The six VEs used in this experiment were as
follows: a cafeteria (including both a single-task condi-
tion and a dual-task condition having an additional
hand-eye-coordination task), a lecture hall, a living
room, a street, and a train station. In all VEs, the par-
ticipants had to listen to a specified target, while their
head movements were measured. Brief descriptions of
the environments are given in the following paragraphs,
more details and a technical analysis can be found in
(Hendrikse et al., 2019b). The range of SNR in the
VEs is plotted in Figure 10 (left panel).

Cafeteria: the listener was sitting at the edge of a table
at which four persons (azimuths of �28�, �4�, 8�, and
34�, negative azimuths are to the right) were having a
conversation. The noise consisted of several point noise
sources, such as competing conversations at neighboring
tables, music and laughter. Diffuse noise, consisting of
babble noise and noise of plates and cutlery, was also
present. In the cafeterialisteningonly condition, the only
task was to listen to the four-person conversation at
the table. In the cafeteriadualtask condition, the task was
to listen to the conversation and at the same time put
pins in the holes on a Purdue Pegboard (Tiffin & Asher,
1948), to simulate eating and listening at the same time.
In this situation, performing the dual task significantly
influenced the head movement behavior (Hendrikse
et al., 2019b).

Lecture hall: the listener was sitting in the audience
while a lecture was given. The lecturer’s speech (target)

was presented directly (�15�) and through loudspeakers
(51� and �38�). Presentation slides were shown on a
screen (25�). The noise level was low and consisted of
occasional noises from the audience, such as
coughing, sneezing, sighing and noise of pencil writing,
and turning pages.

Living room: the listener was sitting on a sofa while
the news was playing on a TV (target, at an azimuth of
�4�). A person sitting on a chair to the left (45�) was
occasionally commenting on the news. A person sitting
on the sofa next to the listener was eating crisps (�90�).
On the left side of the listener was an active fire place.
Through the open door to the kitchen, noises of
the dishwasher, water cooker, and fridge could be
faintly heard.

Street: the listener was standing at a bus stop, where
four people (�17�, 4�, 23�, and 42�) were having a con-
versation (target). On the sidewalk, a bicycle was driving
by and a mother with pram was walking by while singing
lullabies to her baby. On the road, cars were driving
past, as well as a truck, a bus, and an emergency vehicle.
Diffuse noise consisted of distant traffic noise and
birds singing. There was also a train driving past in
the distance.

Train station: the listener was standing on the plat-
form. Occasionally, announcements were made over the
loudspeaker system about trains arriving/departing
(target). The noise consisted of a conversation on a
neighboring platform (98�), people walking past with
trolleys, beeps of ticket validation machines, train
engines, and brakes. Diffuse noise was a recording
from a real train station.

Database of Hearing Aid Head-Related Impulse Responses.

For this experiment, we wanted to make sure that our
simulated signals represented the signals that were
played to the participants while recording their head
movement. Therefore, hearing aid head-related impulse
responses were recorded in the setup described in
Hendrikse et al. (2019b). This setup consisted of 28 loud-
speakers that were divided between a 16-loudspeaker
horizontal ring array at ear level (first loudspeaker at
11.25� from frontal direction, with 22.5� spacing) and
two 6-loudspeaker ring arrays at þ45� and �45� eleva-
tion (first loudspeaker at 0� and 30� azimuth from fron-
tal direction, respectively, with 60� spacing). Four
subwoofers were positioned on the floor at 45�, 135�,
�135�, and �45�. The room in which this setup was
placed was sound-treated and had a reverberation time
(T60) of 0.13 s and an early decay time of 0.04 s. The
impulse responses were recorded from the position of
the target source in the virtual environments at a head-
and-torso simulator with multichannel hearing aid dum-
mies behind the ears as described earlier. This was stand-
ing at the position of the participant in the laboratory.
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In the environments in which the participants were

seated, they were sitting on a chair on a platform. Two

sets of impulse responses were recorded (with and with-

out platform) to match the environments in which the

participants were seated as well as those where they were

standing. A logarithmic frequency sweep (Farina et al.,

2001) was used to eliminate nonlinear distortions of the

loudspeakers.

Analysis. First, we checked whether the observed varia-

tion across the movement traces of the participants led

to differences in SNR because of the head shadow effect.

Therefore, differences in input SNR caused by the dif-

ferent movement traces were analyzed.
Subsequently, the algorithm benefit was analyzed to

see whether there was a variance over the different move-

ment traces. However, potentially there were also differ-

ences due to the movement in the input SNR. It could be

possible that the algorithms just compensate for the dif-

ferences in input SNR, which would result in the same

output SNR for all movement traces. This would mean

that head movement does not affect the performance of

the algorithms. To check this, the variance in output SNR

over the movement traces was also analyzed. To examine

the hypothesis of differences in directional algorithm

performance between older and younger people, a

repeated-measures ANOVA was carried out for the

mean algorithm benefit over time with the environment

and algorithm type as between-participant factors and the

age-group as within-participant factor.
Finally, in order to find out how much of the variance

in algorithm benefit could be contributed to misalignment

and maladaptation, the algorithm benefit was plotted per

rotational head speed and per head direction. A potential

dependency of the algorithm benefit on the rotational head

speed would be caused by maladaptation. A potential

dependency of the algorithm benefit on the head direction
would be caused by the head shadow effect, which affects
the input SNR, and the misalignment effect. The mean
horizontal angular rotational head speed and the mean
head direction were calculated for the head movement
traces of the participants in the same time windows as
used for the SNR calculation. The absolute head direction
was taken, and for the VEs with multitalker conversation,
the head direction relative to the target was taken, to cor-
rect for the changing target position. This also shows in
which situations a potential effect of head movement is
problematic.

Results

Effect of Movement on Input SNR. The range in input SNR
across participants was calculated in all time windows
and plotted as a histogram to show the variance due to
head movement (Figure 10, right panel). It shows that
the mean range in input SNR was between 2 and 6 dB
for all environments. SNR differences this large can be
assumed to influence speech perception and also the
hearing aid algorithm performance. This shows that we
have enough variation in the input SNR across move-
ment traces to check the influence on algorithm benefit.
In the left panel of Figure 10, the mean input SNR
across participants in all time windows is plotted as a
histogram in the left panel, to show the dynamics of the
input SNR over time in the different environments.

Algorithm Benefit. The mean algorithm benefit over time is
plotted in Figure 11 for all algorithms, movement traces,
and environments. It can be seen that not all algorithms
provided a benefit in all environments. Moreover, it can
be seen that there is a variance in the algorithm benefit
over the different movement traces. This variance
indicates an effect of head movement and was also

0 2 4 6 8 10 12

input SNR in time windows, range over subjects [dB]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-20 -10 0 10 20 30

input SNR in time windows, mean over subjects [dB]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

re
la

tiv
e 

fr
eq

ue
nc

y

cafeteria dualtask
cafeteria listeningonly
lecture hall
living room
street active
train station

Figure 10. Input SNR Mean Across Participants (Left) and Range Across Participants (Right). The left panel shows the dynamics of the
input SNR over time. The right panel shows the difference in input SNR due to head movement. SNR¼ signal-to-noise ratio.
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visible in the output SNR (see Supplementary Materials
D). Therefore, we can be sure that the algorithms did not
just compensate for the differences in input SNR due to
head movement, which would lead to the same output
SNR, but that head movement really did affect the per-
formance of the algorithms. The following sections
investigate whether the variance in algorithm benefit is
related to misalignment and maladaptation. Figure 11
shows that the range in algorithm benefit was up to
6 dB for some algorithms in some environments. The
differences in single time windows could be larger. To
find this out, histograms were plotted of the range in
benefit across the participants in each time window
(Figure 12). It can be seen that differences in head move-
ment patterns could cause differences in algorithm ben-
efit up to 15 dB in single time windows. For the
AMVDRb, a large range in algorithm benefit occurred
more often than for the other algorithms, whereas the
SCNR and BNR algorithms were less affected by head
movement. An effect of head movement could be seen in
all VEs, but in the streetactive and train station VEs, the
range in algorithm benefit was larger.

The repeated-measures ANOVA, to examine differ-

ences in algorithm performance between the age

groups based on their different movement behaviors,

showed that only the AMVDRb algorithm with the

slowest setting gave a significant overall effect of age-

group on the algorithm benefit, F(1, 38)¼ 4.5; p< .05.

However, there were very small but significant differen-

ces for some algorithms in some environments. These are

listed in Table 3.

Algorithm Benefit per Rotational Head Speed. To examine

whether maladaptation contributed to the variance in

algorithm benefit, the correlation between the algorithm

benefit and the horizontal angular rotational head speed

was investigated using linear regression. No dependency

was found, and the correlations were below .15 for all

algorithms in all environments. Thus, maladaptation did

not contribute to the movement effect. Scatter plots

of the algorithm benefit versus the horizontal angular

rotational head speed, including regression lines, can

be found in Supplementary Materials E.

Figure 11. Segmental SNR Benefit Over Time of All Algorithms Over All Movement Traces in All Environments. Box plots show the
median (different symbol and color for each algorithm), 25th and 75th percentiles (thick line), and the range (thin line). The range in
algorithm benefit shows that different movement traces result in a different algorithm benefit. The reverberation time (T60) of each
environment is listed on top, as measured in (Hendrikse et al., 2019b), together with the mean input SNR in each environment.
ADMb¼ adaptive differential microphone; AMVDRb¼ adaptive minimum variance distortionless response beamformer; D&Sb¼ delay-
and-subtract beamformer; SBb¼ a static binaural beamformer; BNR¼ binaural noise reduction; SCNR¼ single-channel noise reduction;
SNR¼ signal-to-noise ratio.
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Algorithm Benefit per Head Direction. To examine how the
input SNR and misalignment contributed to the vari-
ance in algorithm benefit, the algorithm benefit per
time window was plotted as a function of the horizontal

head direction of the participants in the corresponding

time window (Figure 13). Figure 13 shows that there was

a strong dependency of the algorithm benefit on the head

direction for the directional algorithms, especially for the

AMVDRb algorithm. The omnidirectional BNR and

SCNR algorithms did not depend much on the head

direction. Only in the train station VE was there a

strong increase in algorithm benefit toward azimuths

of �90�, for the SCNR algorithm. The dependency of

the directional algorithms on the head direction was

strongest in the streetactive and cafeteria VEs. The direc-

tion of optimal benefit for the AMVDRb algorithm was

clearly toward the target in these VEs; for the other

directional algorithms, it was somewhat off-axis.

Discussion

Experiment 2 examined the influence of head movement

on hearing aid algorithm benefit quantified by SNR

improvement during natural head movement that was

measured in the laboratory in VEs resembling everyday

life situations. The algorithm benefit and output

SNR both varied over the different movement traces,

Figure 12. The Algorithm Benefit Range Across Participants (and Across Head Movement Traces) Calculated in Each Time Window and
Plotted as a Histogram for Each Environment Separately. Different colors indicate different algorithms. This shows how the head
movement can affect the algorithm benefit in each time window. ADMb¼ adaptive differential microphone; AMVDRb¼ adaptive minimum
variance distortionless response beamformer; D&Sb¼ delay-and-subtract beamformer; SBb¼ a static binaural beamformer;
BNR¼ binaural noise reduction; SCNR¼ single-channel noise reduction.

Table 3. Significant Differences in Algorithm Benefit Between
Younger and Older Participants.

Environment Algorithm

Difference in

algorithm benefit

younger–older (dB)

Statistics

F (1, 38)

Cafeteriadualtask ADMb 0.3 12.4***

SBb �0.1 4.4*

Lecture hall D&Sb 0.2 8.5**

ADMb 0.2 5.0*

Living room SBb 0.4 14.8***

Train station D&Sb �0.4 9.9**

ADMb �0.5 16.3***

SBb �0.4 9.4**

AMVDRb �0.6 17.9***

Note. ADMb¼ adaptive differential microphone; AMVDRb¼ adaptive

minimum variance distortionless response beamformer; D&Sb¼ delay-and-

subtract beamformer; SBb¼ a static binaural beamformer.

*p< .05. **p< .01. ***p< .001.
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indicating that head movement influenced the perfor-
mance of the hearing aid algorithms. The range in algo-
rithm benefit over the different movement traces was
up to 6 dB for some algorithms in some environments,
and in single time windows even up to 15 dB,
indicating that head movement has a large influence on
algorithm benefit.

The analysis of the dependency of the algorithm ben-
efit on the rotational head speed and head direction
revealed how much of the variance in algorithm benefit
could be contributed to misalignment and maladapta-
tion. Because no dependency on the rotational head
speed was found, maladaptation was shown not to be
a relevant effect. This was also predicted based on the

Figure 13. Algorithm Benefit as a Function of Head Direction for All Algorithms (Different Colors) in All Environments. The algorithm
benefit is plotted as a function of the absolute head direction for the living room, lecture hall and train station environments, and as a
function of the head direction relative to the target for the cafeteria and street environments, to compensate for changing target speaker
positions. The plots show a dependency of the algorithm benefit on the head direction. ADMb¼ adaptive differential microphone;
AMVDRb¼ adaptive minimum variance distortionless response beamformer; D&Sb¼ delay-and-subtract beamformer; SBb¼ a static
binaural beamformer; BNR¼ binaural noise reduction; SCNR¼ single-channel noise reduction.
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results of Experiment 1. There was, however, a strong
dependency of the algorithm benefit on the head direc-
tion for the directional algorithms. This indicates that
there is a combined effect of the head shadow and mis-
alignment. Because the range in algorithm benefit was
sometimes larger than the range in input SNR, and
because the omnidirectional algorithms were not affect-
ed, we can be sure that the combined effect is not only
caused by the influence of the head shadow effect on the
input SNR, but that misalignment also plays a role.
Most likely there is some kind of interaction between
the two, and differences in input SNR are amplified by
the beam pattern. Studying the mechanisms behind this
interaction in more detail would be an interesting topic
for future research.

The analysis of the dependency on the head direction
also shows in which situations there can be problems
caused by head movement. In the VEs with multitalker
conversations, problems occurred when not pointing the
head in the direction of the active speaker. For the
D&Sb, ADMb, and SBb algorithms, the optimal direc-
tion was 15� to 30� off-axis from the target direction, as
was also found by Ricketts (2000). From the analysis of
the movement behavior in the previous study (Hendrikse
et al., 2019b), we know that the participants were fol-
lowing the active speaker in the cafeterialisteningonly and
streetactive VEs. The head direction was not always point-
ing exactly toward the off-center target speakers, how-
ever, because part of the movement was done with the
eyes. In the cafeteriadualtask VE, they were no longer fol-
lowing the active speaker because they were also looking
at the Pegboard. This could have led to a larger range in
algorithm benefit in the cafeteriadualtask VE, but as we
can see in Figure 11, no difference can be seen between
the two cafeteria VEs. There is a larger range in algo-
rithm benefit in the streetactive VE. Figure 13 (bottom
right panel) shows that a head directed toward the traffic
on the right side resulted in a lower algorithm benefit,
and we know from the movement behavior that partic-
ipants were occasionally looking at the traffic, which
could explain this. In the living room VE, there was
also a large range in algorithm benefit. This was
caused by occasionally looking at the person making
comments, which resulted in a higher benefit for some
algorithms and a lower benefit for others (Figure 13, top
left panel). In the train station, a higher algorithm benefit
was obtained for the SCNR algorithm when pointing the
head at �90� and thus toward the neighboring platform.
It is most likely that the announcements at this platform
could be heard better this way. Finally, in the lecture
hall, the range in algorithm benefit was small, and the
benefit did not greatly depend on the head direction.

When analyzing the algorithm benefit, it could be
seen that not all algorithms provide a benefit in all sit-
uations. The benefit in more realistic environments is

also much lower than the benefit in the simple scenarios
in Experiment 1. This difference in noise reduction per-
formance between simple laboratory conditions and
more realistic environments was previously shown by
Grimm, Kollmeier & Hohmann (2016). Potential
causes of these differences in performance could be the
reverberation and the fluctuating noise in the more real-
istic environments, but finding specific explanations for
the differences in performance is beyond the scope of
this article. The benefit in these more realistic environ-
ments is probably a better predictor of the benefit of
these algorithms in daily life.

Finally, it was hypothesized that beamformers would
work better for older people than for younger people
due to differences in the relationship between head and
eye movement. Significant differences in the order of
0.5 dB were found between the age groups, indicating
that an effect of age was there, but it is not important
in most situations.

Conclusion

The goal of this work was to study how head movement
might influence hearing aid algorithm performance relat-
ed to noise suppression and the underlying mechanisms
of this. Two potential consequences of head movement
were investigated: maladaptation and misalignment.
Experiment 1 examined the effect of maladaptation by
analyzing algorithm benefit quantified by SNR improve-
ment after simulated rotational head movement in
simple anechoic noise scenarios. Experiment 2 examined
the combined effect of maladaptation and misalignment
on algorithm benefit during natural head movement that
was measured in realistic VEs in the laboratory.

In Experiment 1, a significant effect of maladaptation
was found, but only in the most unrealistic scenario did
it have an influence larger than 1 dB. Algorithms with
slower adaptation times were more likely to be affected
by maladaptation because of head movement, and it
could take several seconds for the algorithms to recover.
For adaptation times in the range of the movement
duration, the peak velocity of the movement had a
large influence on maladaptation. For slower adaptation
times, only the start angle of the movement played a
role. Based on these results, it was expected that malad-
aptation would not play a role in daily life, and this was
checked in Experiment 2.

Experiment 2 shows that natural head movement can
severely affect algorithm performance in simulated sit-
uations resembling everyday life and confirms the expec-
tation of Experiment 1 that maladaptation does not play
a role. A dependency of the algorithm benefit on the
head direction was found so there was a combined
effect of the head shadow and misalignment. A large
head movement effect was found only for the directional
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algorithms, resulting in up to 6 dB difference in SNR
improvement, averaged over time. The omnidirectional
algorithms were only very minimally affected. This con-
firms the finding that misalignment plays a role. A
smaller algorithm benefit was found when the head
was not pointing toward the target speaker in the virtual
environments with multitalker conversations. Finally,
only small significant differences in directional algorithm
benefit were found between the younger and older par-
ticipants; the behavioral differences between the age
groups are too small to seriously affect the performance
of directional algorithms.

This work thus demonstrates the need to take head
movement into account in the evaluation of directional
hearing aid algorithms. The head movement data used
for the prediction of the influence on hearing aid algo-
rithm performance were measured in normal-hearing
participants. It could be, however, that hearing-
impaired and hearing aid users move differently; this
needs to be examined in a future study. Because environ-
ments resembling real-life situations and natural head
movement data were used, the findings of this study
may be significant for real-life use of hearing aids,
both qualitatively and quantitatively.

The databases of head movement trajectories and
VEs are available online (Hendrikse et al., 2019a,
2019c). Another database was published accompanying
this article that describes how to generate the hearing aid
microphone recordings used in Experiment 2 (Hendrikse
et al., 2020). Together with the methods proposed here,
they may be useful for studying the performance of
directional algorithms of commercial hearing aids as
well as for investigating the potential of (attention-)
steered directional filters to counteract the misalignment
effect. To demonstrate the methods, only the noise
reduction property of the algorithms was investigated.
Other properties of the algorithm output, such as sound
quality and speech intelligibility, could also be affected
by head movement and this could be investigated in
future studies using the methods proposed here.

Acknowledgments

The authors would like to thank the associate editor, Michael

Akeroyd, and the two anonymous reviewers for their helpful

comments.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The authors disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This study was funded by the Deutsche Forschungsgemeinschaft

(German Research Foundation)—project 352015383–SFB

1330 B1.

ORCID iD

Maartje M. E. Hendrikse https://orcid.org/0000-0002-7704-

6555

Supplemental Material

Supplemental material for this article is available online.

References

Abdipour, R., Akbari, A., Rahmani, M., & Nasersharif, B.

(2015). Binaural source separation based on spatial cues

and maximum likelihood model adaptation. Digital Signal

Processing, 36, 174–183. https://doi.org/10.1016/j.dsp.2014.

09.001
Archer-Boyd, A. W., Whitmer, W. M., Brimijoin, W. O., &

Soraghan, J. J. (2015). Biomimetic direction of arrival esti-

mation for resolving front-back confusions in hearing aids.

The Journal of the Acoustical Society of America, 137(5),

EL360–EL366. https://doi.org/10.1121/1.4918297
Baumg€artel, R. M., Hu, H., Krawczyk-Becker, M., Marquardt,

D., Herzke, T., Coleman, G., Adilo�glu, K., Bomke, K.,

Plotz, K., Gerkmann, T., Doclo, S., Kolmeier, B.,

Hohmann, V., & Dietz, M. (2015). Comparing binaural

pre-processing strategies II: Speech intelligibility of bilateral

cochlear implant users. Trends in Hearing, 19(0), 1–18.

https://doi.org/10.1177/2331216515618903
Baumg€artel, R. M., Krawczyk-Becker, M., Marquardt, D.,

V€olker, C., Hu, H., Herzke, T., Coleman, G., Adilo�glu, K.,

Ernst, S. M., Gerkmann, T., Doclo, S., Kolmeier, B.,

Hohmann, V., & Dietz, M. (2015). Comparing binaural pre-

processing strategies I : Instrumental evaluation. Trends in

Hearing, 19, 1–16. https://doi.org/10.1177/2331216515617916
Best, V., Roverud, E., Streeter, T., Mason, C. R., & Kidd, G.

(2017). The benefit of a visually guided beamformer in

a dynamic speech task. Trends in Hearing, 21,

233121651772230. https://doi.org/10.1177/2331216517722304
Boyd, A. W., Whitmer, W. M., Brimijoin, W. O., & Akeroyd,

M. A. (2013). Improved estimation of direction of arrival of

sound sources for hearing aids using gyroscopic informa-

tion. Proceedings of Meetings on Acoustics, 19, 030046.

https://doi.org/10.1121/1.4799684
Breithaupt, C., Gerkmann, T., & Martin, R. (2008). A novel a

priori SNR estimation approach based on selective cepstro-

temporal smoothing. In IEEE international conference

on acoustics, speech and signal processing (ICASSP)

(pp. 4897–4900). IEEE. https://doi.org/10.1109/

ICASSP.2008.4518755
Brimijoin, W. O., McShefferty, D., & Akeroyd, M. A. (2010).

Auditory and visual orienting responses in listeners with

and without hearing-impairment. The Journal of the

Acoustical Society of America, 127(6), 3678–3688. https://

doi.org/10.1121/1.3409488
Brimijoin, W. O., McShefferty, D., & Akeroyd, M. A. (2012).

Undirected head movements of listeners with asymmetrical

hearing impairment during a speech-in-noise task. Hearing

18 Trends in Hearing

https://orcid.org/0000-0002-7704-6555
https://orcid.org/0000-0002-7704-6555
https://orcid.org/0000-0002-7704-6555
https://doi.org/10.1016/j.dsp.2014.09.001
https://doi.org/10.1016/j.dsp.2014.09.001
https://doi.org/10.1121/1.4918297
https://doi.org/10.1177/2331216515618903
https://doi.org/10.1177/2331216515617916
https://doi.org/10.1177/2331216517722304
https://doi.org/10.1121/1.4799684
https://doi.org/10.1121/1.3409488
https://doi.org/10.1121/1.3409488


Research, 283(1–2), 162–168. https://doi.org/10.1016/j.

heares.2011.10.009
Brimijoin, W. O., Whitmer, W. M., McShefferty, D., &

Akeroyd, M. A. (2014). The effect of hearing aid micro-

phone mode on performance in an auditory orienting

task. Ear & Hearing, 35(5), 204–212. https://doi.org/

10.1097/AUD.0000000000000053
Elko, G. W., & Pong, A.-T. N. (1995). A simple adaptive first-

order differential microphone. In Proceedings of 1995

Workshop on Applications of Signal Processing to Audio

and Acoustics (pp. 169–172). IEEE. https://doi.org/10.

1109/ASPAA.1995.482983
Farina, A., Bellini, A., & Armelloni, E. (2001). Non-linear con-

volution: A new approach for the auralization of distorting

systems [Convention]. 110th Convention of the Audio

Engineering Society, Amsterdam, The Netherlands.
Favre-F�elix, A., Graversen, C., Dau, T., & Lunner, T. (2017).

Real-time estimation of eye gaze by in-ear electrodes. In

Engineering in Medicine and Biology Society (EMBC),

2017 39th Annual International Conference of the IEEE

(pp. 4086–4089). IEEE. https://doi.org/10.1109/

EMBC.2017.8037754
Grange, J. A., & Culling, J. F. (2016). The benefit of head

orientation to speech intelligibility in noise. The Journal of

the Acoustical Society of America, 139(2), 703–712. https://

doi.org/10.1121/1.4941655
Grimm, G., Herzke, T., Berg, D., & Hohmann, V. (2006). The

master hearing aid: A PC-based platform for algorithm

development and evaluation. Acta Acustica United With

Acustica, 92(4), 618–628.
Grimm, G., Hohmann, V., & Kollmeier, B. (2009). Increase

and subjective evaluation of feedback stability in hearing

aids by a binaural coherence-based noise reduction

scheme. IEEE Transactions on Audio, Speech, and

Language Processing, 17(7), 1408–1419. https://doi.org/10.

1109/TASL.2009.2020531
Grimm, G., Kayser, H., Hendrikse, M., & Hohmann, V.

(2018). A gaze-based attention model for spatially-aware

hearing aids. In Speech communication; 13. ITG symposium

(pp. 231–235). VDE Verlag GmbH.
Grimm, G., Kollmeier, B., & Hohmann, V. (2016). Spatial

acoustic scenarios in multichannel loudspeaker systems for

hearing aid evaluation. Journal of the American Academy of

Audiology, 27(7), 557–566. https://doi.org/10.3766/jaaa.

15095
Grimm, G., Luberadzka, J., & Hohmann, V. (2019). A toolbox

for rendering virtual acoustic environments in the context of

audiology. Acta Acustica United With Acustica, 105(3),

566–578. https://doi.org/10.3813/AAA.919337
Grimm, G., Luberadzka, J., Müller, J., & Hohmann, V. (2016).

A simple algorithm for real-time decomposition of first

order Ambisonics signals into sound objects controlled by

eye gestures. In Proceedings of the Interactive Audio Systems

Symposium. University of York.
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