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Abstract: Raman spectroscopy, and handheld spectrometers in particular, are gaining increasing attention
in food quality control as a fast, portable, non-destructive technique. Furthermore, this technology
also allows for measuring the intact sample through the packaging and, with respect to near infrared
spectroscopy, it is not affected by the water content of the samples. In this work, we evaluate
the potential of the methodology to model, by multivariate data analysis, the authenticity of
Parmigiano Reggiano cheese, which is one of the most well-known and appreciated hard cheeses
worldwide, with protected denomination of origin (PDO). On the other hand, it is also highly
subject to counterfeiting. In particular, it is critical to assess the authenticity of grated cheese,
to which, under strictly specified conditions, the PDO is extended. To this aim, it would be highly
valuable to develop an authenticity model based on a fast, non-destructive technique. In this work,
we present preliminary results obtained by a handheld Raman spectrometer and class-modeling
(Soft Independent Modeling of Class Analogy, SIMCA), which are extremely promising, showing
sensitivity and specificity of 100% for the test set. Moreover, another salient issue, namely the
percentage of rind in grated cheese, was addressed by developing a multivariate calibration model
based on Raman spectra. It was possible to obtain a prediction error around 5%, with 18% being the
maximum content allowed by the production protocol.
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1. Introduction

Developing objective analytical methodologies for food authentication has been one of the main
issues since the introduction of the European Community regulation on quality labels [1]. In particular,
the protected denomination of origin (PDO) is a quality marker designed to protect and valorize
traditional food, recognizing the link between the intrinsic characteristics of the product and the
geographical area (terroir) as well as the skillfulness of producers (savoir faire). The production protocol
accompanying the certification specifies all the needed requirements for the use of the denomination,
and authenticity assessment has to cover all aspects herein defined. Authenticity thus encompasses
several characteristics of a foodstuff and aims at defining its uniqueness or identity. In this respect,
a holistic approach to food characterization, based on so-called fingerprint techniques, is emerging
as most promising [2,3], and fast, non-destructive spectroscopic techniques, such as mid- (MIR) and
near-infrared (NIR), Raman, nuclear magnetic resonance (NMR) aided by chemometrics modelling
are used in wide-ranging applications [4–8], especially because they are suitable for a wide screening
campaign and, in the case of NIR and Raman, for in situ analysis thanks to the development of
handheld instruments.
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Raman spectroscopy may be seen as complementary with respect to MIR and NIR in food
analysis [4,8,9], offering some advantages such as: an almost absent interference from water, which makes
the analysis of aqueous solutions or samples with a higher water percentage easier and more effective;
inorganic components are more easily analyzed, and samples can be directly analyzed through glass
or polymer packaging. On the other hand, there also some disadvantages due to the interference from
fluorescence of impurities or of the sample itself, the intensity of laser radiation which may result in
too strong sample heating, sensitivity to sample temperature fluctuations, and the reduced size of the
sampled area. However, instrumentation is constantly improving—in particular, handheld devices are
particularly appealing, allowing in-field analysis and being easy to handle.

Several successful applications have been reported in the analysis of spirits [10], meat [11], edible
oils [12] and cheese [13–16]. Here, we present a feasibility study to assess Parmigiano Reggiano
cheese by using a handheld Raman device. To the best of our knowledge, this is the first time Raman
spectroscopy has been used to characterize Parmigiano Reggiano cheese.

Parmigiano Reggiano is one of the most well-known and appreciated hard cheeses worldwide,
and is manufactured from raw and unheated bovine milk in a restricted area in Northern Italy.
It gained the PDO denomination in 2012 (European Regulation No. 1151/2012) and must meet specific
technological, organoleptically and compositional requirements as defined in the Specifications of
Parmigiano Reggiano Cheese protocol [17]. On the other hand, it is also highly subject to counterfeiting.
In particular, it is critical to assess the authenticity of grated cheese, to which, under strictly specified
conditions, the PDO is extended. Grated Parmigiano Reggiano should be obtained from the cheese
wheel and be placed under the constraints of packaging immediately after grating and in the
production area of origin. In addition, several characteristic parameters should be met, such as a
minimum 12 months of ripening, a fat content no less than 32% in proportion to dry matter, moisture
between 25% and 35% and rind content not higher than 18% (w/w).

In this work, we evaluate the potential use of a handheld Raman device, which allows for acquiring
spectra directly through packaging. This methodology would allow fast, non-destructive and in situ
screening of potentially every package, which is of great interest both for internal control of compliance
at the Consortium and for fraud monitoring in the marketplace.

This feasibility study aims at evaluating whether the acquired Raman spectra could be used
as a fingerprint of the product to build multivariate models for: (i) recognizing the authenticity of
grated Protected Denomination of Origin (PDO) Parmigiano Reggiano cheese, in order to prevent
fraud and misleading commercial practices (class modeling), and (ii) verifying the compliance of
authentic grated Parmigiano cheese with respect to the maximum allowed rind content percentage
(multivariate calibration).

With respect to the first issue, the current methodology is based on the assessment of stable
light isotopes and mineral profiles [18,19], which Grana Padano and Parmigiano Reggiano Cheese
Consortium officially adopted in 2011 (EU Regulation 1151/2012). This is a destructive and quite costly
methodology. In recent years, on the side of non-destructive fingerprint techniques, feasibility studies
with NIR, MIR [20,21], NMR [22], and nanowire gas sensor devices have been reported [23].

With respect to the limit of 18% of rind in grated cheese, the current methodology is based on
capillary electrophoresis, which was one of the first technique used to determine the rind content in
grated cheese. The method is based on the determination of the different patterns of casein degradation
in rind and pulp [24]. This procedure is quite expensive and time-consuming, and the assignment is
based on the determination of the ratio among two casein sub-fractions, establishing a threshold value
below which the rind content is inferior to 18% [25].

More recently, feasibility studies based on nondestructive techniques, such as gas sensors [26],
NIR, MIR [20,21,27] and NIR imaging spectroscopy [28], were reported, and the lowest prediction
error was obtained by NIR imaging. Nonetheless, none of these were applied on intact packaging.
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2. Materials and Methods

2.1. Sampling

Eighty authentic PDO Parmigiano Reggiano cheese samples (PR) from two different production
years and different seasoning, ranging from 11 to 15 months, were provided by the Parmigiano Reggiano
Cheese Consortium. These included 28 samples with a rind content between 8% and 18% (compliant
samples), and 52 samples with a rind content higher than 18% (up to 42%, non-compliant). The samples
were derived from certified whole cheese wheels; rind and cheese pulp were grated separately, and the
nominal rind content was added by weighing (balance sensitivity 0.01 g). Cheese rind was obtained
by cutting the first top 6 mm from the whole cheese wheel, while cheese pulp was obtained from the
internal part at least 2.1 cm depth from the top. The grated samples were then packaged following the
procedure described in the standard production protocol specification [17]. In this preliminary study,
bags of the same material, i.e., polyethylene/polyamide not printed, were employed, both for PR and
not-PR samples, while in current practice the bags’ material may differ.

Additionally, 20 cheese samples, unknown to us, were provided by the Parmigiano Reggiano
Cheese Consortium at a second time point—10 samples were authentic PR with a varying percentage of
rind (prepared as described previously) and 10 samples were not-PR cheese samples from competitors,
of different provenance. In Table 1 are reported the number of samples analyzed per each category,
the year of production and the date of preparation of the grated mixtures. The seasoning of PR samples
varied within the range of 11 to 15 months.

Table 1. Summary information on the analyzed grated cheese samples.

Samples Code % Rind N◦ Production Period Provenance Grating-Packaging

PR 1st 8–18 16 September–December 2014 MO(3) MN(1) PR(5) RE(7) December 2015
PR 1st 19–42 24 September–December 2014 BO(1) MO(2) MN(1) PR(5) RE(3) December 2015
PR 2nd 8.3–17.5 12 December 2014–April 2015 BO(1) MO(2) MN(1) PR(5) RE(3) March 2016
PR 2nd 18.3–42 28 January–April 2015 MO(5) MN(1) PR(16) RE(6) March 2016

PR-unknown 12–42.2 10 December 2014–April 2015 MN(1) PR(6) RE(3) April 2016

not-PR - 10 - Lithuania(5) Germany(3)
Estonia(1) Leetonia(1) -

2.2. Raman Spectra

Spectra were acquired directly on packaged grated samples (sealed plastic bag) with a handheld
Raman spectrometer. The instrument used is a Metrohm MIRA-M1 equipped with a 785 nm Laser and
implementing Orbital Raster Scan (ORS) technology [29,30]. This modality allows for increasing the
interrogation area on a sample while maintaining high spectral resolution. The spectra were acquired
in the spectral range 400–2300 cm–1, and the acquisition time was set to 4.5 s, after some preliminary
trials, because at shorter times dependence of spectral intensity on acquisition time was observed,
and a higher dispersion of replicated spectra in an exploratory principal component analysis.

In order to get a representative spectrum, for each packaged sample, five points were sampled
(located on proximity of the four corners and in the middle of the bag) and the five collected spectra
averaged. For each sample, this average spectrum was used in the chemometric analysis.

The samples were measured on two different days (May 2016): the samples coded PR 1st in Table 1
were measured on the first day, and samples coded PR 2nd, PR-unknown and not-PR were measured
on the second day. For each set of acquisitions, a sample was randomly selected and acquired several
times during the measuring session to get a rough estimate of spectra reproducibility; in particular,
one sample of the PR 1st set was replicated four times and one sample of the PR 2nd set was replicated
six times.
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2.3. Spectral Preprocessing

There are several contributions introducing variability in a Raman spectrum which may
adversely affect the analytical results, particularly when multivariate data analysis is applied. In fact,
these introduce undesired sources of variability, such as noise, scattering, baseline drift. These can
be due to instrumental fluctuations and slight variation in the distance between samples and optics,
and the presence of fluorescence. In addition, variation in sample state, e.g., linked to temperature,
may introduce moderate misalignment. Thus, it is necessary to apply spectral preprocessing. In this
work, the following spectral preprocessing steps were applied in sequence: smoothing (Savitzky-Golay
filter width: 21 points, 2nd order polynomial); alignment by correlation optimized warping [31],
which was needed to compensate the shift observed between the two days of measurement; baseline
correction by weighted least squares [32] and normalization. In the case of the classification model,
simple normalization to unit area was effective, while in the case of multivariate calibration of rind
percentage, normalization by using probabilistic quotient normalization [33] was more effective,
producing a lower prediction error in the calibration model. Figures 1 and 2 show the raw spectra and
the spectra after the various preprocessing steps.

Figure 1. Raw (top) and aligned spectra (bottom).

2.4. Classification Analysis

The authenticity model was developed by using a class modeling technique, i.e., Soft Independent
Modeling of Class Analogy (SIMCA) [34,35], since we need to develop a one-class model, namely
to assess if a grated cheese sample is or not obtained by authentic wheels of Parmigiano Reggiano
cheese (PR).

2.4.1. Datasets

For authenticity assessment, we considered all the available authentic Parmigiano Reggiano
cheese samples (independently of the rind content), namely samples coded PR 1st and PR 2nd in
Table 1, which amount to 80 samples. The calibration dataset included the preprocessed spectra of all
PR samples plus 10 replicates (as detailed in Section 2.2).
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The origin of the twenty additional samples reported in Table 1 as unknown-PR and not-PR,
at the time of analysis, was unknown to us and thus constituted an external test set (20 samples plus
2 replicates) to assess the predictive performance of the SIMCA model.

At a second time point, when the origin of these samples was communicated to us, for comparative
purposes a second SIMCA model was computed, by using five of the not-PR samples to estimate the
rejection rate of the model in the calibration phase (as detailed in next section). The 10 unknown-PR
(plus one replicate) and the 5 not-PR (plus two replicates) were used as a test set.

Figure 2. Aligned spectra after smoothing and baseline correction (top), normalization to unit area
(bottom left) and probabilistic quotient normalization (bottom right).

2.4.2. Soft Independent Modeling of Class Analogy (SIMCA)

SIMCA is based on building a disjoint principal component analysis (PCA) model for each
class (if more than one is modeled)—this is assumed to describe at best the similarity of the samples
belonging to each given class, or, in other words, their uniqueness. Data preprocessing, e.g., centering,
is done separately for each class, as well as the number of components is established independently for
each class. The classification rule is defined on the basis of distance of the sample to the class model
and two distances are defined: (i) the scores distance (SD), which indicates how far a sample is from
the training objects of the class in the principal component (PC) space (distance in model space), and (ii)
the orthogonal distance (OD), which measures the distance of a sample to the PC space of the class
(distance from model space) and is given by the sum of squared residuals. However, there are different
implementations of SIMCA which differ by the way SD is defined, how SD and OD are combined to
obtain an overall distance, D, from the class model and the reference statistics (or robust estimation)
used to define acceptance limits for SD, OD or D.

Here we used the implementation called alternative-SIMCA [35], which uses as a classification
rule the reduced distance:

Dred =

√(
Q

Qlim

)2

+

(
T2

T2
lim

)2

≤

√

2
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where Q is the sum of squared residuals (OD), T2 is the Mahalanobis distance from the origin in PCA
scores space (SD), and Qlim and T2

lim are derived, at a specified significance level, by the χ2 [36] and
Hoteling-T2 distributions [37], respectively.

The classification performance of a SIMCA model can be evaluated in terms of:
(i) sensitivity, which is defined as the number of samples correctly identified as belonging to the

modelled class, or true positive rate, i.e., TP/Nsamples_in_target_class;
(ii) specificity, which is defined as the number of samples not belonging to the modelled class

correctly rejected, or true negative rate, i.e., TN/Nsample_not_in target_class;
(iii) efficiency, which is defined as the geometric mean of sensitivity and specificity.
There are two main parameters which need to be set in SIMCA:
(1) the model complexity, i.e., the number of components optimal to describe the class model.

This can be estimated in cross-validation, by maximizing the sensitivity, e.g., one-class case, or when
samples from non-target class are available, by maximizing efficiency or any suitable compromise
among sensitivity and specificity values;

(2) the class boundary, which allows for defining the class acceptance area. In alternative-SIMCA,
this is usually set by choosing a priori a certain significance level, e.g., the 95th percentile of the
references SD and OD distributions (α = 0.05).

However, there are also approaches where the two parameters model’s complexity and significance
level are not tuned independently—in particular, we tested:

(i) a recently proposed one [38], which simultaneously optimizes the significance level and
the number of components by maximizing the area under the cross-validated receiver operating
characteristic (ROC) curve. ROC is obtained by plotting (1-specificity) vs. sensitivity, by varying overall
distance (D) threshold and number of PCs. We will refer to this approach as ROC-SIMCA, now on in
the following text;

(ii) the Data Driven SIMCA (DDSIMCA) approach [39], which allows us to calculate the errors
of misclassification theoretically [40], and where significance level and model complexity are set
sequentially: first the significance level for the combined class distance distribution is set a priori, e.g.,
α = 0.05, then the number of components is (manually) tuned to obtain a sensitivity (in calibration)
which will correspond to the nominal α, e.g., if α is set equal to 0.05, a sensitivity of (or most close to)
95% has to be achieved.

In this study, at the beginning, only the PR 1st and PR 2nd samples (calibration set) were available.
In this case, the number of principal components (PCs) was estimated according to two different criteria:
the minimum of root mean squares error in cross-validation, RMSECV (venetian blind, ten splits),
and the maximum sensitivity estimated in cross validation. For comparative purposes, the DDSIMCA
approach was also applied.

Once the origin of unknown samples (reported in Table 1) was communicated to us, we tested
how the number of PCs used to build the SIMCA class model would change by using five (selected by
duplex algorithm [41]) not-PR samples to estimate the class specificity parameter. In this case, as the
classification criterion to select the number of PCs, the maximum efficiency estimated in cross-validation
was used. For comparative purposes, the ROC-SIMCA approach was also applied.

2.5. Multivariate Calibration (PLS) of Rind Content

Partial least squares regression (PLS) [42] was used to derive a calibration model for the rind
content. In order to stay close to the situation that will be encountered in routine application, a first
model was developed by using PR 1st samples, collected in a different period (Table 1) and measured
on a different day, as calibration set. The PR 2nd plus the ten unknown-PR samples were estimated
as a test set. As will be discussed later, this model showed systematic error in prediction, thus a
model including a small subset of samples from the PR 2nd set, i.e., six samples selected by the duplex
algorithm, was also developed. Spectral data were processed as described in Section 2.3 and mean
centered prior to PLS.
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The number of PLS components was selected according to first minimum in RMSECV (random
subsets, 8 splits, 20 iterations).

2.6. Software

The whole data analysis process was carried out on MATLAB 2018b (Mathworks, Natick, MA,
USA). PLS-Toolbox v.8.7 (Eigenvector Inc., Manson, WA USA) was used for spectral preprocessing and
PLS modeling. SIMCA analysis was conducted by using a MATLAB routine kindly provided by Prof.
Federico Marini (University Roma La Sapienza, IT) and adapted by M. Cocchi. ROC-SIMCA analysis
was conducted by using a MATLAB routine kindly provided by Dr. Raffaele Vitale (University of Lille,
FR). DDSIMCA is available at https://github.com/yzontov/dd-simca (last visited July 2020).

3. Results

3.1. Authenticity Assessment

The aim was to distinguish grated authentic Parmigiano cheese samples (PR) from “the rest
of the world” grated cheese samples, including competitors, sounds-like products, etc. (not-PR).
This is a typical one-class model situation, where one-class classifier, such as SIMCA, is the method of
choice. The datasets and applied methodology are described in Section 2.4; as for the choice of model
complexity, within the framework of alternative-SIMCA, we considered two cases:

(i) only samples of the target class are available, as was indeed our case, since not-PR samples
were received at a second time from the Parmigiano Reggiano Cheese Consortium;

(ii) a limited number of non-target class samples are also available and can be considered in the
model building phase.

In the first case, only sensitivity can be estimated, and a criterion of choice to estimate the number
of components could be selecting the number which allows for achieving the maximum value of
sensitivity in cross-validation (Sensitivity_CV). This is an estimate of the predictive capability toward
correct acceptance of samples belonging to the target category. A second criterion, as for PCA, is to seek
for a minimum in root mean squares error in cross validation (RMSECV). In this case, it is equivalent to
considering only the orthogonal distance to the class model to evaluate class belonging, and the focus
is on optimizing the number of components so that samples of the target class will have low residuals.

In Figure 3b are shown the trends of Sensitivity_CV and RMSECV with an increasing number of
components; adopting the criterion of maximum value of Sensitivity_CV would lead to the selection of
two components as optimal to model the target category. RMSECV does not show a definite minimum,
while a monotonous decreasing trend is reached at five components. Thus, the selection of either a
four- or five-component model would be recommended in this case. Within the DDSIMCA approach,
the nominal significance level is achieved by a two-component model.

In the second case, by using five of the not-PR samples, it was also possible to estimate the
Specificity_CV, and thus the criterion of selecting the number of components giving the highest
value of efficiency in CV can be adopted. In Figure 3a, the plot of Sensitivity_CV, Specificity_CV and
Efficiency_CV values with an increasing number of components is shown. A five-component model
corresponds to the highest value of Efficiency_CV. The simultaneous optimization of significance
level and number of components by the ROC-SIMCA approach converged to the same number of
components (5) and significance level (α = 0.05).

In Table 2 are summarized the classification results corresponding to the different criteria.
All models gave good predictions with respect to sensitivity (Sensitivity Test), albeit optimal for a
five-PC model. On the other hand, specificity in prediction (Specificity Test) is unsatisfactory when a
two-PC model is fit. Thus, with this dataset, it seems that in cases where non-target samples will not be
available, the minimum RMSECV can be a more suitable criterion to select the number of components
with respect to maximum Sensitivity_CV. DDSIMCA, whose rule is also based on sensitivity (albeit
estimated in fit, not in CV), also indicates two PCs as the optimal class dimensionality. However,

https://github.com/yzontov/dd-simca
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DDSIMCA is using different statistics to estimate the threshold for the combined distance (D) with
respect to alternative-SIMCA approach, and showed a higher Specificity Test, i.e., 82% (only two
false positive samples); the same result would be obtained by considering four PCs, instead of five,
when evaluating the RMSECV trend (Figure 3b).

Figure 3. One-class Soft Independent Modeling of Class Analogy (SIMCA) model built using authentic
PR samples (PR1st and PR2nd, in Table 1) as a calibration set. (a) Sensitivity, specificity and efficiency
in CV vs. number of components. Specificity was estimated on five not-PR samples. (b) Sensitivity in
CV (red line, right y-axis) and RMSECV (blue line, left y-axis) vs. number of components. The shaded
areas in each graph highlights the number of components selected according to each one of the criteria,
Sensitivity_CV (red shade), Efficiency_CV (green shade) and RMSECV (blue shade), respectively.
Sensitivity in (a) and (b) are the same.

Table 2. SIMCA results (TP = true positive; TN = true negative).

Classification
Rule Criteria to Set n◦ PC n◦ PC % Sensitivity Fit

(TP/Ncal [PR])
% Sensitivity CV

(TP/Ncal [PR])

% Sensitivity Test
(TP/Ntest)

[unkonw-PR]

% Specificity Test
(TN/Ntest)

[not-PR]

Dred < sqrt(2) 1

α = 0.05
max (Sensitivity CV) 2 100

(90/90)
99

(89/90)
91

(10/11)
55

(6/11)

Dred < sqrt(2)
α = 0.05

min (RMSECV)
4 95

(86/90)
91

(82/90)
91

(10/11)
82

(9/11)

5 94
(85/90)

91
(82/90)

100
(11/11)

100
(11/11)

DDSIMCA
α = 0.05

Posterior Sensitivity
equals to nominal α 2 96 2

(86/90)
100

(11/11)
82

(9/11)

Dred < sqrt(2)
α = 0.05 max (Efficiency CV) 3 5 94

(85/90)
91

(82/90)
100

(11/11)
100
(6/6)

Dred < sqrt(2)
ROC-SIMCA

Optimize area under
ROC in CV 5 94

(85/90)
91

(82/90)
100

(11/11)
100
(6/6)

1 T2
lim = 6.3 (n◦ PC = 2); T2

lim = 10.3 (n◦ PC = 4); T2
lim = 12.2 (n◦ PC = 5). 2 DDSIMCA, differently from

alternative-SIMCA, uses a single χ2 reference distribution for the combined distance statistic [40]. 3 To estimate
Efficiency five samples from not-PR class were used (see Section 2).

When samples of the non-target category are available, even considering a few (five in our case),
by using Efficiency_CV to estimate the model complexity, five PCs are selected, which leads to the best
class model.

To have an idea of sample distribution, Figure 4 shows the reduced SD vs. OD plot, with the
acceptance area, for the two PCs (Figure 4a) and five PCs (Figure 4b) alternative-SIMCA models,
respectively. In Figure 4b, the not-PR samples used to assess efficiency are shown by green triangles.
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Figure 4. Reduced score distance (T2/T2
lim) vs. reduced orthogonal distance (Q/Qlim), at 95% confidence

level. (a) One-class SIMCA model with two components, selected according to maximum Sensitivity_CV;
(b) One-class SIMCA model with five components, selected according to maximum Efficiency_CV
(or selected according to minimum RMSECV, i.e., the model is the same). Efficiency_CV has been
estimated by the not-PR cal. samples (green triangles). The red circle (radius = 1.414) corresponds to
the acceptance class boundary.

3.2. Calibration of Rind Content

For Parmigiano Reggiano grated cheese to be compliant with the protected denomination of
origin, it has to be obtained from authentic whole Parmigiano Reggiano cheese wheels and must have
a rind content not exceeding 18% (w/w). To develop the calibration model, we firstly considered the
situation closest to what could be a confirmation analysis protocol, i.e., acquiring Raman spectra on
intact packaged grated cheese samples and directly estimating the rind content by a calibration model
developed beforehand and implemented in the handheld instrument. To this aim, even if the available
samples were quite few, we first tested a calibration model developed with the grated cheese samples
manufactured in 2015 (the first 40 samples reported as PR 1st in Table 1) and used this model to predict
the samples manufactured in 2016 (samples reported as PR 2nd on Table 2), which were also acquired
during a different measuring session. The PLS results are shown in Figure 5 and it is evident that there
is a systematic error in prediction. This can be somehow expected considering the intrinsic variability
between production year, variability due to grinding processes, etc.

Thus, we considered updating the model by augmenting the calibration set including six samples
as representative of the PR 2nd set. These were selected by the duplex algorithm and correspond to
twelve spectra (one sample was replicated six times).

The results are shown in Table 3. This model shows consistent values of error in fit (RMSEC) and
prediction (RMSEP) and has been used to predict the rind content of the unknown-PR samples. When
the rind content of these samples become known to us, we could estimate the associated prediction
error, i.e., RMSEP is equal to 5.1%, which is consistent and very close to the prediction error associated
with the PR 2nd samples not used in calibration.

In Figure 6, the measured vs. predicted rind content is shown for all samples predicted by the
updated calibration model. Even if an RMSEP of 5% is not satisfactory, the variability due to ripening,
grinding, etc. has to be considered. However, the model can distinguish compliant from non-compliant
PR samples quite well. In fact, only three samples fall in the region of wrongly rejected and three
(of which one quite close to the limit) in the region of wrongly accepted, respectively.
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Figure 5. Partial least squares regression (PLS) calibration model for % rind content based on the
first sampling set: Measured vs. Predicted rind values. PR 1st samples: black diamonds; PR 2nd set
samples: red squares.

Table 3. PLS results.

Calibration Set
n◦ Samples (+ n◦ Replicates)

n◦

LV RMSEC RMSECV Validation Set
n◦ Samples (+ n◦ Replicates) RMSEP

PR 1st: 40 (+4) 3 4.3 5.2 PR 2nd: 40 (+6) 7.6

PR 1st: 40 (+4)
PR 2nd: 6 (+6) 3 4.8 5.7

PR 2nd: 34 4.8
unknown-PR: 10 (+1) 5.1

Figure 6. PLS calibration model for % rind content based on the updated calibration set (PR 1st + 6 PR
2nd): only predicted samples are shown, measured vs. predicted rind values. PR 2nd samples (test):
red squares; unknown-PR: blue triangles. Samples falling in the green framed area are correctly seen as
compliant and samples in the red frame are correctly seen as non-compliant.

The relevance of spectral region in the PLS model can be assessed by looking at the regression
coefficients together with the variable importance in projection (VIP) [43,44] as variable ranking criteria,
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as shown in Figure 7. Three main spectral regions are highlighted and are coherent with the chemical
composition of cheese and dairy products [13,14,16]:

Figure 7. PLS calibration model for % rind content based on the updated calibration set (PR 1st + 6 PR
2nd): regression coefficients with region with variable importance in projection (VIP) scores higher
than one highlighted in red.

(i) the spectral range from 1200 to 800 cm−1, which can be associated to C-C stretching of aliphatic
amino acids (e.g., phenylalanine band at around 1000 cm−1, side chains Lys, Asp and Glu around
1065 cm−1, Trp at about 1124 cm−1), the C-C-N stretching at about 940 cm−1, the phosphate stretch
around 930 cm−1, the C-O ester linkage mode of lipids around 1150 cm−1;

(ii) the spectral range from 1400 to 1200 cm−1 which can be associated to the amide III band in
α-helix structures (1260–1340 cm−1),

(iii) the intense band at about 1440 cm−1, which can be associated to the CH deformation of fatty
acids, carbohydrate and aliphatic amino acids side chains.

Overall, these spectral regions may account for the proteolysis phenomena occurring during
ripening and the structural change in the proteins in the rind.

Noteworthily, studies concerning the authentication of Grana Padano cheese [24] reported that
the detection of rind addition to grated cheese may be detected by capillary electrophoresis dosing the
ratio of the αs2 to αs1 casein forms, which was found to be higher for the rind; a Raman study focused
on the comparison of different phosphorylated casein fractions [45] reported as distinctive for higher
phosphorylation, as is the case of αs2 casein [46], the Raman bands at 1003, 980, 850, and 830 cm−1,
which show positive regression coefficients in Figure 7.

The salient spectral regions discussed above are consistent with cheese composition; however,
while some are specific to cheese, there are also regions which are common to both cheese and packaging
material, as can be observed by comparing the spectrum of the same sample acquired as such with
the one acquired through the bag (Figure 8). On the other hand, in this feasibility study, the plastic
material was the same for each sample. Thus, this contribution affects all samples in the same way.
Moving to real application, different materials can be employed in the packaging (plastic type and
use of aluminum coupled to plastic) of grated cheese, and consequently more investigation covering
the packaging material variability should be carried on testing the robustness of the methodology.
Although in commercial products a printed label is also present on the bag, the spectra can be acquired
in a region without any printing.
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Figure 8. For the same sample the spectrum acquired on grated PR as such (red line) and on packaged
grated PR (blue line) are shown. Where the plastic absorbs, the intensity of the blue line is higher than
the intensity of the red one.

4. Discussion

4.1. Authenticity Model

The feasibility study presented here and based on handheld Raman device showed very good
performance, and all unknown-PR tested sample were correctly predicted.

A strict comparison with other proposed methodologies may be impaired because of the different
number of samples (unpacked), different instruments and classification algorithms applied. However,
the predictive capability of the different approaches can be generally discussed.

Camin et al. [18] analysed a quite large number of samples (265) and reported a 98% correct
classification rate for random forest (RF) classification based on stable light isotope analysis and mineral
profiles, which is the reference methodology; the predictive capability of RF model was instead not reported.

Cevoli et al. [20] developed authenticity models based on NIR/MIR spectroscopy, on a calibration
set of 146 samples, authentic and compliant, i.e., whose rind content was below 18%, for the PR category
and 116 samples for the competitors. The corresponding SIMCA model showed 20% uncorrected
classified case, while a model based on artificial neural networks (ANN) based on four classes, namely
authentic compliant PR, competitors, defected PR, and authentic non-compliant PR (rind content > 18%),
showed a correct test set classification rate of 95%, in the case of the authentic compliant PR category.
With respect to these models, we achieved with SIMCA a better predictive performance. Although
our dataset included much fewer samples, it covered variability with respect to production year,
area of production, period of grating. Moreover, the samples used as test set were not a split of a
single sampling.

It is worth underlining that selecting the optimal complexity is crucial in building the SIMCA
model, and this is not a trivial task when only samples from the target class are available. Within this
specific application, RMSECV proved an effective criterion of choice, but this conclusion cannot be
generalized and further investigation comparing several datasets of different typologies is foreseen.

4.2. Calibration of Rind Content

The obtained calibration model shows a prediction error for the rind content of about 5%, which,
despite being higher with respect to recently proposed models based on NIR [20], i.e., about 3.5%,
and NIR imaging [28], i.e., ranging from 2% to 2.5%, may be interesting from the applicative point of
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view, considering some of the advantages offered by the handheld Raman technique. In fact, there is
the possibility to measure directly through packaging without opening it; the measure is not influenced
by the varying humidity of the samples, which can be a serious limitation for NIR; and finally, the lower
cost and easy handling with respect to NIR-imaging device.

It is worth noting that very few samples of the second set were sufficient to update the calibration
model; this is encouraging for the limited effort which can be foreseen for model maintenance.
Furthermore, it has to be remarked that this was a feasibility study with a limited number of samples
and an improved calibration model can be obtained by enlarging the sampling. In addition, the number
of spectra to be acquired on each sample can be increased to better map the packaged sample area.

5. Conclusions

Here, we presented a feasibility study to evaluate the potentiality of portable Raman as a
fingerprint technique in developing both an authenticity model, by the class modeling approach,
of grated Protected Denomination of Origin (PDO) Parmigiano Reggiano cheese and a multivariate
calibration model to verify the compliance of authentic grated Parmigiano cheese with respect to the
maximum allowed rind content percentage.

The authenticity model’s performance was very good. The calibration model was satisfactory for
assessing compliance or not compliance with respect to the threshold of 18% set by regulation, despite
the prediction error being quite large, i.e., 5%.

These results, considering that there is room for improvement with a more systematic sampling,
are encouraging with respect to the possibility of implementing a methodology based on in situ,
fast, non-destructive, quite cheap analytical technique that would enable a much wider screening
campaign. In this case, the stable isotopes and elemental analysis, for authentication, and the
electrophoretic analysis, for the compliance with respect to rind content, can then be employed as
confirmatory analysis.

On the other hand, this represents a small pilot study, which just indicates that the proposed
methodology is worthy of further investigation, while not being at all conclusive. In particular,
the impact of different packaging materials, including the presence of labels, has to be assessed, as well
as a wider sample campaign which needs to be undertaken. At the same time, even if the models
are developed in the context of blind analysis for fast screening, a deeper investigation of spectral
signatures which may be distinctive for Parmigiano Reggiano would strongly support the application
of the approach.
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11. Beganović, A.; Hawthorne, L.M.; Bach, K.; Huck, C.W. Critical review on the utilization of handheld and
portable raman spectrometry in meat science. Foods 2019, 8, 49. [CrossRef]

12. Tena, N.; Aparicio, R.; Baeten, V.; García-González, D.L.; Fernández-Pierna, J.A. Assessment of vibrational
spectroscopy performance in geographical identification of virgin olive oils: A world level study. Eur. J.
Lipid Sci. Technol. 2019, 121, 1900035. [CrossRef]

13. Caponigro, V.; Marini, F.; Dorrepaal, R.M.; Herrero-Langreo, A.; Scannelle, A.G.M.; Gowen, A.A. Raman and
fourier transform infrared hyperspectral imaging to study dairy residues on different surfaces. J. Spectr. Imaging
2019, 8, a3. [CrossRef]

14. Firmani, P.; Vitale, R.; Ruckebusch, C.; Marini, F. ANOVA-simultaneous component analysis modelling
of low-levelfused spectroscopic data: A food chemistry case-study. Anal. Chim. Acta 2020, 1125, 308–314.
[CrossRef] [PubMed]

15. Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Cho, B.-K. Through-packaging analysis of butter adulteration using
line-scan spatially offset Raman spectroscopy. Anal. Bioanal. Chem. 2018, 410, 5663–5673. [CrossRef] [PubMed]

16. de Sá Oliveira, K.; de Souza Callegaro, L.; Stephani, R.; Almeida, M.R.; Cappa de Oliveira, L.F. Analysis of
spreadable cheese by Raman spectroscopy and chemometric tools. Food Chem. 2016, 194, 441–446. [CrossRef]

17. Parmigiano Reggiano Consorzio Web Page. Available online: https://www.parmigianoreggiano.com/

consortium/rules_regulation_2/default.aspx (accessed on 27 October 2020).
18. Camin, F.; Wehrens, R.; Bertoldi, D.; Bontempo, L.; Ziller, L.; Perini, M.; Nicolini, M.; Nocetti, M.; Larcher, R.

H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard
cheeses. Anal. Chim. Acta 2012, 711, 54–59. [CrossRef]

19. Camin, F.; Bertoldi, D.; Santato, A.; Bontempo, L.; Perini, M.; Ziller, L.; Stroppa, A.; Larcher, R. Validation
of methods for H, C, N and S stable isotopes and elemental analysis of cheese: Results of an international
collaborative study. Rapid Commun. Mass Spectrom. 2015, 29, 415–423. [CrossRef]

20. Cevoli, C.; Gori, A.; Nocetti, M.; Cuibus, L.; Caboni, M.F.; Fabbri, A. FT-NIR and FT-MIR spectroscopy to
discriminate competitors, non compliance and compliance grated Parmigiano Reggiano cheese. Food Res. Int.
2013, 52, 214–220. [CrossRef]

21. Cevoli, C.; Fabbri, A.; Gori, A.; Caboni, M.F.; Guarnieri, A. Screening of grated cheese authenticity by NIR
spectroscopy. J. Agric. Eng. 2013, XLIV, e53. [CrossRef]

22. Consonni, R.; Cagliani, L.R. Ripening and geographical characterization of Parmigiano Reggiano cheese by
1H NMR spectroscopy. Talanta 2008, 76, 200–205. [CrossRef]

23. Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V. Application of a novel S3 nanowire gas sensor device
in parallel with GC-MS for the identification of Parmigiano Reggiano from US and European competitors.
J. Food Eng. 2018, 236, 36–43. [CrossRef]

24. Cattaneo, S.; Hogenboom, J.A.; Masotti, F.; Rosi, V.; Pellegrino, L.; Resmini, P. Grated Grana Padano cheese:
New hints on how to control quality and recognize imitations. Dairy Sci. Technol. 2008, 88, 595–605. [CrossRef]

25. Pellegrino, L.; Tirelli, A.; De Noni, I.; Resmini, P. Valutazione del Grana Padano grattugiato attraverso la
determinazione per elettroforesi capillare di frazioni caseiniche e di loro peptidi di degradazione. Sci. Tec.
Latt. Casearia 2003, 54, 321–333.

http://dx.doi.org/10.1016/j.talanta.2019.01.100
http://www.ncbi.nlm.nih.gov/pubmed/30876600
http://dx.doi.org/10.1016/j.trac.2014.05.004
http://dx.doi.org/10.1016/j.tifs.2015.08.003
http://dx.doi.org/10.1016/S0924-2244(02)00243-1
http://dx.doi.org/10.1039/C8AN01702F
http://dx.doi.org/10.3390/foods8020049
http://dx.doi.org/10.1002/ejlt.201900035
http://dx.doi.org/10.1255/jsi.2019.a3
http://dx.doi.org/10.1016/j.aca.2020.05.059
http://www.ncbi.nlm.nih.gov/pubmed/32674778
http://dx.doi.org/10.1007/s00216-018-1189-1
http://www.ncbi.nlm.nih.gov/pubmed/29934851
http://dx.doi.org/10.1016/j.foodchem.2015.08.039
https://www.parmigianoreggiano.com/consortium/rules_regulation_2/default.aspx
https://www.parmigianoreggiano.com/consortium/rules_regulation_2/default.aspx
http://dx.doi.org/10.1016/j.aca.2011.10.047
http://dx.doi.org/10.1002/rcm.7117
http://dx.doi.org/10.1016/j.foodres.2013.03.016
http://dx.doi.org/10.4081/jae.2013.295
http://dx.doi.org/10.1016/j.talanta.2008.02.022
http://dx.doi.org/10.1016/j.jfoodeng.2018.05.009
http://dx.doi.org/10.1051/dst:2008024


Foods 2020, 9, 1563 15 of 15

26. Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V.; Zappa, D.; Comini, E.; Sberveglieri, G. Application of
a novel S3 nanowire gas densor device in parallel with GC-MS for the identification of rind percentage of
grated Parmigiano Reggiano. Sensors 2018, 18, 1617. [CrossRef] [PubMed]

27. Alinovi, M.; Mucchetti, G.; Tidona, F. Application of NIR spectroscopy and image analysis for the
characterisation of grated Parmigiano-Reggiano cheese. Int. Dairy J. 2019, 92, 50–58. [CrossRef]

28. Calvini, R.; Michelini, S.; Pizzamiglio, V.; Foca, G.; Ulrici, A. Exploring the potential of NIR hyperspectral
imaging for automated quantification of rind amount in grated Parmigiano Reggiano cheese. Food Control
2020, 112, 107111. [CrossRef]

29. Improving verification with Orbital Raster Scan Technology. Metrohm Raman Spectroscopy Application
Raman Spectroscopy Application Note RS-11 Version 1, October 2017. Available online: https://www.
metrohm.com/en/applications/AN-RS-011 (accessed on 27 October 2020).

30. Geravand, A.; Hashemi Nezhad, S.M. Simulation study of the orbital raster scan (ORS) on the raman
spectroscopy. Optik 2019, 178, 83–89. [CrossRef]

31. Tomasi, G.; van den Berg, F.; Andersson, C. Correlation optimized warping and dynamic time warping as
preprocessing methods for chromatographic data. J. Chemom. 2004, 18, 231–241. [CrossRef]

32. Eilers, P.H.C. Parametric time warping. Anal. Chem. 2004, 76, 404–411. [CrossRef]
33. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic quotient normalization as robust method to

account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem.
2006, 78, 4281–4290. [CrossRef]

34. Wold, S.; Sjostrom, M. SIMCA: A method for analysing chemical data in terms of similarity and analogy.
In Chemometrics, Theory and Application, American Chemical Society Symposium Series; Kowalski, B.R., Ed.;
American Chemical Society: Washington, DC, USA, 1977; Volume 52, pp. 243–282.

35. Cocchi, M.; Biancolillo, A.; Marini, F. Chemometrics methods for classification and feature selection. In Data
Analysis for Omics Sciences: Methods and Applications; Jaumot, J., Bedia, C., Tauler, R., Eds.; Comprehensive
Analytical Chemistry; Barcelo, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, Chapter 10.

36. Jackson, J.E.; Muldholkar, G.S. Control procedures for residuals associated with principal component analysis.
Dent. Tech. 1979, 21, 341–349. [CrossRef]

37. Hotelling, H. The generalization of Student’s ratio. Ann. Math. Stat. 1931, 2, 360–378. [CrossRef]
38. Vitale, R.; Marini, F.; Ruckebusch, C. SIMCA modeling for overlapping classes: Fixed or optimized decision

threshold? Anal. Chem. 2018, 90, 10738–10747. [CrossRef] [PubMed]
39. Zontov, Y.V.; Rodionova, O.; Kucheryavskiy, S.; Pomerantsev, A. DD-SIMCA—A MATLAB GUI tool for data

driven SIMCA approach. Chemom. Intell. Lab. Syst. 2017, 167, 23–28. [CrossRef]
40. Rodionova, O.Y.; Oliveri, P.; Pomerantsev, A.L. Rigorous and compliant approaches to one-class classification.

Chemom. Intell. Lab. Syst. 2016, 159, 89–96. [CrossRef]
41. Snee, R. Validation of regression models: Methods and examples. Technometrics 1977, 19, 415–428. [CrossRef]
42. Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 186, 1–17. [CrossRef]
43. Wold, S.; Johansson, E.; Cocchi, M. PLS: Partial least squares projections to latent structures. In 3D QSAR

in Drug Design: Theory, Methods and Applications; Kubinyi, H., Ed.; ESCOM Science Publishers: Leiden,
The Netherlands, 1993; pp. 523–550.

44. Favilla, S.; Durante, C.; Li Vigni, M.; Cocchi, M. Assessing feature relevance in NPLS models by VIP.
Chemom. Intell. Lab. Syst. 2013, 129, 76–86. [CrossRef]

45. Ettah, I.; Ashton, L. Determination of phosphorylation and deprotonation induced higher order structural
transitions in αs-Caseins. Anal. Chem. 2019, 91, 13940–13946. [CrossRef] [PubMed]

46. Treweek, T.M.; Thorn, C.D.; Price, W.E.; Carver, J.A. The chaperone action of bovine milk αS1- and αS2-caseins
and their associated form αS-casein. Arch. Biochem. Biophys. 2011, 510, 42–52. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18051617
http://www.ncbi.nlm.nih.gov/pubmed/29783673
http://dx.doi.org/10.1016/j.idairyj.2019.01.010
http://dx.doi.org/10.1016/j.foodcont.2020.107111
https://www.metrohm.com/en/applications/AN-RS-011
https://www.metrohm.com/en/applications/AN-RS-011
http://dx.doi.org/10.1016/j.ijleo.2018.09.090
http://dx.doi.org/10.1002/cem.859
http://dx.doi.org/10.1021/ac034800e
http://dx.doi.org/10.1021/ac051632c
http://dx.doi.org/10.1080/00401706.1979.10489779
http://dx.doi.org/10.1214/aoms/1177732979
http://dx.doi.org/10.1021/acs.analchem.8b01270
http://www.ncbi.nlm.nih.gov/pubmed/30141324
http://dx.doi.org/10.1016/j.chemolab.2017.05.010
http://dx.doi.org/10.1016/j.chemolab.2016.10.002
http://dx.doi.org/10.1080/00401706.1977.10489581
http://dx.doi.org/10.1016/0003-2670(86)80028-9
http://dx.doi.org/10.1016/j.chemolab.2013.05.013
http://dx.doi.org/10.1021/acs.analchem.9b03457
http://www.ncbi.nlm.nih.gov/pubmed/31617340
http://dx.doi.org/10.1016/j.abb.2011.03.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Sampling 
	Raman Spectra 
	Spectral Preprocessing 
	Classification Analysis 
	Datasets 
	Soft Independent Modeling of Class Analogy (SIMCA) 

	Multivariate Calibration (PLS) of Rind Content 
	Software 

	Results 
	Authenticity Assessment 
	Calibration of Rind Content 

	Discussion 
	Authenticity Model 
	Calibration of Rind Content 

	Conclusions 
	References

