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Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted

following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS)

methods, such as transcranial magnetic stimulation and transcranial direct current

stimulation, are promising tools that could enhance functional recovery of reach-to-grasp

post-brain injury. Though the rodent literature provides a causal understanding of

post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human

research. The high degree of homology in reach-to-grasp circuitry between humans

and rodents further implies that the application of NIBS to brain injury could be better

informed by findings from pre-clinical rodent models and neurorehabilitation research.

Here, we provide an overview of the advantages and limitations of using rodent models to

advance our current understanding of human reach-to-grasp function, cortical circuitry,

and reorganization. We propose that a cross-species comparison of reach-to-grasp

recovery could provide a mechanistic framework for clinically efficacious NIBS treatments

that could elicit better functional outcomes for patients.

Keywords: reach-and-grasp, stroke, traumatic brain injury, rodent, human, neuromodulation

INTRODUCTION

Reach-to-grasp is an essential task that requires precise spatial and temporal integration of
sensory and motor systems. Damage to these systems following stroke or traumatic brain
injury (TBI), commonly leads to long-term deficits in reach-to-grasp function (1, 2). Given that
reach-to-grasp movements are a fundamental skill for many daily activities, improving reach-to-
grasp recovery after brain injury is amajor goal of neurorehabilitation therapies (3, 4). Non-invasive
brain stimulation (NIBS) is of interest as both a prognostic tool for predicting motor recovery
after brain injury and as a novel option for rehabilitation treatment (5–8). When used as an
intervention in clinical populations, NIBS techniques such as transcranial magnetic stimulation
(TMS) and transcranial direct current stimulation (tDCS) have been shown to modulate localized
regions of activity in the cortex and are administered either independently or in combination
with task-specific training to promote functional recovery. Despite growing evidence of the
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benefits of NIBS in reducingmotor impairment after brain injury,
there are still large gaps in our understanding of the optimal
treatment parameters, the underlying neural mechanisms, and
factors that influence outcomes.

Rodent models have the potential to inform how
neurostimulation can be useful in clinical applications,
especially as it pertains to improving reach-to-grasp behavior
after brain injury. The sensorimotor circuitry controlling
volitional motor control and related reaching and grasping
behavior is highly conserved in mammals, with significant
cross-species similarities in posture and usage of forelimbs
(9). Rodents exhibit a similar laminar organization of
their M1 cortex compared to primates, and proximal and
longitudinal connectivity patterns are also known to be mostly
conserved (10). In addition to their comparable dexterity and
homology to human cortical representation, rodent models
offer several translational advantages—such as the availability
of transgenic lines, feasibility of invasive function modulation,
and imaging tools that can be exploited to study circuit
function and behavioral outcomes under highly controlled
environments (11, 12).

The purpose of this review is to compare and contrast
current literature on reach-to-grasp deficits in pre-clinical
rodent models and human studies, and to highlight how
neurostimulation in pre-clinical rodent models of brain injury
could provide a mechanistic basis for improving reach-to-
grasp function in humans. We begin with an overview of
the similarities and dissimilarities between the behavioral
and neural mechanisms of reach-to-grasp movements in
humans and rodents. We then compare how reach-to-grasp
circuitry is affected post-injury in humans and rodents
and describe the current efficacy of NIBS protocols in
clinical applications and rodent models. In each section, we
identify future directions and identify potential avenues for
clinical translation.

COMPARISON OF REACH-TO-GRASP
FUNCTION IN HUMANS AND RODENTS

Characteristics of Reach-to-Grasp in
Healthy Humans
Prehension is the act of reaching and grasping objects during
activities of daily living. Picking up a coffee cup, lifting a pen to
sign a check, or hammering a nail in the wall—all are movements
that involve reaching and grasping an object to achieve a goal.
Reaching movements are directed toward extrinsic properties
of an object, such as the location and orientation, and involve
recruitment of larger arm muscles to transport the hand to the
object. Grasping movements are directed toward the intrinsic
properties of the object, such as shape and size, and require
synchronized recruitment of extrinsic and smaller intrinsic hand
muscles to open and close the digits as the hand approaches
the object (13). During a typical reach-to-grasp movement,
there is first a gradual opening of the grip with straightening
of the digits, followed by a progressive closing of the fingers
to match the affordance of the object (14). The maximum
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FIGURE 1 | Rodents and humans present high similarity in kinematic stages

and coordination. Top panel: Representative hand/paw positions for three

stages (start, advance, and grasp). Adapted from (13). Bottom panel:

Temporal evolution of maximum digit opening throughout reach-to-grasp, with

corresponding timing of each movement stage as a function of overall

movement time. While there are differences in kinematic strategies between

the human hand and rodent paw, the gross dynamics, and morphology of

reach-to-grasp remain the same. Adapted and republished with permission of

Elsevier Science & Technology Journals from Sacrey et al. (21); permission

conveyed through Copyright Clearance Center, Inc.

grip aperture occurs at about 60–70% of the reach trajectory
and is strongly correlated with the size of the object (15).
Besides object size, the fragility of the object (16), texture, and
weight (17) also influence digit pre-shaping during the reach to
the object.

Humans typically grasp an object in either a precision or
power grasp (18–20). Precision grasps (Figure 1) involve creation
of an opposition space between the thumb and the remaining
digits and the application of force on the object with digit tips
(22). In contrast, power grasps are used when large forces need
to be applied to the environment, e.g., while wielding a hammer,
and involve the fingers to be flexed in opposition to the palm
with the degree of flexion dictated by the dimensions of the
object (15, 23).

Reach-to-Grasp Assessments in Rodents
Much like humans, rodents demonstrate a high level of
dexterity and fine usage of the limb while engaging in reach-
to-grasp movements. In particular, direct kinematic comparison
of reach-to-grasp between rodent and humans shows strong
conserved motor and coordination strategies (21, 24) (Figure 1).
Skilled reaching tasks in rodents provide multiple measurements
that quantify dexterity and ability to perform the task via
measures such as the number of hand changes, number of
successful hits, efficiency, and response time. The assessment
of forelimb function in rodents can be achieved through
several modalities that distinguish power and precision grip,
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as in humans. Power grasp and strength can be simply
measured using a Newton meter by allowing the rodent to
grasp on a bar while being pulled to evaluate the strength
at failure to grab. Assays such as the staircase assay (25),
skilled reach task (26), the pasta matrix (27), and the pasta
handling assays (28) were designed to assess the skilled use of
the forelimb for precision reach and grasp or fine handling
of food.

The scoring of hand shape and grasp movement has also
been used to evaluate the extent of compensatory changes in
movement strategy following injuries (26, 29, 30). More recently,
feedback loop approaches have been developed to investigate
motor adaptation and motor strength using lever pulling in static
(31, 32) and dynamic conditions (33), which allows for a closer
investigation of the neural correlates in motor planning and
execution during power grasp experiments. Here, our focus is
on precision grasp-related assays such as the skilled reach task
or reach-and-grasp assay to draw a correspondence with similar
assays described in human literature.

Scalability: Mapping Rodent Experimental
Paradigms to Clinical Motor Outcomes
Despite many similarities, there are nonetheless important
postural differences in reach-to-grasp movements between
rodents and humans. Unlike humans, rodents also have
to stabilize overall posture during reach-to-grasp, but this
will not be reviewed here as they are exhaustively covered
elsewhere (34–36).

A current limitation in using findings from rodent
experiments to understand reach-to-grasp impairments in
humans is the dichotomy in the scales and outcomes used to
score task performance. The rodent literature has mostly focused
on pure performance such as successful number of hits, and for
the most part, has ignored compensatory mechanisms of task
accomplishment, such as altered handshape, unconventional
motor strategies, and two-limb assisted performance. In
contrast, the human literature has emphasized kinematic and
kinetic analyses that isolate specific features of movement that
are impaired after injury (37–40). Specific parameters of reach-
to-grasp movements are predictive of general upper extremity
impairment and function (41). For example, maximum grip
aperture is higher in patients following stroke, and is predictive
of functional impairments (42). Thus, a closer examination of
rodent aperture scaling in response to different haptic-based
object cues may provide a window into behavioral measures that
are clinically relevant (13).

Overall, pre-clinical animal models would benefit from
the incorporation of higher sensitivity assessments in order
to distinguish finer motor alterations and associated motor
circuitry adaptations following brain injuries (43, 44). Recent
advances in low-cost platforms for trajectory tracking (45) and
open source software developed for markerless pose estimation
(46, 47) makes measuring fine-grained changes in kinematics
easily implementable in the lab setting and provides a relevant
framework for cross-species comparisons.

NEURAL MECHANISMS OF
REACH-TO-GRASP

Neural Mechanisms of Reach-to-Grasp in
Humans and Non-human Primates
Reach-to-grasp movements in primates are mediated by two
cortical dorsal stream pathways involving cortical interactions
between posterior parietal cortex (PPC), premotor cortex (PM),
and primary motor cortex (M1) [reviewed in (48, 49)]. Reaching
is enabled primarily by a dorsomedial pathway that projects
through the superior parietal lobule (SPL) via the parietal reach
region, including the superior parieto-occipital cortex, to the
dorsal premotor cortex (PMd) and finally to M1 (50–52). The
dorsomedial stream uses visual motion information to monitor
spatial location of objects to allow for skilled reachingmovements
to occur (53). In contrast, the dorsolateral pathway is responsible
for grasping and projects through the anterior intraparietal
sulcus to ventral premotor cortex (PMv) and then to M1. This
pathway primarily receives and processes visual information on
object affordances (14, 54). The dorsolateral visual stream is
also involved in recognition of object motion and self-motion
(55). The basal ganglia and cerebellum each form reciprocal
connections with the two cortical streams and play an important
modulatory role in facilitating eye-hand coordination during
corrective online responses and integrating reach and grasp
components into a single motor program (56–58).

In addition to these neural substrates, the corticospinal
tract also mediates integration of reach-to-grasp movements
under visual control (59). Non-human primates and humans
have direct connections between corticospinal neurons and the
cervical motorneurons. The phylogenetic development of the
corticospinal tract also correlates with dexterity, particularly in
the ability to perform precision grips (60). Indeed, non-human
primates with weaker corticospinal projections have no ability
to form precision grips and possess limited manipulatory skills.
In humans, TMS-induced motor evoked potentials, a measure
of corticospinal excitability, are more suppressed during power
grasps than precision grasps, suggesting a more pronounced role
of the corticospinal tract in precision grasps (61, 62).

Reaching and grasping movements emerge independently in
humans in the early stages of development, and foveal vision
plays a critical role in facilitating the integration of these
movements during development (13). Young infants primarily
rely on proprioception to direct their hands toward objects
and use somatosensory feedback to determine if they have
contacted an object (63). Between 4 and 8 months of age,
infants begin to use vision to organize sequential reach-then-
grasp movements (64). By about 9 months of age, infants begin to
exhibit feedforward visual control of functional reachmovements
by orienting the hand to match the orientation of the object.
This suggests early ontogenetic maturation of the dorsomedial
pathway compared to the dorsolateral pathway. The gradual
maturation of the dorsal visual stream during the first decade of
life (65) allows smooth integration of reach-to-grasp movements
under feedforward visual control (66). In adults, simultaneous
processing of visual inputs in these two streams allow the reach
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and grasp movements to be concurrently executed as a single
smooth integrated act (67–70).When visual processing is limited,
either during traumatic brain injuries or through experimental
manipulation, prehension decomposes into its two elemental
components, suggesting disruption in online processing and
interactions in these two pathways.

Neural Mechanisms of Reach-to-Grasp in
Rodents
Rodent models have facilitated the detailed investigation of
motor circuits using techniques such as regional lesioning,
electrical stimulation, and optogenetics. Much like humans,
motor circuitry in rodents is also divided into 3 major groups:
(1) higher order centers that include posterior parietal (PPC),
primary (M1; also identified as the caudal forelimb area—CFA)
and secondary/premotor (M2/PM; also identified as the rostral
forelimb area—RFA) regions that are involved in sensorimotor
integration, planning and volitional control, (2) modulatory and
relay centers that include the thalamo-striatal-midbrain axis
responsible for gating, selective sensory integration, and motor
plasticity, and (3) motor coordination and execution centers
such as the cerebello-cortico-spinal pathway that regulate the
direct translation of efferent higher order signals into physical
movements as well as providing feedback for fine movement
tuning and learning. Primarymotor regionsmodulate movement
outcomes through both direct and indirect pathways involving
corticospinal neurons and reticulo/rubro/tectospinal pathways,
respectively (71, 72).

In contrast to the cerebellum and spinal control of posture and
locomotion, skilled motor learning is thought to be orchestrated
through the corticomotor and motor planning pathways in
association with a descending pathway consisting of midbrain
and spinal cord neurons (73, 74). In comparison to humans, the
corticomotor and planning pathways in rodents are organized
through a much reduced PPC mapping to CFA and RFA
(75). Cholera toxin B (CTB) retrograde tracing coupled with
optogenetic probing of CFA/RFA interconnectivity established
asymmetric intra-hemispheric connections between the two
regions, with CFA strongly projecting to L2/3 and L5a of RFA,
and RFA strongly projecting to L1 and L5b of CFA (76).

With regards to reach-to-grasp, there is not a clear distinction
of the CFA (primary) and RFA (secondary) function in rodents
(Figure 2). Though there is some evidence for preferential reach-
related activity in CFA and grasp-related activity in RFA (77, 78),
it is believed that CFA and RFA might share the same motor
planning and execution function and only differ in how internal
state information is integrated with motor planning (71). Recent
studies have demonstrated the sensitization of RFA to rewarding
situations and internal adaptation to feedback stimuli, which
is a key feature of neuroplastic changes and motor control
flexibility (71).

The somatotopic organization of the motor cortex mapped
using intracortical microstimulation (ICMS) has helped reveal
part of the functional association between sub-divisions of the
cortico-spinal layer (layer IV-V) of the RFA and CFA (79, 80).
Short duration ICMS revealed that isolated body movements

of the wrist, elbow, and neck had overlapping representations
in RFA and CFA. Long duration stimulations, on the other
hand, have been shown to elicit complex motor sequences such
as reach, grasp, and retract (81), with distinct representations
in RFA and CFA. These results suggest that sustained cortical
activation might recruit corticospinal neurons into combined
sequences of single movements and might also act as a basic
template for the learning of skilled motor tasks. In summary,
although rodents share homologous neural circuits with humans,
the functional segregation of CFA and RFA in the rodent cortex is
less distinct when compared to M1 and PM in the human cortex,
suggesting that targeting anatomically analogous regions need
not necessarily elicit similar functional outcomes.

Scalability: Defining the Overlap Between
Rodent and Human Cortical Circuitry for
Reach-to-Grasp
In addition to a shared somatotopic organization related to
different parts of the body, motor cortical regions may contain
spatially distinct representations of complex movements, such
as reach-to-grasp, of the animals’ natural motor repertoire
(82, 83). The similarity between ethological “action maps”
across species lends support to the view that a common
organizational structure supports reach-to-grasp movements in
humans, non-human primates, and rodents (81, 84, 85). The
differential extent of cortical mappings devoted to a given
movement category, between species (and across individuals
within-species) depends on the behavioral relevance and
specific experience with performing that movement type
(86, 87). This suggests that rodent models of reach-to-grasp
can focus on functional, rather than strictly anatomical,
correspondence across interacting motor cortical areas to best
inform mechanisms of human reach-to-grasp.

Rodent models can also improve our understanding of
the functional specialization related to the neural substrates
of reach-to-grasp action. In primates, though reaching and
grasping components have been localized to dorsomedial and
dorsolateral pathways, respectively, recent neurophysiological
and neuroimaging evidence has revealed overlapping reach- and
grasp-related neural activity in each pathway (88–91). Likewise,
rodent models have associated CFA with the reaching/retracting
motions associated with more proximal forelimb muscles and
RFA with grasping movements associated with distal forelimb
muscles (77, 78), whereas others have shown each area plays
a role in both reaching and grasping (92, 93). This has led
to the view that the posited functional segregation between
reaching and grasping may simply be a byproduct of overlapping
representations that are activated sequentially during naturalistic
reach-to-grasp movements (94). Consequently, translating
rodent models of reach-to-grasp to humans will depend on a
stronger characterization of how the spatiotemporal progression
of neural activity in rodent CFA and RFA maps onto a similar
progression in human cortical pathways.

The main disadvantage of rodent models concerns
evolutionary development of specialized neural circuits for
more sophisticated control of prehension in primates (95).
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FIGURE 2 | Overview of similarities and differences in the cortical circuitry supporting reach-to-grasp function in humans and rodents. PPC, posterior parietal cortex;

CST, corticospinal tract; PMd, dorsal premotor cortex; PMv, ventral premotor cortex, M1, primary motor cortex; CFA/M1, Caudal forebrain area, primary motor cortex;

RFA/M2/PM, rostral forebrain area/secondary motor cortex/pre-motor cortex. Solid arrows: known connectivity and circuitry; Dashed arrows: lack of knowledge on

connectivity and circuitry.

Though both rodents and primates have many descending motor
cortex projections through the CST, lesions to the CST have a
stronger effect on reach-to-grasp movements in primates than in
rodents (96). The presence of direct monosynaptic connections
between a phylogenetically newer portion of M1 and cervical
motoneurons in primates make CST a prominent contributor to
reach-to-grasp movements (59, 97, 98). The diverging function
of CST in rodents and primates mirrors the behavioral advantage
of primates for fractionated digit control and visual guidance for
precision grip (13).

Relative to the motor cortex, fewer investigations of reach-
to-grasp have targeted rodent PPC. Though PPC in rodents
serves roles across a wide variety of sensory, cognitive, and
motor domains (99, 100), whether rodent PPC contains complex
movement representations similar to primates is unclear (101).
Anatomically, the relative size of PPC in rodents suggests a
much smaller role in coordination of reach-to-grasp movements.
Functionally, a recent investigation by Soma et al. (102) suggests
that PPC’s contribution to the control of movement in rodents
fundamentally differs from that of primate PPC: whereas neurons
in primate PPC show a preference for movements of the
contralateral limb (as withM1 and PM), neural activity in rat PPC
showed a strong ipsilateral preference.

In summary, rodent models of neural organization show
the greatest promise in elucidating the underlying spatial
structure and temporal dynamics of premotor and motor areas
throughout the course of a reach-to-grasp action. However, they
have limited scalability in terms of understanding the role of
associative regions and descending pathways in reaching and
grasping function.

LOSS OF REACH-TO-GRASP FUNCTION
FOLLOWING BRAIN INJURY

Reach-to-Grasp Dysfunction Following
Brain Injury in Humans
Impaired reach-to-grasp after stroke is most commonly observed
as a result of upper limb paresis following damage involving
the CST or cortical motor areas (103–105). After stroke, paresis
mainly affects the side of the body opposite the lesion, in
addition to subtler deficits observed ipsilesionally (39). Stroke
survivors with damage to the CST generally exhibit slower arm
transport velocities, decreased movement smoothness, and more
segmented hand opening during grasp (39, 42, 106), while other
features, such as the temporal synchrony between the transport
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and grasp phases, are relatively preserved (42, 106, 107). In
TBI, diffuse brain damage can lead to arm paresis and other
motor impairments (108). Motor function is relatively preserved
relative to neurocognitive effects, this may be partly because
the standard clinical measurements do not capture the full
extent of sensorimotor deficits after TBI (109, 110). Children
with moderate or severe TBI showed slowing of both trajectory
and grip formation in a reach-to-grasp task, and differences
in performance persists months after TBI onset (111). Other
observed deficits in movement preparation and execution are
similar to those seen post-stroke, though recovery of function
is likely to be different given the large disparities in post-injury
plasticity (1, 108).

Behavioral changes following brain injury are coupled with
substantial reorganization of cortical networks, and the extent
of cortical reorganization beyond the focal tissue damage can
have large facilitative or maladaptive effects on motor function
and recovery (112, 113). Spontaneous reorganization mainly
occurs within the first 3 months post-stroke in humans, a
critical time period in which heightened plasticity can be
exploited to facilitate recovery (114). The recent advances in
brain connectivity analyses have led to a greater emphasis on
understanding remote effects of the infarct on large-scale brain
network structure (115–119). A meta-analysis found that across
a wide variety of motor tasks and impairments, stroke patients
exhibit higher activation in primary motor cortex opposite the
lesioned hemisphere, as well as increased bilateral premotor
activity relative to healthy controls (120). During performance
of simple movements, TBI patients show altered brain activation
patterns and connectivity within the motor network (121, 122).
Though less is known about connectivity with parietal regions,
recent neuroimaging studies suggest that weakened connections
between the parietal, premotor, and motor areas underlie motor
impairments after stroke (123, 124). In both TBI and stroke,
changes in parietofrontal networks can persist even in patients
who are well-recovered, suggesting a long-term reorganization
of functional networks subserving compensatory motor planning
and execution (108, 125).

Much of the focus in understanding cortical reorganization
has concerned an altered balance of excitatory and inhibitory
inputs (E/I balance). TMS has been used extensively as an
assessment tool to probe the excitability of motor cortex
and functional CST integrity via measurement of motor-
evoked potentials. In early stroke, patients without upper-
limb motor evoked potentials exhibited considerably worse
functional recovery than patients with observable motor evoked
potentials (126). When used in combination with standard
clinical assessments of upper-limb impairment and MRI-
based biomarkers of CST integrity, TMS-based assessments of
corticospinal excitability strongly predicted potential (or lack of
potential) for motor recovery after stroke (127, 128). More severe
CST damage, especially damage to fibers originating in primary
motor cortex, is associated with impaired hand function and
poorer rehabilitation outcomes (129–131). TMS GABA receptor
function and tonic GABA concentration, markers of inhibition,
are generally reduced in the affected hemisphere post-stroke
(132–134). In severe TBI, reduced corticospinal excitability is

related to both greater diffuse axonal injury and greater motor
impairment (135, 136).

Changes in relative excitation and inhibition and their
relevance for motor recovery after ischemic stroke depend on the
severity and location of the lesion. Di Pino et al. (137) proposed
a “bimodal-balance recovery model,” in which the optimal
interhemispheric interactions between motor cortices depends
on the available neural pathways post-injury. According to the
model, in patients with relatively low impairment (and preserved
neural pathways), increased inhibition of hemisphere opposite
of the lesion onto the lesioned hemisphere is maladaptive,
whereas in patients with severe impairment (and more damaged
neural pathways), an interhemispheric imbalance constitutes
compensatory plasticity supportive of recovery, perhaps a
consequence of shifting toward more ipsilateral control via
the cortico-reticulo-propriospinal pathway (138). Likewise, the
role of premotor cortex depends on impairment severity—
whereas in less impaired patients, ipsilesional PM plays a larger
role through increased connectivity with M1 and descending
corticospinal tracts, in more impaired patients contralesional PM
facilitates M1 to aid in movement execution (139, 140). However,
recent evidence suggests that interhemispheric imbalance only
emerges after the sensitive period when changes in motor
behavior are minimal (141, 142). Thus, how targeting restoration
of E/I balance may facilitate recovery post-injury remains an
open question.

Motor Cortex Injury and Reach-to-Grasp
Function Loss in Rodents
Stroke and TBI in rodent models cause sizeable lesions
and significant cell death in brain tissue. Despite similar
manifestations of hemorrhage and edema across both stroke
and TBI, their pathophysiologies are quite different. Stroke
can be ischemic (75% of all cases), hemorrhagic (15% of all
cases) or both (143), leading to reduced blood perfusion of the
adjacent brain tissue that causes an immediate loss of neuronal
activity and functional impairment. The state of prolonged
ischemia (oxygen depletion) triggers massive cell death that
induces progressively larger lesions due to secondary insults
mediated by excitotoxic agent release (neurotransmitters) and
neuroimmune responses. Severe TBI results from a blunt force
injury or severe penetrating lesions to brain tissue that leads to
shearing of neuronal circuits and vasculature. The progressive
damage of brain tissue in the days, months, and years thereafter
are a result of the secondary injury cascades that are similar
to stroke as described above. Following a severe TBI, the
massive loss in tissue integrity in the lesion site and surrounding
regions is due to the significant cell death and breach of the
blood-brain barrier (BBB), which results in permanent loss
of function.

The functional impairments observed in rats following
TBI have been shown to be dependent on age (144), lesion
size, and depth (145), as well as the presence of an edema
(146). The extent of tissue loss dictates the initial functional
impairment and the speed of recovery. Rodents subjected to
small focal impact injuries (<3.0 diameter) might recover up
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to 90% of their initial pre-injury performance within 15 days
(145). However, the same extent of recovery is not evidenced
in the case of larger and deeper lesions, especially those
spanning the pyramidal tract and white matter, with animals
never recovering more than 80% of initial performance
within 4 weeks post-TBI (146). The intervals between
testing post-injury vary considerably across studies, which
makes discriminating between causative factors of recovery
quite challenging.

Severe TBI studies in rodents have demonstrated that the
motor cortex undergoes reorganization post-TBI, involving
either intra-cortical inhibition (147–150), inter-hemispheric
crosstalk, axonal sprouting (151), or cholinergic/dopaminergic-
dependent plasticity disruptions (152). Similar to humans
(see Reach-to-Grasp Dysfunction Following Brain Injury
in Humans section), an increase in activity in perilesional
tissue and complementary motor regions such as PM,
is indicative of the reorganization of motor function
following injury (153–155). Motor reorganization and
compensatory mechanisms observed in rodents are often
associated with a return of function to near pre-lesion
performance levels (146). It is now well-established that
the extent of cortical reorganization and its associated re-
functionalization, or lack thereof, is heavily dependent on
the extent of exposure to stimulating environments and
tasks prone to induce neuroplastic changes such as enriched
environments and novel motor tasks (152, 156, 157), which
also form the basis of some rehabilitative strategies used in
humans (155, 158, 159).

Direct investigations of circuit refunctionalization after
TBI using voltage-sensor dye imaging of the entire cortex
showed a long-lasting, delayed, and decreased response of the
ipsi- and contralateral cortex following forelimb stimulation
(sensory). Whereas, direct optogenetic stimulation of the RFA
cortical surface revealed a strong asymmetric contralateral
response indicating the presence of a spontaneous inter-
hemispheric rewiring at week 8 post-injury (160). These
results supported the notion that motor learning of the intact
limb (contralesional cortex) is further enhanced and might
provide compensatory support for task completion (161).
Indeed, these findings are further supported by observations
indicating expansion of the contralesional somatotopic motor
map following TBI, and studies demonstrating intact limb
restraint leading to limited recovery of the impacted limb
(162). In addition, restraining of the intact limb limited
recovery potential of the impacted limb (146). Altogether,
these results suggest that plasticity changes and motor
reorganization of the hemisphere contralateral to the
lesion might partially support functional recovery after TBI
in rodents.

The convergence and overlap of peri-lesional, intra-cortical,
inter-hemispheric, and systemic compensations promote a
spontaneous reorganization and offloading of motor function
following injury. All these plastic changes might ultimately be
driven by trophic factor-dependent mechanisms such as those
activated by brain-derived neurotrophic factor (BDNF) (163–
166), which facilitates spontaneous rewiring-driven functional

recovery observed in rodents after exercise rehabilitation, and
potentially after drug and neurostimulation driven repair.

Scalability: Translating Rodent Injury
Models to Post-injury Reorganization in
Humans
Cortical reorganization of upper-limb function using ICMS
protocols in rodents, and TMS/MRI in humans, have
been instrumental in detecting enhanced perilesional and
contralesional neural activity and excitatory/inhibitory (E/I)
imbalance, both acutely and chronically post-injury. The E/I
imbalance has been shown to drive acute cortical depression that
further enhanced secondary excitotoxic cascades that accelerated
intra- and perilesional neuronal death (167). It is therefore
important to note that E/I imbalance might also be targeted to
shape cortical reorganization post-injury through the promotion
of long-term potentiation and depression (168–170). Dialysis
and magnetic resonance spectroscopy studies in humans found
E/I imbalance similar to that observed in rodents (171), however,
the direct correspondence between rodent and human responses
to a loss of E/I homeostasis remains to be explored.

Despite profound disparities in the anatomical
correspondence in the CST between rodents and humans
(see Scalability: Defining the Overlap Between Rodent and
Human Cortical Circuitry for Reach-to-Grasp section),
it is now evident that the extent of CST loss post-
injury might proportionally correspond to the observed
contralesional hemispheric activation (146). The induction
of controlled cortical impact lesions of brain tissue and
quantification of refunctionalizaton post-injury is quite
feasible in rodent studies when compared to humans,
where comorbidities and lesion variabilities might provide
a very restricted spatial and mechanistic understanding of
injury progression.

The reach-to-grasp task is considered a skilled learned task
that involves the acquisition of specific and fine-tuned sequences
of movements (172). As such, it has been demonstrated that
skilled motor learning as opposed to other forms of repetitious
motor learning tasks induces a reshaping of the motor cortical
landscape (173) that is dependent on intra-cortical integration
of sensory and planning information (174, 175), and on the
cholinergic (152, 176) and the dopaminergic (177, 178) afferent
projections to the motor cortex. Importantly, the morphology,
laminar distribution and density of cholinergic basal forebrain
innervation varies greatly between humans and non-human
primates, let alone between humans and rodents (179, 180).
Although the laminar distribution of cholinergic systems and
control of plasticity by cholinergic inputs is highly conserved
between rodent and humans (181, 182), the specific role of this
system in motor learning and post-injury adaptation remains to
be elucidated.

Despite several disparities, the shared principles of
reorganization between rodent and human models such as
anatomical and physiological changes, E/I imbalance, regional
compensatory activity, and impact of environmental factors,
point to the translational relevance of pre-clinical rodent studies.
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NEUROMODULATION FOR MOTOR
RECOVERY POST-BRAIN INJURY

Neurostimulation to Promote Motor
Recovery: Clinical Studies
The goal of non-invasive brain stimulation (NIBS) therapies is
to augment existing rehabilitation protocols through shaping
the cascade of reorganizational processes that occur post-injury.
NIBS protocols aim to either upregulate preserved areas of cortex
supporting effective recovery or downregulate areas that are
thought to be maladaptive. Two of the most common methods
in human clinical trials are repetitive transcranial magnetic
stimulation (rTMS) and transcranial direct current stimulation
(tDCS). In each of these methods, the after-effects of stimulation
remain for minutes or hours beyond the stimulation itself,
allowing for behavioral testing of effects or pairing stimulation
with other rehabilitation interventions. rTMS involves a train
of magnetic pulses for a set duration, intensity, interval, and
frequency. Low-frequency (≤1Hz) rTMS delivered continuously
for 10–30min induces inhibition of cortical excitability, whereas
high-frequency (5–20Hz) increases cortical excitability. A more
recent form of rTMS is theta-burst stimulation (TBS), in
which patterned pulses are delivered in triplets at 50Hz either
continuously (every 200ms for 20 or 40 s) to increase cortical
excitability (continuous TBS; cTBS) or intermittently in 10 bursts
repeated every 10 s for 192 s to decrease cortical excitability
(intermittent TBS, iTBS). TBS is appealing in clinical settings
due to its shorter duration, lower intensity, and longer lasting
after-effects relative to LF- or HF-rTMS (183).

In tDCS, application of low-intensity (1–2mA) currents
through two electrodes placed on the scalp for 5–30min
increases or reduces excitability in a polarity-specific manner.
When compared to rTMS, tDCS has worse spatiotemporal
resolution but generally has longer after-effects. Although more
recently, high-definition tDCS has been used to improve
spatial resolution (184, 185). Though TMS and tDCS have
different mechanisms of action, they are both thought to
activate mechanisms of neuroplasticity that are similar to
long-term potentiation or long-term depression (186), both
at the stimulation location and remotely (185). Typically,
intervention studies investigating NIBS and motor recovery
have designed stimulation paradigms based on principles of the
interhemispheric inhibition model, either by exciting ipsilesional
cortex (HF-rTMS, iTBS, anodal tDCS), inhibiting contralesional
cortex (LF-rTMS, cTBS, cathodal tDCS), or both (187, 188).

There is currently a greater emphasis on implementing NIBS
protocols for stroke than for TBI recovery. Of the currently
registered clinical trials using rTMS or tDCS for treatment of
stroke or TBI, 85% are focused on stroke recovery (as of Dec
2019—Figure 3). Research on the applicability of NIBS as an
intervention for recovery of motor deficits is in the nascent
stages in TBI as compared to stroke (6, 189, 190). Despite
this rapidly increasing interest in clinical applications, there is
little consensus on the efficacy of such treatment protocols [for
systematic reviews andmeta-analyses, see (191–198)]. The mixed
effectiveness across studies is a confluence of many interrelated

Stroke (213)

DCS (139)

DCS (11)

TMS (84) TMS (17)

TBI (39)

UMR (10) UMR (19)

FIGURE 3 | Current landscape for clinical trials investigating non-invasive brain

stimulation treatments for stroke and traumatic brain injury. TBI, Traumatic

brain injury; DCS, Direct current stimulation; TMS, Transcranial magnetic

stimulation; UMR, Upper-limb motor rehabilitation. Number in parenthesis

represents the number of matching clinical trials related to NIBS treatment.

Source: https://www.globalclinicaltrialsdata.com/; data post-filtered for

matching key words on conditions and treatments.

factors. In healthy humans, factors such as demographics, genetic
polymorphisms, anatomical features, and current brain state all
contribute to response variability (183). Compounding these
differences, in patients, the level of initial functional impairment
(mild to severe) and associated functional integrity of the
CST (e.g., presence or absence of TMS-induced motor-evoked
potentials) further influences which NIBS treatment protocol
(excitation or inhibition) is most likely to be effective (199).
Response to treatment also depends on the timing relative to
the injury—whereas the goal of stimulation in the acute and
subacute phases may be to augment motor learning during
spontaneous recovery, in the chronic phase NIBS may instead be
geared toward “re-opening” the sensitive period and/or focusing
on compensation. From an experimental design perspective,
the specific parameters selected, including intensity, duration,
focality of stimulation, and number of stimulation sessions, can
influence the directionality of changes to cortical excitability
and treatment efficacy (200–202). Finally, how NIBS is paired
with behavior modulates effectiveness, with treatment effects
often most promising when stimulation is applied during motor
training (185, 203, 204).

Few NIBS applications thus far have specifically pinpointed
kinematic-based reach-to-grasp outcomes after brain injury,
though many studies have used clinical assessments of dexterity
(e.g., Jebsen-Taylor Hand Function Test, Perdue Pegboard Test)
or tests with reaching and grasping subcomponents (e.g., Wolf
Motor Function Test, Action Research Arm Test) (191, 205).
Nowak et al. (206) examined the effects of LF-rTMS to the
contralesional M1 in a cohort of patients with subcortical strokes
with mild to moderate motor impairment. Consistent with
the bimodal-balance recovery model, they found that reducing
contralesional M1 excitability in this cohort resulted in improved
peak wrist velocities and peak digit apertures of the affected
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hand, matching kinematic performance of their unaffected hand.
Similarly, LF-rTMS to the contralesional hemisphere improved
peak aperture and a composite measure of reach-to-grasp
coordination, especially for grasps to smaller objects (207, 208).
LF-rTMS and TBS have also been shown to augment effects
of reach-to-grasp and precision grip training in chronic stroke
patients (209, 210). Finally, Lefebvre et al. (211) found improved
precision grip kinematics following bilateral tDCS, in which
anodal stimulation over ipsilesional M1 and cathodal stimulation
over contralesional M1 was applied simultaneously. Collectively,
these studies provide evidence that the positive effects of NIBS on
motor function can extend to more complex manual dexterity.

Despite obvious benefits, whether NIBS can aid in the
recovery of complex motor functions like reach-to-grasp
remains an open question. Clinical NIBS studies to date
have almost exclusively targeted M1 for both practical (e.g.,
determining optimal stimulation coordinates) and theoretical
(interhemispheric competition models) reasons. Compared
to improvements in simple motor parameters, stimulating
M1 sometimes have a muted effect on complex motor
functions (212). Thus, given the wealth of evidence of
widespread changes to cortico-cortical interactions governing
motor control after brain injury, there is a need to investigate
whether other nodes in the parietofrontal system are suitable
stimulation targets for improving reach-to-grasp behavior.
Supporting this notion, Lotze et al. (213) found that stimulating
contralesional M1, PMd, and SPL each led to deficits in
performance of a complex sequential motor task in well-
recovered stroke patients, suggesting that all three areas play
a role in compensatory reorganization. Though PMd has
recently received more attention as a potential stimulation
target for improving dexterity following brain injury (214, 215),
similar investigations targeting PPC in reach-to-grasp function
are lacking.

Neurostimulation to Promote Motor
Recovery: Pre-clinical Models
Current clinical strategies to treat post brain injury
trauma following a stroke or a TBI are mostly designed
to alleviate immediate symptoms such as intracranial
pressure, blood clots, overall blood perfusion and control
of hemorrhage (216, 217). Despite the enormous physical,
medical, and economic burden associated with post-brain
injury, to this date, no clinical treatment is available
for the repair and re-functionalization of the damaged
brain (218–220).

NIBS techniques such as rTMS and tDCS/DCS allow for
a high temporal and spatial resolution control of neuronal
ensemble activity in humans as well as in rodents. The
pre-clinical investigation of neurostimulation and reach-
and-grasp has substantially improved our understanding
of the underlying mechanisms of recovery post-injury,
facilitated by combining NIBS with more invasive approaches.
Mechanistically, in the rodents, TMS and DCS modulate
excitability of cortical structures (221–223), BDNF-dependent
motor learning (224–226), neurogenesis (227, 228), and can

result in improved motor performance (229). Overall, the
use of NIBS in rodents can be broadly classified into two
distinct approaches:

Schedule Stimulation and Skilled Motor Recovery
It has been shown that the severity of the motor cortex
injury, and particularly, the extent of damage to corticospinal
neurons can seriously impair spontaneous recovery
in rats (146). M1 electrical stimulation targeting the
contralesional cortical column, including corticospinal
neurons, promoted corticospinal axonal sprouting and re-
functionalization at the contralesional spinal cord tracks,
leading to improvements in reaching (230–232). While
these previous studies used intensive and long stimulation
protocols, more acute application of tDCS has also been
shown to facilitate functional motor recovery (233, 234).
Similarly, monopolar fast DCS could improve skilled reaching
in rats over a 10 day period (235, 236). Such scheduled
stimulation might cause transient responses in activated
microglia (237, 238).

Pairing Neurostimulation and Behavior for Targeted

Causal Recovery
Ramanathan et al. (153) have shown in rodents that the
RFA (rostral forelimb area; M2/PM) produces short, slow
oscillatory local field potentials for the duration of the reach-
grasp-retract phase of a single pellet retrieval assay which
disappear, intra- and peri-lesionally, following stroke along with
a reduction in retrieval performance. Interestingly, the authors
paralleled a similar loss in sensorimotor synchronization in
patients with stroke performing a center-out reaching task.
Timely triggering of DCS stimulations could re-ignite peri-
lesional slow oscillations and reach-to-grasp performance. The
cross-functionality of the RFA and CFA was demonstrated
in another study where a CFA injury resulting in loss of
reach-to-grasp performance could be recovered through closed-
loop DCS re-pairing of the primary sensory cortex (S1)
and RFA, resulting in a functional stream that bypasses the
CFA and facilitates faster reach-and-grasp recovery (239).
Pairing neurostimulation with behavior has a major advantage
of creating associations with the stimulation in a reliable
manner, leading to faster recovery (Figure 4). Ultimately, it
is expected that neurostimulation paired with behavioral tasks
would have a longer-lasting re-functionalizing impact than
neurostimulation alone.

Altogether, these results show that rodent models allow for a
wide exploration of parameters and combinatorial approaches,
while providing mechanistic evidence for their efficacy.

Scalability: Using Pre-clinical Models to
Refine Neurostimulation Parameters for
Clinical Use
Pre-clinical use of neurostimulation has been essential for
optimizing the wide parameter space that encompasses NIBS, as
well as to define the essential mechanistic components that direct
positive outcomes following stimulation such as, neurogenesis,
neural stem cell proliferation/migration (240, 241), the triggering
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FIGURE 4 | Neurostimulation strategies and reach-to-grasp recovery in rats post-injury showing two typical stimulation paradigms. Top panel: Scheduled

rehabilitative stimulation using the staircase task on rodents post-controlled cortical impact injury and tDCS at various frequencies of stimulation. Bottom panel:

Behavior-triggered stimulation. Using an automated skilled reach task box, the timing of stimulation can be performed relatively to the intended movement to reinforce

cortical plasticity and recovery post-stroke in rats. Adapted from Ramanathan et al. (153), reprinted with permission from Springer Nature, Nature Medicine (advance

online publication, 07/2020, doi: https://doi.org/10.1038/s41591-018-0058-y), and Adkins-Muir and Jones (233), reprinted by permission of Taylor & Francis (Taylor &

Francis Ltd, http://www.tandfonline.com). *p < 0.05 and ***p < 0.001.

of plasticity enhancing pathways (224), the promotion of
excitability (242, 243), dendritic spine and axonal sprouting (244)
and the direct pairing between volition and reach-and-grasp
control (153, 239). Yet, the role and translational relevance of
these factors in mediating recovery in humans after stroke or TBI
is not entirely clear and remains to be investigated.

Clinical studies remain very segregated from pre-clinical
findings, and promising results from pre-clinical studies remain
largely untested in humans (245). The disconnect between
applied research and clinical practice suffers in part frommedical
conservatism and “guesswork” around known stimulation
parameters. This divide could be bridged to a significant extent
by evidence from pre-clinical research studies, which offer the
exploration of stimulation parameters (246) and that could help
reduce guesswork and improve chances of success in human
testing (247). We propose that the exploratory data obtained
from rodent studies could be integrated in human clinical trials
by replacing current clinical protocols by relevant pre-clinically

defined parameters within a safe and applicable framework (248).
This information can be integrated into a decision-tree approach
to select cross-cutting or distinct parameters, and behavioral
pairing combinations, which can lead to favorable functional
outcomes (Figure 5).

Several studies have explored the effectiveness of tDCS
stimulation in rats post-TBI. The comparison of tDCS
parameters such as polarity (251) and train stimulation frequency
(233), in combination with rehabilitation (252, 253) or intact
limb-restriction (254), have demonstrated that the cathodic train
stimulation of 100Hz paired with motor rehabilitation could
be used as an optimal tDCS-based rehabilitation scheme for
enabling reach-to-grasp function recovery post-TBI—although
this remains to be tested in humans. More recently, Ramanathan
et al. (153) identified the initiation of slow oscillation pre-
reach-to-grasp movement in rats and humans, and their causal
relationship to upper-limb performance. Using a behavior-
triggered stimulation regimen that reproduced the observed slow
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FIGURE 5 | Decision tree for designing rehabilitative paradigm using non-invasive brain stimulation (NIBS). Left panel: Flow chart illustrating the various steps for

designing a NIBS-based rehabilitative paradigm. Right panel: Table summarizing common, non-exhaustive ranges of parameters and protocols used for direct current

stimulation (DCS) and transcranial magnetic stimulation (TMS) techniques in rodent models and human studies of motor recovery following acquired brain injury. LF,

low frequency; HF, High frequency; TBS, theta burst stimulation; LFS, Low frequency stimulation; rTMS, repetitive TMS; rMT, resting motor threshold; aMT, active

motor threshold; MO, maximum output (TMS device); MEP, motor-evoked potential; Tr, transcranial; SubD, subdural; EpiD, Epidural; SubCx, subcortical; i/c,

ipsi/contralateral; RFA, rostral forelimb area; CFA, caudal forelimb area; M1, motor cortex; PM, premotor cortex; CST, corticospinal tract; Eph, Electrophysiology;

EMG, electromyography. Representative parameters drawn from (153, 191, 194, 196, 198, 224, 233, 239, 249, 250).

oscillations in the peri-lesional motor area, they demonstrated
that paired behavior-stimulation could enhance reach-to-grasp
performance. These examples illustrate stimulation parameters
and timing in pre-clinical rodent studies, that have promising
translational potential in humans. More importantly, these
preclinical results suggest that NIBS parameters that target
cortical plasticity, rather than E/I imbalance, have significant
benefits, especially when performed in combination with
upper-limb rehabilitation.

There are translational alternatives for when DCS parameters
are not directly applicable to humans, particularly for closed-loop
and repeated train stimulation parameters, which encompass
rapid and abrupt changes of current. For example, transcranial
alternative current (tACS) offers a less irritable and sudden
change in stimulation than tDCS, which might be more suitable
for human applications, as reflected in a growing body of
literature showing effectiveness in both rodents and humans
to treat brain injury (255, 256). In addition, online rTMS
approaches that time stimulation onset to changes in movement,

muscle activity, or brain state are novel avenues to approximate
closed-loop stimulation in rodent models (257, 258).

Key challenges and questions need to be addressed to ease
translation between rodent models and human studies of NIBS
to improve motor recovery after brain injury (Table 1). For
example, both rodent and human studies would benefit from
incorporating a shared set of kinematic assessments in order to
better quantify and translate motor outcomes (259). This can not
only help resolve open questions about cortical organization for
reach-to-grasp action (e.g., what is the functional correspondence
between rodent CFA/RFA and human M1/PM?), but would
provide a common framework for comparing stimulation
parameters across species (e.g., does stimulation parameter A in
rodents lead to a similar change in reach-to-grasp kinematics
as stimulation parameter B in humans?). Rodent models could
benefit from a more deliberate focus on stimulation devices
and protocols that can be feasibly and safely implemented in
humans, and to incorporate systematic heterogeneity in the study
population as a way to address the high variability in individual
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TABLE 1 | Cross-cutting recommendations and open questions related to pre-clinical and clinical assessments of reach-to-grasp function.

Recommendations Open questions

Outcome

measures

Include standardized measurement of RTG kinematics What are the main similarities/differences in RTG kinematics in rodent

models and patient populations?

Study population Asses similar study protocols for RTG recovery in TBI and stroke

In clinical studies, incorporate biomarkers to stratify based on factors

such as CST integrity, lesion size/location, and genetics

How does responsiveness to NIBS differ in TBI vs. stroke?

What mechanisms can account for the large intra- and inter-individual

variability in response to NIBS?

Stimulation

parameters

In rodent models, focus on parameters and protocols within human

safety guidelines

Establish a correspondence between rodent and human NIBS

parameters based on comparable motor performance

What are most promising candidates for stimulation types/patterns to

test in humans?

What are similarities/differences in dose-response relationships in

rodents and humans?

Target region Evaluate predictors of responsiveness to NIBS of

ipsilesional/contralesional M1 and PM

Test PPC as a candidate target for RTG recovery

How do M1/PM/CST differentially contribute to RTG performance in

rodents and humans?

What regions or protocols in rodents show similar RTG outcomes to

stimulating PPC in humans?

Motor training Focus on protocols that combine NIBS with concurrent motor training

Explore timing stimulation to movement kinematics

Does task-specific training with NIBS generalize to overall

improvements in motor function?

Can NIBS selectively target separable components of RTG function to

improve recovery?

RTG, reach-to-grasp; TBI, traumatic brain injury; NIBS, Non-invasive brain stimulation; CST, Corticospinal tract; M1, primary motor cortex; PM, premotor cortex; PPC, Posterior

parietal cortex.

responses to NIBS interventions in clinical trials (246, 260).
Likewise, clinical studies can continue to optimize strategies
for pairing NIBS with motor behavior to improve functional
recovery (204). Finally, both studies in rodents and humans
could explore novel potential targets beyond M1, both to inform
our understanding of network plasticity mediating reach-to-
grasp actions following brain injury and to potentially tailor
interventions to individuals.

CONCLUSION

In this review, we present the idea that the reach-to-
grasp movement is an impaired motor function following
acquired brain injury, such as traumatic brain injury or
stroke. Though important dissimilarities in neural architecture
and the behavioral response to injuries exist in humans
and rodents, overall the reach-to-grasp movement presents
a strongly conserved neural circuitry across the two species.
Similar responses to brain injury and to treatment post-injury
demonstrate that the rodent model could serve as a testbed
for translational rehabilitation of brain injury using non-
invasive brain stimulation (NIBS). We propose that pre-clinical
parameters should be considered in current clinical trials to
improve functional outcomes. Currently, clinical trials using
NIBS are primarily focused on stroke, but TBI might deserve as

much interest as stroke due to its prevalence, and in turn, because
it is a major risk factor for stroke (261). More importantly,
for both stroke and TBI, the rehabilitative applications and
clinical trials targeting upper-limb recovery and reach-to-grasp
are still largely lacking. The considerable knowledge associated
with volitional motor control of reach-to-grasp should be used
as a steppingstone to deepen our understanding of functional
remapping post-injury as well as functional recovery post-NIBS.
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