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Abstract: In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form
of an in situ forming hydrogel, intended for wound repair applications, have been successfully
developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the
drug, enhance its antimicrobial properties, and the ability to inhibit host matrix metalloproteinases.
The presence of chitosan in the particles strongly influenced their size, morphology, and fluid uptake
properties, as well as drug encapsulation efficiency and release, due to both chemical interactions
between the polymers in the blend and interactions with the drug demonstrated by FTIR studies.
In vitro antimicrobial studies highlighted an increase in antibacterial activity related to the chitosan
amount in the powders. Moreover, in situ gelling powders are able to induce a higher release of IL-8
from the human keratinocytes that could stimulate the wound healing process in difficult-healing.
Interestingly, doxycycline-loaded particles are able to increase drug activity against MMPs, with
good activity against MMP-9 even at 0.5 µg/mL over 72 h. Such results suggest that such powders
rich in chitosan could be a promising dressing for exudating wounds.

Keywords: alginate; pectin; chitosan; doxycycline; wound dressing; in situ forming hydrogel;
exudate absorbance; MMP-9 inhibition

1. Introduction

Lesions and ulcers caused by trauma, thermal injuries, and surgery affect a large part
of the population with a strong economic impact on the world healthcare system [1,2].
The incidence of chronic wounds is continuously growing due to the incessant population
aging and its consequent health issues as cardiovascular diseases or diabetes [3,4]. The
healing of such wounds involves interaction among different cells, signaling molecules,
and extracellular matrix components and the process can be easily impaired and altered
by pathogens and microorganisms, leading to severe wound and systemic infections,
especially in aged people [5–7]. To treat chronic or bacteria-infected wounds, in the last
years, numerous dressings have been developed based on natural polymers as the main
components of several devices with particular reference to alginate, collagen, chitosan,
pectin, and hyaluronic acid due to their biocompatibility, biodegradability, and for the
ability to stimulate the healing process [8–12].

An ideal wound dressing should be biocompatible and biodegradable while being
able to adapt to different shapes and depths of the wound, as well as to be removed
without causing pain. Moreover, it should ensure good transpiration of the wound
through the diffusion of oxygen and water vapor and remove the excess fluid for exudating
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wounds [13–15]. Exudate, maintaining a proper wound environment, stimulates the heal-
ing process, but when in excess, it can slow down the healing process, also becoming an
excellent substrate for bacteria proliferation [16,17].

Polysaccharide-based hydrogels, due to their ability to manage exudates, can be
used as dressings to prevent wound dehydration [18–20]. However, most dressings based
on natural polysaccharides lack conformability and exudate absorbance [21,22]. In situ
forming carbohydrate-based hydrogels can solve several issues related to wound managing
due to their ability to properly fill the wound site, absorbing and retaining the excess of
exudate [23,24], while the use of a suitable mixture of polysaccharides allows the formation
of a transparent dressing, enabling the evolution of healing process [25,26].

In a previous work [27], we demonstrated the possibility of using alginate-pectin
blends to produce in situ gelling microparticulate powders with proper wound dressing
properties in terms of adhesiveness and transpiration that are able to quickly gel when in
contact with wound fluids.

Alginate, an anionic hydrophilic linear polymer composed of β-D-mannuronic acid
and a-L-guluronic acid, is one of the most-used natural polymers for wound dressing due
to its biocompatibility, biodegradation, and absorption properties, as well as its ability to
control the release of a drug [28–30]. Moreover, alginate, with high mannuronic content, is
able to induce cytokine production by human monocytes [31], while amidated pectin with
a low degree of methylation is able to speed up the gelling rate [32]. Moreover, blends of
alginate with other natural polysaccharides, such as pectin, showed better properties in
wound healing applications [27].

Chitosan, a linear cationic polysaccharide, is composed ofβ-(1-4)-linked D-glucosamine
and N-acetyl-D-glucosamine, formed by N-deacetylation of chitin [33], is used in drug
delivery and wound dressing [34–38]. Chitosan is able to induce macrophages activation
and accelerate wound healing [39], and it has an antimicrobial effect that depends on its
molecular weight, concentration, and microbial species under examination [40], and it
has a hemostatic property due to the interaction between the positive charge of chitosan
and negative charge on cell membranes of the red blood cells [41]. Moreover, due to the
protonation of its amino groups that allow it the reduction of the pH of the inflammatory
area, chitosan is considered a polymer with analgesic activity [42].

The aim of this work has been the development of in situ gelling microparticle pow-
ders loaded with doxycycline, which are converted into gel after administration onto the
wound bed. Alginate/pectin and alginate/pectin/chitosan blends have been studied.
The polymer blend ratio, with particular attention to the amount of chitosan, has been
evaluated considering its influence on the properties of the particles and on drug release
when used as a wound care formulation.

Doxycycline has been used as an antimicrobial model drug due to its wide antibac-
terial spectrum against Gram-positive and Gram-negative bacteria [43] and its ability
to inhibit host matrix metalloproteinases (MMPs), hyper expressed in chronic wounds
through the chelation of calcium or zinc ions necessary for the enzymatic activity of metal-
loproteinases [44,45].

The in situ gelling powders produced by mini spray drying technology have been
characterized in terms of yield, morphology, size distribution, FT-IR analysis, and drug
encapsulation efficiency. Furthermore, the fluid uptake ability of the powders and drug
release profiles have been studied. Finally, antimicrobial tests against Staphylococcus aureus,
MTT test and ELISA assay for cytotoxic and pro-inflammatory activity, and zymography
for the inhibition of MMPs, using human keratinocyte (HaCaT cells), were performed in
order to assess the safety and efficacy of the particles when used to treat infected wounds.

2. Materials and Methods

Doxycycline monohydrate was obtained from Carbosynth (Compton, UK). Sodium
alginate Kelton LVCR from brown algae (1% viscosity 35 mPa s; mannuronic/guluronic
ratio 70/30) was kindly donated by Dompè S.p.A (Dompè Farmaceutici S.p.A. L’Aquila,
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Italy). Pectin Amid CF 025 D (amidated low methoxyl grade, degree of esterification
23–28%, degree of amidation 22–25%, molecular weight 120 kDa) has been kindly donated
by Herbstreith&Fox (Herbstreith & Fox GmbH & Co. KG, Neuenbürg, Germany). Chitosan
with a low molecular weight (1% viscosity in acetic acid 20–80 mPa s; 75–85% deacetylated)
was purchased from Sigma-Aldrich (Milan, Italy). Acetic acid used for the dissolution
medium was obtained from Sigma-Aldrich, Italy. Acetonitrile for HPLC (VWR Chemicals,
Briare, France), Water for HPLC (VWR Chemicals, Briare, France), and orthophosphoric
acid 99% (Carlo Erba Reactifs, Cornaredo (MI), Italy) were used as the mobile phase for
high-performance liquid chromatography (HPLC).

2.1. Powders Preparation
2.1.1. Alginate/Pectin and Doxycycline Powders

The alginate/pectin solution was prepared by dissolving both polymers in distilled
water. The total concentration of polymers was set between 0.15% and 0.50% (w/v) and
alginate/pectin ratios (1:1, 1:3, 3:1) were considered.

All formulations were processed by Mini Spray Dryer B-290 (BuchiLaboratoriums-
Tecnik, Flawil, Switzerland) with optimized parameters: aspirator 100%, drying airflow
560–580 L/h, air pressure 6 atmospheres, feed rate 5 mL/min, 120 ◦C inlet temperature,
65–68 ◦C outlet temperature, and a nozzle diameter of 0.5 mm. The powders obtained were
characterized in terms of production yields, calculated as the ratio between the amount of
product obtained and the total amount of the material processed.

2.1.2. Alginate/Pectin/Chitosan, and Doxycycline Powders

Powders were produced by mini spray drying starting from feed solutions that differ
in composition and polymer ratio. Different ratios of alginate/pectin/chitosan (1:1:1, 1:1:3
and 1:1:7), total concentration of polymers (0.15% w/v), and doxycycline concentration
(2% and 1% w/w of polymers) were set. Feeds were obtained by adding doxycycline to an
aqueous solution of alginate/pectin/chitosan under gentle stirring. The alginate/pectin
solution was prepared by dissolving alginate and, after complete dissolution of it, the pectin
in distilled water under vigorous stirring for 1 h while chitosan was dissolved in an acidic
aqueous solution (1% v/v CH3COOH) under gentle stirring overnight. The alginate/pectin
solution was added, slowly and with the use of Ultra-Turrax® T25 (IKAWorks GmbH &
Co., Staufen, Germany), to the acid solution of chitosan.

2.2. Drug Content and Encapsulation Efficiency

Drug content was calculated as the ratio between actual doxycycline weight and
powder weight, while encapsulation efficiency (E.E.) was calculated as the ratio of actual
to theoretical drug content [46]. About 5 mg of the different formulations was stirred
into 5 mL of PBS buffer (0.1 M, pH 7.4) to obtain a uniform dispersion. The dispersion
was shortly sonicated, centrifuged (6000 rpm for 10 min) to remove polymers, and the
supernatant obtained was filtered (filters of 0.45 µm) and analyzed by HPLC (Slavica
M. Sunarìc et al., 2013). The Agilent 1100 Series instrument (Agilent 1100 Series HPLC,
Agilent Technologies, Santa Clara, CA, USA) with a UV detector, set at 349 nm, was
used for the HPLC analysis. The separation was performed on a reversed-phase column
(Kinetex XB-C18, 100A, 75 × 2.10 mm, 2.6 µm, Phenomenex, Torrance, CA, USA), using a
mixture of acetonitrile (A) and water with a pH of 2.5 with orthophosphoric acid (B) as
the mobile phase. The volume ratio of solvent A against solvent B was 22:78, the flow rate
was 0.5 mL/min, and the injection volume was 20 µL. The results were compared with a
calibration curve in a range of concentrations between 0.5 and 34.0 µg/mL.

2.3. Powders Characterization
2.3.1. Morphology and Particle Size Distribution

The morphology of all powders was observed by scanning electron microscopy (SEM),
using a Carl Zeiss EVO MA 10 microscope with a secondary electron detector (Carl Zeiss
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SMT Ltd., Cambridge, UK) and with 20 KeV accelerating voltage. To verify the uniformity
of the particles, no less than 20 SEM images were taken. The powders were dispersed on
an aluminum stub (Agar Scientific, Stansted, UK) and were coated with a thick gold layer
(200–400 Å) (LEICA EMSCD005 metallizator) before microscopy.

Particle size distribution and mean diameter were evaluated by static light scattering
(SLS) (N5, Beckman Coulter, Miami, FL, USA), taking the average of three measurements
for each sample. Each formulation was diluted in dichloromethane (DCM) and sonicated
three times for 10 min, with and without the presence of a surfactant (1% v/v between
in DCM).

Results were expressed as mean diameter d10, d50, d90, indicating the volume diame-
ters at 10th, 50th, and 90th percentiles, respectively.

2.3.2. Fluid Uptake Ability

Franz diffusion cell was used to determine the fluid uptake ability of powders. About
8 mg of powder was placed on a previously weighed membrane disc filter (PES, 0.45 µm,
25 mm, Pall Corporation, Port Washington, NY, USA). The membrane was lying down
on the vertical receptor compartment of the Franz cell, filled with simulated wound fluid
(SWF), composed of 50% fetal calf serum (Sigma Aldrich, Milan, Italy) and 50% maximum
recovery diluent (Sigma Aldrich, Milan, Italy) consisting in 0.1% (w/v) peptone, a peptic
digest of animal tissue, and 0.9% (w/v) sodium chloride [47,48]. The SWF was thermostated
at 37 ◦C, and during the experiment, the receptor compartment was filled with SWF to
maintain a constant fluid volume in the compartment. At regular time intervals, the weight
of the gel was measured after removing the membrane from the receptor until a constant
weight was observed [49].

The swelling ratio of each formulation was determined as the ratio between the weight
of the swollen gel (Ws) and the weight of the dried powder producing the gel (Wd), using
the following Equations [50]:

Swelling = Ws/Wd (1)

All experiments were performed at least in triplicate.

2.3.3. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR analysis was evaluated using an FT-IR spectrophotometer (IRAffinity-1S, Shi-
madzu Corporation, Kyoto, Japan) equipped with a MIRacle ATR accessory with a ZnSe
crystal plate. The samples were put on the crystal plate and analyzed in the spectral range
of 4000 to 600 cm−1, using 128 scans with a 1 cm−1 resolution step.

2.4. In Vitro Drug Release

The release of doxycycline encapsulated in microparticles was evaluated using Franz-
type vertical diffusion cells (15 mm, 7 mL, Hanson research corporation, Chatsworth, CA,
USA), which allows the keeping of the powders in a humid environment similar to those
encountered at the wound site. About 20 mg of the formulation was placed on the donor
side, fully covering the membrane that was inserted between the donor and the receptor
compartment (PES, 0.45 µm, 25 mm, Pall Corporation, Port Washington, NY, USA). The
receptor phase was filled with SWF and thermostated at 37 ◦C, and magnetically stirred
at 250 rpm. At the set time intervals, aliquots (250 µL) were withdrawn from the receptor
compartment and replaced with an equal volume of the fresh buffer solution. The drug
released was identified by HPLC as previously described (see Section 2.3.3), and all release
experiments were performed in triplicate.

2.5. Rheological Studies

Rheological data of completely swollen hydrogels were acquired with an Anton Paar
MCR-102 Rheometer fitted with plate-plate geometry (PP25 with a diameter of 24,985 mm).
The hydrogels were placed between the flat plate and the platform heated at 37 ◦C. The
distance between the plates was determined according to the stickiness of the gels tested.
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Amplitude sweep tests were conducted, setting the strain amplitude in the range 0.01–200%
and angular frequency atω = 10 rad/s. Experiments were performed in triplicate.

2.6. Antimicrobial Assay

To evaluate the antibacterial efficacy of formulations, both time-kill studies and disk
diffusion assay were conducted.

Time-kill studies were performed as previously described [51]. Briefly, an overnight
culture of S. aureus strain A170 was diluted 30-fold with prewarmed Mueller-Hinton Broth
(MHB) and incubated at 35 ◦C under constant shaking. The late-log phase of growth was
normalized to 2.5 × 108 cells/mL, and 200 µL were used to inoculate three sterile 96-well
plates further treated with the different APCs formulations corresponding to 0.50 mg/mL
of doxycycline used. At defined time points (1, 2, 3, and 7 days), viable counts were
calculated to give the CFU/mL (colony-forming unit per ml) by plating serial dilutions on
MHA incubated at 35 ◦C. Kill curves were plotted with time against the number of CFUs
recovered. Each antimicrobial assay was performed in triplicate on separate days.

“Disc diffusion assay” was carried out on Mueller–Hinton agar (MHA) according
to the Clinical and Laboratory Standard Institute (CLSI) guidelines, with suitable modi-
fications [52]. Briefly, sterile cotton swabs were dipped into a bacterial suspension (108

cells/mL) and then spread on an MHA agar plate. To test the antimicrobial activity of
the different formulations, S. aureus (ATCC 6538), which normally colonizes wounds, has
been studied. The plate was spotted with powders diluted with lactose to test different
concentrations of doxycycline encapsulated using pure doxycycline as the control. After
incubation at 37 ◦C for 24 h, the zone of inhibition was determined by measuring the
diameter of the clearing zone around the powders.

2.7. In Vitro Test
2.7.1. Cell Culture Conditions for MTT and ELISA Assay

The human keratinocyte cell line HaCaT (Cell Line Services, Eppelheim, Germany)
was cultivated using Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum, with antibiotics (10,000 U/mL penicillin and 10 mg/mL strepto-
mycin), and with growth factors contained in Keratinocyte-SFM following the instructions
reported in [53]. The cells were maintained at 95% humidity and 37 ◦C in an atmosphere of
5% CO2 and were serially passed at 70/80% confluence.

2.7.2. MTT Assay

To assess the potential cytotoxicity of particles, HaCaT cells were treated with particles
made of alginate, pectin, chitosan, and alginate/pectin/chitosan blends (0.01–10 µg/mL)
in triplicate for 24 h. Cell viability was determined with the colorimetric MTT (3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. A total of 25 mL of MTT
was added, and the cells were incubated for another 3 h. Subsequently, the cells were,
lysed and the formazan was solubilized with 100 mL of an aqueous solution containing
50% N,N-dimethylformamide and 20% SDS at a pH of 4.5. The amount of formazan was
quantified spectrophotometrically at 550 nm with a microplate reader (Titertek Multiskan
MCC/340, LabSystem).

For statistical analysis of the data, the One Way Analysis of Variance (ANOVA)
followed by Bonferroni’s multiple comparison post-test was used.

2.7.3. ELISA Assay

To evaluate the pro-inflammatory activity of powders, pro-inflammatory cytokines,
and chemokines, IL-6, TNFα and IL-8 were measured in cell-free supernatants using
commercial enzyme-linked immunosorbent assay kits (ELISAs). HaCaT cells were treated
as reported MTT assay, using the same polymers and concentrations to correlate the results
obtained for cell viability with the release of pro-inflammatory cytokines.
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Statistical differences of the data were assessed with One Way Analysis of Variance
(ANOVA) followed by Bonferroni’s multiple comparison post-test or Tukey’s post-test.

2.7.4. Cell Culture and Treatments for Zymography

Human Epidermal Keratinocytes adult cell line (HEKa) were grown in an EpiLife®

Medium supplemented with Human Keratinocyte Growth Supplement (HKGS) (Gibco),
at 37 ◦C, in a 5% CO2 atmosphere, without serum. In fact, as serum contains gelatinases,
for gelatin zymography, it is important to obtain serum-free conditioned media [54]. For
experiments, trans-well filters (12 mm in diameter with 0.4 µm pore polycarbonate mem-
brane insert, Corning) were used. Cells were seeded on trans-well filters at a density of
1 × 105 cells/well and allowed to reach confluence over 24 h. Before treatment with the
hydrogel, the cells were washed in PBS, and EpiLife® Medium without supplement was
added to the upper compartment of all wells. The lower chambers of different wells were
filled with hydrogels with different doxycycline amounts: 0.5, 1, and 5 µg in a total volume
of 1 mL. One well, with EpiLife® Medium without supplement, was used as a negative
control. The conditioned media in the upper compartments were taken after 24, 48, and
72 h of treatment, centrifuged, and stored at −80 ◦C until subsequent uses.

2.7.5. SDS-PAGE Gelatin Zymography

SDS-PAGE gelatin zymography was carried out to detect and quantitate gelatinases
in the conditioned media from HEKa cultures after treatments according to a previously
reported method [54]. Briefly, 10% polyacrylamide gel containing 0.1% gelatin was loaded
with 20 µL of each supernatant mixed with SDS-PAGE sample buffer without boiling or
reducing. After electrophoresis, to remove SDS, the gels were washed in 0.25% (v/v) Triton
X-100 for 30 min at room temperature with gentle stirring and then incubated at 37 ◦C
overnight in a digestion buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 10 mM CaCl2, and
0.01% Brij-35) to allow gelatin digestion. Gels were stained with Coomassie Brilliant Blue
G-250 (0.5% (v/v), Coomassie blue in 30% (v/v) methanol, and 10% (v/v) acetic acid) and
de-stained with 10% (v/v) acetic acid and 25% (v/v) methanol until clear bands indicating
proteolytic activity became visible. Image analysis was performed by the Image Quant
LAS 4000 (GE Healthcare, Waukesha, WI, USA) digital imaging system and quantified by
Image Quant TL software.

3. Results and Discussion
3.1. Preparation and Characterization of the Powders

In order to evaluate the influence of chitosan on the characteristics of particles, algi-
nate/pectin and alginate/pectin/chitosan in situ gelling powders with different ratios were
produced by spray drying. Preliminary studies were conducted to optimize the process
parameters and the operating conditions for feed solution preparation when chitosan was
included in the polysaccharides blend. In fact, due to the formation of a polyelectrolyte
complex between the protonated amines of the chitosan and the carboxylate groups of
the alginate [55–57], the feed was limited in its final pH and concentration. The optimal
concentration of the polymers in terms of feasibility and yield of the process was found
at 0.15% (w/v), whereas higher concentrations led to the formation of a coalescence feed
resulting in low process yield (<25%). As reported in Table 1, a comparison between mini
spray-dried particles obtained from alginate/pectin (AP) and alginate/pectin/chitosan
(APC) at different ratios shows that the process yield was not significantly affected by
the presence of chitosan when the lowest amount of the polymer was used to prepare
the feeds. However, when feeds were prepared with the higher amount of chitosan, a
slight increase in process yield was registered, moving from about 60% to 70%, probably
due to an increase in viscosity of the feed related to alginate-chitosan interaction able to
promote crosslinking of the polymer chains during the formation of the particles [58,59].
The loading of doxycycline did not significantly affect either the size or the morphological
properties of the particles, as shown in Figure 1d–f.
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Table 1. Composition, process yield, particle size, drug content, and encapsulation efficiency (E.E.) of powders obtained
with different polysaccharides ratio by mini spray drying.

Sample Code Alginate/Pectin/
Chitosan Ratio

Doxycycline
(w/w) Yield (%) Drug Content

(%) E.E. (%) Mean Diameter
(µm)

AP-11 1:1
-

63
- -

2.07 ± 0.08
AP-31 3:1 65 2.16 ± 0.11
AP-13 1:3 61 2.85 ± 0.49

AP-11-1D 1:1 1.0% 62 0.70 69 2.11 ± 0.12

AP-11-2D 1:1
2.0%

62 1.41 70 2.13 ± 0.15
AP-31-2D 3:1 64 1.33 66 2.21 ± 0.13
AP-13-2D 1:3 66 1.38 69 2.74 ± 0.43

APC-111 1:1:1
-

60
- -

3.24 ± 0.13
APC-113 1:1:3 72 2.75 ± 0.10
APC-117 1:1:7 73 2.58 ± 0.04

APC-111-1D 1:1:1
1.0%

62 0.69 69 3.25 ± 0.08
APC-113-1D 1:1:3 68 0.72 72 2.78 ± 0.09
APC-117-1D 1:1:7 70 0.78 78 2.24 ± 0.13

APC-111-2D 1:1:1
2.0%

62 1.33 67 3.59 ± 0.09
APC-113-2D 1:1:3 71 1.41 71 2.69 ± 0.12
APC-117-2D 1:1:7 74 1.56 78 2.42 ± 0.11
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Drug encapsulation efficiency (E.E.) was also influenced by the presence of chi-
tosan in the polymeric blend. In fact, alginate/pectin particles showed an E.E. of about
70% not significantly affected by the drug/polymers ratio, whereas the E.E. for algi-
nate/pectin/chitosan particles ranged between 67% and 78%, depending on the relative
amount of chitosan in the polymer blend. Such results could suggest that an interaction
between amino residues of the chitosan and hydroxyl groups of doxycycline might take
place as the chitosan concentration increases in the feed.

Reported in Figure 1 are the SEM images of powders obtained with different polysac-
charides blends. AP particles show a mean diameter ranging between 2.07 and 2.85 µm,
depending on the polymer ratio. Smaller particles were obtained when a 1:1 polymer
ratio was used, whereas the largest particles were produced processing feeds with the
highest amount of pectin. Size distribution and particle roundness were also affected by the
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presence of pectin in the blend. In fact, AP-13 particles exhibited wide size distribution, a
tendency to agglomerate, and a partially shrunk shape that might be related to the presence
of xylose, galactose, and arabinose in the structural side chains of the pectin that leads
to a reduction of the interactions between the polymers and consequently to a collapsed
particle structure after the drying process [60].

In APC powders, the amount of chitosan influenced both particle size and size dis-
tribution. Higher polymer concentrations led to smaller particles (see Table 1), while
doxycycline did not affect the particle size and morphology of the particles. Indeed, AP
particles were characterized by a smooth surface, whereas the addition of chitosan led
to particles exhibiting a rough surface; such a modification could be attributed to the
precipitation of chitosan on the matrix of alginate and pectin during the drying phase due
to its lower solubility in the feed. In fact, surface roughness increased accordingly to the
amount of chitosan used to prepare the feed, as it could be recognized by a lower tendency
to form agglomerates (see Figure 2a–c).
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Figure 2. SEM microphotographs of alginate-pectin particles produced by mini spray drying with different polymers
ratio: blank particles APC-111 (a), APC-113 (b), APC-117 (c), and 2% (w/w) doxycycline-loaded particles APC-111-2D (d),
APC-113-2D (e), APC-117-2D (f).

In order to evaluate the ability to absorb exudate by the in situ-forming gel when
spread on a wound, the fluid uptake ability was studied using a simulated wound fluid
(SWF) to mimic the wound bed environment in vitro. All formulations demonstrated quick
interaction with SWF, with APCs formulations were considerably faster than powders
without chitosan. In fact, APC-117 powders were able to move into a gel within 2 min
while adapting to the surface on which they were spread (see Figure 3).
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Figure 4 shows the fluid uptake of different powders, demonstrating that all APC
formulations were able to reach the maximum uptake in about 10 min, whereas APs needed
about 15 min to reach the same status. However, it is possible to observe that fluid absorp-
tion kinetics are strongly dependent on the concentration of chitosan. In fact, although the
formulation APC-117 had a slower uptake, it was able to absorb higher amounts of SWF
compared to other APC powders, around 50% and 60% more than APC-113 and APC-111,
respectively. This phenomenon can be explained by taking into account that APC-117
particles exhibit a smaller size and higher surface area due to the very wrinkled surface
and a less ordered structure consisting of chitosan macromolecules on the surface of the
polymers blend matrix [61]. Doxycycline-loaded APCs formulations exhibited lower fluid
uptake ability compared to their blank homologs. Such a reduction was correlated to the
amount of doxycycline loaded into the particles. In fact, APCx-1D formulations exhibited a
higher fluid uptake than APCx-2D. These results are inconsistent with the hypothesis that
doxycycline interacted with chitosan via hydrogel bonding or the formation of new bonds,
reducing the ability of the particles to interact with water molecules.
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chitosan particles in comparison with alginate/pectin particles. Panel (B): alginate/pectin/chitosan
powders loaded with different amounts of doxycycline.

FT-IR studies on doxycycline and polymer blend particles were conducted to verify
the formation of any interaction between the polymers during the formation of the par-
ticles, as well as between the drug and the polymer matrix after the production of the
loaded particles. In Figure 5A, the spectra of the particles obtained by a single polymer
and particles obtained by alginate/pectin/chitosan blends with different polymer ratios
are reported. As reported in previous work [49], blank alginate particles (Figure 5A-a)
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presented two characteristic bands at 1602 and 1408 cm−1 related to the antisymmetric
and symmetric stretching vibration of the alginate carboxyl group, respectively. Blank
pectin particles also presented the characteristic amide I and amide II bands at 1675 and
1590 cm−1, while COO stretching was observed at 1418 cm−1 (Figure 5A-b). Chitosan
particles (Figure 5A-c) exhibited the amide I band at 1655 cm−1 and the bands related to the
amide II and NH bending partially overlapped at 1552 cm−1, as well as a band associated
with CH2 bending at 1375 cm−1 and the band related to antisymmetric C-O-C and C-N
stretching at 1149 cm−1. APC particles presented several bands of the single polymers
that overlapped. However, COO bands of alginate, amide stretching of pectin, and the
NH bending band of chitosan shifted at lower wavenumbers according to the increase
of chitosan in the blend (Figure 5A-d–f), namely ranging from 1528 to 1521 cm−1 for the
characteristic chitosan band and between 1402 and 1396 cm−1 for the alginate COO bands.
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Figure 5. FTIR spectra alginate/pectin/chitosan particles in comparison with doxycycline-loaded
polymeric particles and drug raw material. Panel (A): high M content alginate particles (a), amidated
pectin particles (b), low MW chitosan particles (c), and APC-111 (d), APC-113 (e), APC-117 (f). Panel
(B): doxycycline raw material (g), APC-111 (h), and APC-111-2D (i).

Panel B reports the spectra of the drug (Figure 5B-g), blank polymer particles, and
loaded particles comprise the region ranging between 1800 and 1300 cm−1, where doxy-
cycline shows the most characteristic peaks. In fact, as also reported in Silva et al. [62], at
1680 cm−1, the band representing the C=O of the amide group is present, while at 1602
and 1573 cm−1, the carbonyl groups of the two rings are present. At 1525 cm−1, the band
corresponding to the amino group of the amide is shown, whereas the band at 1455 cm−1

represents the C=C skeleton vibration.
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The spectrum of alginate/pectin/chitosan particles loaded with doxycycline (see
Figure 5B-i) shows the changes in both amide carbonyl and amino groups of doxycycline.
In fact, the peaks related to the amide C=O were shifted to 1674 cm−1, while the –NH2
shifted from 1525 to 1533 cm−1, suggesting an interaction between the polymeric blend
and the drug via its amide group.

3.2. In Vitro Drug Release

In vitro permeation experiments were conducted using Franz-type vertical diffusion
cells and PBS as the acceptor fluid to assess the release behavior of the encapsulated drug.
Figure 6 exhibits representative release curves of doxycycline from APC particles produced
with different polysaccharides ratios.
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All formulations showed a burst effect in the first hours (4 h) after administration
followed by a prolonged release over the next hours or days related to the formulation.
Such a burst in release supported by the slow, sustained delivery of the antimicrobial agent
can be very useful to avoid the spreading of bacterial contamination and the treatment
of different wound infections, promoting the wound healing process [63]. As shown in
Figure 6, pure doxycycline was completely released in less than 15 min, whereas APC-
111-2D showed a 60% drug release in 6 h and a complete release of doxycycline within 72
h, while powders containing a higher amount of chitosan, APC-113-2D and APC-117-2D,
released at the same time about 40% and 35% in 6 h, and released 50% and 65% at 72
h, respectively. In spite of having a smaller size, the total release of APC-113s and APC-
117s formulations was achieved in 5 and 7 days, depending on the amount of chitosan
in the formulations. Prolonged release of the drug in formulations with a higher amount
of chitosan can be related to both interactions between doxycycline and chitosan, as
demonstrated by FT-IR studies, and higher consistency of the hydrogels. In fact, rheology
studies focused on tan δ, the factor that represents the ratio between viscous and elastic
behavior, highlighted an increase in the viscoelastic behavior of the hydrogels according to
the amount of chitosan. Usually, in the practical applications, 0.01 < tan δ < 1 describes a
gel-like behavior, where 0.5 represents the transition point from a prevalent solid-like to
a prevalent liquid behavior. In the AP formulation, tan δ is >0.5, on the contrary, in APC
formulations, this value decreases proportionally to the increase of chitosan concentration,
demonstrating that in this kind of hydrogels, the corpuscular part predominates over
the liquid part (see Figure S1A). As shown in Figure S1B, APC-117 showed a G′ (storage
modulus) about 10% higher than APC-113 and 18% higher than APC-111. Formulations
loaded with a lower amount of doxycycline, namely 1% (w/w), did not exhibit a significant
difference compared with the homologous formulations loaded with a higher dose (data
not shown), confirming that gel properties are the main driving factors of the release.
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3.3. Powders Antimicrobial Activity

With the aim to test the effect of the technological process on doxycycline antibiotic
activity, a preliminary antimicrobial assay was carried out, using a modified disc diffusion
test conducted on a Muller–Hinton agar plate spread with S. aureus, which normally
colonizes the wounds [64]. Figure 7 shows an inhibition zone with a diameter of 30.64 mm
for pure doxycycline, while APC drug-loaded powders show an inhibition diameter of
29.87, 32.01, and 32.86 mm, for APC-111-2D, APC-113-2D, and APC-117-2D, respectively.
Moreover, a time-kill assay measuring the reduction of S. aureus recovered at 1, 2, 3, and
7 days was conducted. A strong reduction of S. aureus compared to the control was found
for both drug and drug-loaded powders on day 1. Pure doxycycline lost its activity after
2 days, whereas all drug-loaded APCs formulations retained their activity longer, with
APC-117-2D able to retain most of the antimicrobial activity over the 7-day experiment
due to the prolonged release of the drug. The increase in antimicrobial activity related to
the chitosan amount into the powders can also be explained considering the bacteriostatic
effect of chitosan [65], as demonstrated by blank formulation APC-117.
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3.4. In Vitro Test
3.4.1. MTT and ELISA Assay

Biocompatibility of the polysaccharides blend powders was assessed using human
keratinocyte HaCaT monitoring cytotoxic activity (MTT assay). HaCaT cells were exposed
to single polymers alginate, pectin, and chitosan, to two polymers blend in different
combinations, and alginate/pectin/chitosan blends at different ratios (1:1:1, 1:1:3, and
1:1:7). As shown in Figure 8A, no formulation made any of the two or three polymers blend
produce any significant cytotoxic activity in the range of 0.01–10 µg/mL.

The toxicity test results were used to set the range of concentrations (0.1–0.5–1 µg/mL)
to evaluate the pro-inflammatory activity of the powders by the release of the cytokines
IL-6 and TNFα and of the chemokine IL-8 (CXCL-8) mediators in the inflammatory
process [66,67].
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Figure 8. Bioavailability of in situ gelling powders made by different polysaccharide combinations. Panel (A): Cell viability
assessed by MTT test on HaCaT cells after 24 h of treatment with two polymer blends alginate/pectin, alginate/chitosan,
pectin/chitosan, and three a polymer blend, APC, with different polysaccharide blends. Data are represented as me-
dian ± interquartile range (n = 7). The statistical analysis was determined by one-way ANOVA with the Bonferroni test as
a post-test. Panel (B): Pro-inflammatory effect of APCs particles at the various concentrations in terms of release of IL-6,
TNFα, and Il-8. The statistical analysis, obtained through the Two-Way ANOVA followed by Tukey’s post-test, was carried
out with respect to the basal levels.

As expected, particles made by the single polysaccharides did not show significant
pro-inflammatory activity in terms of the release of cytokines in human keratinocytes, such
as IL-6 and TNF-α, and chemokine, such as IL-8. As shown in Figure 8B, APCs did not alter
the levels of IL-6 and TNF-α compared to their basal levels. Interestingly, APC formulations
were able to induce, even within the limits of significance (p = 0.04), a higher release of IL-8
from the human keratinocytes when tested at the concentration of 1 µg/mL. This result
might be due to the interaction between chitosan and alginate that led to the reduction
of positive charge and the increase of hydrophobicity of the chitosan. Consequently, the
chitosan interacting with cells might favor the release of IL-8 [68]. As reported in the
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literature, IL-8 is able to increase the keratinocytes migration rate suggesting that the APC
powders could stimulate the wound healing process in difficult-healing wounds [69].

3.4.2. SDS-PAGE Gelatin Zymography

Gelatinases (Metalloproteinases 2 and 9) are involved in regulating the cell migration
essential for wound reepithelialization, but uncontrolled proteolysis can lead to a delay of
healing [70]. For this reason, a decrease in MMPs is correlated with wound healing [71].
Clinical and experimental studies reported that doxycycline, at low doses, is able to inhibit
MMP-2 and 9, reducing both the expression and activity of these proteases [72–76].

To study the activity of the powders loaded with doxycycline on the MMPs, human
epidermal keratinocyte model cells were placed in trans-wells and treated with a hydrogel
containing different dox amounts, avoiding any direct contact with cells. After 24, 48,
and 72 h of incubation, the culture media was subjected to gel zymography. The gels
showed that only MMP-9 (as deduced from the molecular weight) was detected in HEKa
conditional media and that doxycycline released from hydrogel inhibited its activity even
at 0.5 µg/mL, and its effect was stable up to 72 h. Interestingly, drug-loaded APC powders
were more active than pure doxycycline at any tested concentration, confirming that
drug encapsulation did not alter the bioactivity of doxycycline but was able to enhance it
probably due to the prolonged release of the drug compared to administration of the drug
in the form of a solution, as shown in Figure 9.
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4. Conclusions

Spray drying technology has been successfully used to produce in situ gelling powders
made of either alginate/pectin or alginate/pectin/chitosan blends loaded with doxycycline,
an antimicrobial model drug with a wide spectrum and the ability to inhibit host matrix
metalloproteinases, hyper expressed in chronic wounds. Size, morphology, and fluid
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uptake ability of the particles were influenced by the presence of chitosan, as well as the
drug encapsulation efficiency, between 66% and 78%.

Release in SWF of the encapsulated doxycycline from the in situ-formed hydrogel
exhibited a burst effect within 4 h, followed by a prolonged release over 24 h, depending
on the alginate/pectin/chitosan ratio, with the slower release related to a higher amount
of chitosan due to an extensive interaction between the polymeric blend and the drug via
the amide group, as demonstrated by FTIR studies. Such an interaction did not affect the
antimicrobial activity of doxycycline, which was even enhanced in drug-loaded particles
with a high amount of chitosan. Moreover, in situ gelling powders did not show pro-
inflammatory activity in terms of the levels of IL-6 and TNF-α, whereas they were able to
induce the release of IL-8 from the human keratinocytes that could stimulate the wound
healing process in difficult healing. Interestingly, doxycycline-loaded particles were able to
increase drug activity against MMPs, with good activity against MMP-9 even at 0.5 µg/mL
after 72 h. Such results suggest that in situ gelling powders rich in chitosan could be a
promising wound dressing.

5. Patents

Del Gaudio P, Aquino R.P, Russo P, De Falco G, Nicolais G. “In situ gelifying powder”
PCT/IB2018/058742 (Worldwide database Pub num = WO/2019/092608, Publication Date:
16 May 2019; International Filing Date 7 November 2018).
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