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Thyroid cancer (TC) is the most common endocrine malignancy. TC is classified as
differentiated TC (DTC), which includes papillary and follicular subtypes and Hürthle cell
variants, medullary TC (MTC), anaplastic TC (ATC), and poorly differentiated TC (PDTC).
The standard of care in DTC consists of surgery together with radioactive iodine (131I)
therapy and thyroid hormone, but patients with MTC do not benefit from 131I therapy.
Patients with advanced TC resistant to 131I treatment (RAI-R) have no chance of cure, as
well as patients affected by ATC and progressive MTC, in which conventional therapy
plays only a palliative role, representing, until a few years ago, an urgent unmet need. In the
last decade, a better understanding of molecular pathways involved in the tumorigenesis
of specific histopathological subtypes of TC has led to develop tyrosine kinase inhibitors
(TKIs). TKIs represent a valid treatment in progressive advanced disease and were tested
in all subtypes of TC, highlighting the need to improve progression-free survival. However,
treatments using these novel therapeutics are often accompanied by side effects that
required optimal management to minimize their toxicities and thereby enable patients who
show benefit to continue treatment and obtain maximal clinical efficacy. The goal of this
overview is to provide an update on the current use of the main drugs recently studied for
advanced TC and the management of the adverse events.

Keywords: thyroid cancer, target therapy, adverse events, tyrosine kinase inhibitors, multikinase inhibitors
1 INTRODUCTION

Thyroid cancer (TC) represents the most common endocrine malignancy. According to
GLOBOCAN 2020 data, TC results as the eighth most diagnosed malignancy in the world in
2020, with a low death rate compared to other malignancies (43,646 deaths on 586,202 new cases
diagnosed in both sexes and all ages) (1). The incidence of TC by sex showed a higher prevalence in
women, ranging from 3- to 4-fold higher than in men (1). The incidence of TC increased in the last
two decades: starting from 2000, the rate of new cases grew exponentially year by year, reaching a
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plateau in the last decade (2). This increase is likely due to the use
of sensitive neck ultrasound, which allows to detect incidentally
small intrathyroidal tumors.

The thyroid gland comprises both follicular cells and
medullary parafollicular cells: follicular cells express a sodium–
iodide symporter (NIS) for iodine entry, while medullary
parafollicular cells are neuroendocrine in origin and are also
known as “C” cells.

The current version of TC classification was introduced in
2017 (3). TC classification is based on the histopathological
subtype of cancer cells: differentiated TC (DTC) arises from
the follicular cells of the thyroid; it is the most common form,
representing more than 90% of all diagnosed TC cases. DTC is
subclassified as i) papillary TC (PTC), which is the prevalent
form of DTC, occurring in 80% of cases; ii) follicular TC (FTC),
occurring in 10%–20% of DTC; iii) Hürthle cell variants (2%–8%
of diagnosed DTC). Medullary TC (MTC) develops after a
malignant transformation of the neuroendocrine “C” cells; it
accounts for about 2% of all TC cases. MTC represents a unique
TC; it was recognized that the tumor occurred either sporadically
or in a hereditary form as a component of type 2 multiple
endocrine neoplasia (MEN) syndromes, MEN2A and MEN2B,
and the related syndrome, familial MTC (FMTC) (4). Anaplastic
TC (ATC) is the undifferentiated form and represents the
remaining 2% of all TC cases. In 1983, Sakamoto et al.
proposed a new entity, poorly differentiated TC (PDTC), and
described its clinicopathological features (5). In 2004, the WHO
Classification of Tumours of Endocrine Organs recognized PDTC
as a new subtype of TC (6), representing the bridge between DTC
and ATC, with poor differentiation and greater aggressiveness
reflecting a poor overall survival (OS). The common clinical
features of PDTC are increased local growth and distant
metastases (7).

TC in the pediatric population is rare. The most frequent TC
type occurring in the pediatric population is PTC (approximately
90% of pediatric TC), followed by FTC (~10%), MTC (3–5%),
and rarely ATC and PDTC. PTC is frequently associated with
more extensive extrathyroidal disease (8).

The current treatment for TC consists of surgery together
with radioactive iodine (131I) therapy (in those phenotypes
showing avidity for iodine due to turnout of NIS) and thyroid
hormone (9).

DTC is usually curable with surgery and 131I therapy, with an
indolent disease course in both PTC and FTC showing a high 10-
year survival in patients with no local progression and absent
local/distant metastases (about 85%). Nevertheless, additional
treatments are required in patients with local recurrence and/or
distant metastases. In some cases, patients with aggressive DTC
became refractory to 131I treatment; these patients have a poor
overall prognosis and an OS rate of less than 15% at 10 years
(10, 11).

In contrast to DTC patients, patients with MTC do not
benefit from 131I therapy, because they lack the NIS necessary
to incorporate 131I within the cells (4). Therefore, almost always
patients with MTC undergo initial surgery, in most cases
associated with lymphadenectomy. In case of persistent or
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residual local disease, external beam radiation to the neck may
be used (4).

Actually, ATC is the most aggressive form of TC, associated
with high mortality. Since the ATC rapidly degenerates into
progressive malignancy, its cure represents an urgent
unmet need.

Until a few years ago, patients with advanced TC resistant to
131I treatment (RAI-R) had no chance of cure, as well as
patients affected by ATC and progressive MTC. Conventional
therapy plays only a palliative role in these patients, because of
its poor efficacy, resulting in no prolongation of survival in the
use of a single therapeutic agent or in combination with other
drugs (12).

In the last decade, a better understanding of molecular
pathways involved in the tumorigenesis of specific
histopathological subtypes of TC has led to develop tyrosine kinase
(TK) inhibitors (TKIs), a novel class of compounds targeting these
pathways, implicated in the proliferation and neoangiogenesis
of TC.

The objective of this overview is to provide an update on TC
treatments using TKIs, mentioning clinical trials in which their
use resulted in considerable progression-free survival (PFS). A
discussion of the most common toxicities reported will be
provided, focusing on the management of the side effects of
TKIs in TC.
2 MOLECULAR ALTERATIONS IN
THYROID CANCER

TKs have emerged as a key pharmacological target in oncology
(13). TKs are key enzymes involved in the control of mitogenic
signal transduction through phosphorylation/dephosphorylation
of many intracellular proteins: these proteins are responsible for
transduction cascades from the cell surface to the nucleus. TKs
are classified as i) transmembrane receptor-linked kinases (i.e.,
RET, vascular endothelial growth factor receptor (VEGFR),
epidermal growth factor receptor (EGFR), platelet-derived
growth factor receptor (PDGFR), MET, and c-KIT), which are
high-affinity cell surface receptors that can be activated by
various ligands (i.e., VEGF, EGF, cytokines, and hormones),
and ii) non-receptor TK, also known as tyrosine phosphatase,
referred to as cytoplasmic enzymes involved in transduction
cascades (i.e., RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, and
JAK-STAT) (14). TK proteins are strongly involved in
oncogenesis via aberrant expression of their receptors and
reduced expression of their modulating enzymes (15). Different
genetic alterations can occur, which are almost always mutually
exclusive, such as activating mutations/rearrangements in proto-
oncogenes; these genetic alterations result in a “gain-of-function”
hyperactive kinase, leading to activation of the RAS-RAF-MEK-
ERK axis (MAPK-ERK pathway) and PI3K-AKT-mTOR
pathway (Figure 1). Thus, the constitutive activation of
MAPK-ERK and PI3K-AKT-mTOR cascades due to
mutational events represents crucial molecular steps in thyroid
July 2022 | Volume 13 | Article 860671
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carcinogenesis and is responsible for uncontrolled, ligand-
independent, aberrant growth stimulus to cancer cell growth.
The alterations occurring in the MAPK pathway can lead to
distinct clinicopathological characteristics, gene expression, and
DNA methylation profiles of TC (16).
2.1 Tyrosine Kinase Transmembrane
Receptors
The proto-oncogene RET encodes a membrane TK
transmembrane receptor (TK-R) that functions upstream of
the MAPK and PI3K-AKT. RET is an oncogene that can be
overactivated either i) by a fusion rearrangement of the TK
domain of RET gene and the 5′ domain of other genes (known as
RET/PTC rearrangements) or ii) by activating point mutations;
RET alterations lead to activation of mitogen-activated MAPK
pathway, resulting in cancer development. Nikiforov (2002)
discussed the most common RET/PTC rearrangements
occurring in TC: among at least 10 different types of RET/
PTC, the most common types are RET/PTC1 and RET/PTC3,
accounting for >90% of all rearrangements (17). He reported that
the most frequent RET/PTC rearrangements occur in a follicular
histological type of TC (PTC). Moreover, different types of RET/
PTC correlated with distinct clinical features of PTC: RET/PTC1
leads to a benign clinical course in tumors with typical papillary
growth and microcarcinomas, whereas RET/PTC3 tends to be
associated with the solid variant of PTC and more aggressiveness
(17). Instead, activating RET point mutations have been
exclusively found in MTC: RET-activating point mutations are
present at the germline level in approximately 100% of hereditary
forms and 50% of sporadic cases (4). Thus, tests to identify RET
germline mutations are required both in hereditary forms and in
apparently sporadic cases to identify respectively gene carriers
and undiagnosed familial tumors (18, 19).
Frontiers in Endocrinology | www.frontiersin.org 3
Additional genomic events occurring in TC are gene
amplifications resulting in the gain of genes’ copy number that
encodes for TK-R, such as EGFRs, PDGFRs (PDGFR-a and
PDGFR-b), VEGFRs (VEGFR1, VEGFR2, and VEGFR3), stem
cell factor receptor (c-KIT), and hepatocyte growth factor (HGF)
receptor (MET) (20).

Among the growth factors, vascular endothelial growth factor
(VEGF) has appeared to be the most prominent due to its
involvement in tumor angiogenesis and tumor growth. Indeed,
the angiogenesis process becomes pathophysiological when the
tumor uses it developmentally. VEGF comprises VEGF-A, VEGF-
B, VEGF-C, VEGF-D, and the placental growth factor (PGF), each
capable of binding different VEGFRs (21, 22). A study conducted
among TC cases with follicular origin highlighted that VEGF
expression was more prevalent in PTC (79%) than in FTC (50%)
or PDTC (37%); moreover, more than half of these tumors co-
expressed the VEGF and its receptors, going in an autocrine loop
of VEGF signal (23). VEGF overexpression is a consequence of an
overactivation of hypoxia-inducible factor-1 alpha (HIF-1a); this
factor is expressed in TC cells (especially in ATC cells), but not in
normal thyroid tissues, where it causes intratumoral hypoxia.
Upregulation of HIF-1a also correlated with increased
transcription of MET gene in PTC and ATC and correlated with
tumor invasiveness (24). MET is a TK-R, also known as an HGF
receptor due to its high affinity for HGF. The induction of MET
results in the activation of signals implicated with proliferation,
cell survival, cell scattering/migration, and morphogenesis.
Deregulated HGF-MET signaling is implicated in oncogenesis,
tumor invasiveness, and therapeutic resistance in several cancers,
including TC (24).

EGFR appears to be an attractive target for molecular therapy
due to its role in the pathogenesis of many types of cancer.
Overexpression of EGFR in PTC has been associated with a
worse prognosis (25).
FIGURE 1 | Signaling pathways in thyroid cancer.
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2.2 NTRK Gene Fusion in Thyroid Cancer
The occurrence of NTRK fusion in TC is very rare. Fusions
involving NTRK gene family, including NTRK1, NTRK2, and
NTRK3, lead to the constitutive activation of active kinase
function due to chimeric rearrangements in tropomyosin
receptor kinases (TRKs) A, B, and C, respectively. NTRK
fusion is an oncogenic drive mutation and occurs in
approximately 0.3% of all solid tumors (26). Eight NTRK
fusion types were identified in TC and seem to be associated
with a 100% probability of malignancy (27). NTRK fusion is
mutually exclusive with other driver mutations, but in rare cases,
the co-occurrence ofNTRK fusions and BRAFV600E mutation has
been reported (28, 29) A recent study investigated the impact of
NTRK-rearranged tumors on the prognosis of different TC
types (30). The authors detected NTRK rearrangements in 59
of 989 TC tissues, with prevalence in PTC due to high pediatric
PTC sample size (n = 104), which are known to harbor NTRK
fusions with a higher frequency (approximately 20%) (30).
2.3 MAPK Axis
Genetic alterations occurring in the MAPK axis play important
roles in the development of cancer. Several studies showed that
the main activating mutations in these transduction pathways
can occur in RAS gene or BRAF proto-oncogenes (31).

RAS mutations might result in the acceleration of mitogenic
activity and tumor progression. Incidences of RAS mutations
correlated with the histological differentiation of TC. Evidence
suggests that RAS mutations may sustain DTC dedifferentiation
into PDTC and ATC (32). RAS mutations are one of the most
frequent alterations found in FTC (40%–50%) (33) and in about
10% of PTC. Aside from RET point mutations in MTC, the only
other alterations occurring are H- and K-mutations in RAS
(reported in about 17%–80% of RET-negative sporadic
MTC) (4).

Mutations in BRAF gene lead to the constitutive activation
of the BRAF kinase (34). In his review Xing (2005)
highlighted that among the known common oncogenic
genetic alterations occurring in TC, BRAF mutations are
the most frequent in PTC, with the prevalence of V600E
mutation; BRAFV600E mutation is more frequent in PTC (44%
in the studied population) and in PTC-derived ATC tumors
(24% of the studied population), compared to other
histological subtypes, such as FTC, MTC, or benign thyroid
tumors (34). Indeed, the abnormal activation of the MAPK
cascade, due to mutations and/or rearrangements in RET,
RAS, and BRAF genes, characterizes approximately 70% of
PTC cases (31). BRAFV600E is one of the most prevalent
alterations in ATC and in PDTC; other frequent oncogene
alterations in ATC are PI3CA, PTEN, IDH1, and ALK
mutations (35). Xu et al. (2020) highlighted that BRAF,
RAS, TP53, and TERT promoter mutations were the most
common mutations that occurred in a cohort of 126 cases of
ATC (45%, 24%, 63%, and 75%, respectively); in this study,
they also described the very rare occurrence of NTRK fusion
(3 cases) (36). While mutations of RET, BRAF, and RAS
Frontiers in Endocrinology | www.frontiersin.org 4
occurring in DTC and MTC are almost always mutually
exclusive, ATC is characterized by a higher number of
mutations in the same tissue, probably responsible for a
more aggressive phenotype (12, 35, 37).

The constitutive activation of receptors or tyrosine
phosphatase involved in the MAPK axis leads to activation of
the MAPK pathway, which is associated with dedifferentiation,
due to inhibition in the expression of thyroid hormone
biosynthesis genes, including the NIS and thyroid peroxidase.
In 2014, The Cancer Genome Atlas (TCGA) Research Network
published a comprehensive characterization of 496 PTC (38).
This study highlighted that BRAFV600E-mutated PTC, which had
the strongest activation of the MAPK pathway, showed the most
dedifferentiated state, that is, low expression of some thyroid
differentiation genes such as SCLC5A5 gene encoding for the
NIS, thyroglobulin, or thyroid peroxidase (39). Therefore, drugs
inhibiting one or most of the proteins involved in the MAPK
pathway could be useful to improve iodine uptake and allow
RAI therapy.
2.4 PAX8/PPARg
While paired box gene 8 (PAX8) is a thyroid-specific
transcription factor, peroxisome proliferator-activated receptor
g (PPARg) gene is a transcription factor ubiquitously expressed;
their fusion resulting in the PAX8/PPARg oncogene that
promotes cell growth reduces rates of apoptosis and allow
anchorage-independent and contact-uninhibited growth of
thyroid cell lines (40). Moreover, it is associated with tumor
multifocality and vascular invasion (41). PAX8/PPARg
rearrangements are detected in about one-third of FTC (35%)
(40) and a follicular variant of PTC, but not in classic PTC. The
major molecular alterations occurring in TC are summarized
in Table 1.
3 TARGET THERAPY IN THYROID
CANCER CASES: FOCUS ON (MULTI)
TYROSINE KINASE INHIBITORS

Understanding the molecular pathways involved in the
pathogenesis of TC led to the transition of multiple
targeted therapies into clinical trials and ultimately into
clinical practice (42). Indeed, histological and genomic
characteristics play an important role in the prognosis
and may guide the treatment of TC. The objective of
targeted therapy is to interfere with molecular pathways
that are inappropriately activated in cancer cells (33). TKIs
are a new class of active compounds that show activity
against multiple targets (MTKIs) or a single specific protein
(e.g., BRAF inhibitors or RET-mutant inhibitors). MTKIs
are able to block several TK-Rs, some involved in the
pathogenesis of TC (i.e., RET, MET, EGFR, and c-KIT)
and others in the vascular angiogenic pathway [i.e. ,
VEGFR1–3 and PDGFR].
July 2022 | Volume 13 | Article 860671
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In the last few years, several TKIs acting on these molecular
pathways have been tested for the treatment of advanced,
progressive, and RAI-R DTC, as well as MTC and ATC. TKIs
have been shown to improve the PFS of patients in clinical trials as
well as in those involved in real-world studies; until 2011, some of
them have been approved for use in clinical practice: sorafenib (43,
44) and lenvatinib (45, 46) have been licensed by the Food andDrug
Administration (FDA) and EuropeanMedicines Agency (EMA) for
their clinical efficacy in progressive, locally advanced or metastatic,
DTC (papillary/follicular/Hürthle cell), refractory to 131I treatment;
moreover, vandetanib (47, 48) and cabozantinib (49, 50) have been
approved and currently available in patients with metastatic and
progressive MTC. In September 2021, cabozantinib also received
FDA approval for use in DTC (51). Recently, the FDA approved a
high BRAF-specific inhibitor: dabrafenib (52) for BRAFV600E-
mutated metastatic ATC. Selpercatinib (53) and pralsetinib (54)
are the latest approved TKIs by the FDA, occurring respectively in
May 2020 and December 2020; these two drugs are indicated for the
treatment of RET-fusion RAI-R DTC and the treatment of RET-
mutant MTC in patients aged ≥12 years. EMA approval for the
same indications was in December 2020 for selpercatinib, while
pralsetinib was approved the last in March 2022.

Larotrectinib and entrectinib are tumor-agnostic TRK inhibitors
approved by the FDA and EMA for the treatment of advanced or
metastatic solid tumor cancers with NTRK fusion (55). All the
Frontiers in Endocrinology | www.frontiersin.org 5
current approved TKIs for use in the treatment of several types of
TC are summarized in Table 2.
4 MANAGEMENT OF TYROSINE KINASE
INHIBITOR THERAPY IN THYROID
CANCER: EVIDENCE OF EFFICACY FROM
CLINICAL TRIALS

4.1 Differentiated Thyroid Cancer
Systemic therapy should be considered in patients with
progressive RAI-R DTC. The American Thyroid Association
(ATA) guidelines for DTC defined RAI-R DTC as i) malignant
or metastatic tissues not able to concentrate RAI, ii) tissues that
have lost the ability to concentrate RAI, iii) when metastatic
diseases progress despite the ability to concentrate RAI, or iv)
when RAI has concentrated in some tissues and not others (9).
Haugen (1999) reviewed the use of several chemotherapeutic
agents for the treatment of RAI-R DTC (e.g., doxorubicin,
paclitaxel, bleomycin, cisplatin, carboplatin, methotrexate,
melphalan, mitoxantrone, and etoposide), which demonstrated
no significant improvement in response rates (RRs) (56). Since
traditional cytotoxic systemic chemotherapy has had minimal
efficacy in patients with metastatic differentiated thyroid disease,
TABLE 1 | Most frequent molecular alterations in various thyroid cancers.

Tumor Major genetic alterations Frequency Reference

PTC VEGF over expression
RET/PTC rearrangements
- RET/PTC1

- RET/PTC3

- RET/PTC2
BRAF fusion
RAS mutations
NTRK fusion

79%
variable depending on geographic region
60–70% of all rearrangements
20-30% of all positive cases
<10%
40-50%
10%
20% (in pediatric population)

(23)
(17)

(37)
(30)

FTC VEGF over expression
RAS mutations
PAX8/PPARg

50%
40-50%
35%

(23) (33),
(37)
(40)

MTC RET point mutations
RET M918T
RAS (HRAS, KRAS or NRAS)

Approximately 100% of hereditary form
50% of sporadic cases
85% of RET-mutated sporadic cases
18-80% of RET-negative sporadic form

(4)

ATC BRAFV600E

RAS mutations
PIK3CA
PTEN
Genes in PI3K/AKT/mTOR pathway
TP53
NTRK fusion

45%
24%
18%
10-15%
39%
50-80%
rare

(35)

PDTC VEGF over expression
BRAF mutations
BRAFV600E

RAS mutations
Genes in PI3K/AKT/mTOR pathway
TP53

37%
81%
33%
28%
11%
8-35%

(23)
(35)
July 2022 | Volume 13 | Art
AKT, alpha serine/threonine-protein kinase; ALK, anaplastic lymphoma kinase; ATC, anaplastic thyroid cancer; BRAF, rapidly accelerated fibrosarcoma kinase; DTC, differentiated thyroid
cancer; FTC, follicular thyroid cancer; MTC, medullar thyroid cancer; NTRK, neurotrophic tyrosine receptor kinase; PAX8/PPARg, paired box gene 8 / peroxisome proliferator-activated
receptor g; PDTC, poorly differentiated thyroid cancer; PTC, papillary thyroid cancer; PTEN, phosphatase and tensin homologous; RAS, rat sarcoma; RET, rearranged during transfection
receptor; TP53, tumor protein P53; VEGF, vascular endothelial growth factor.
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ATA guidelines suggest starting treatment with a kinase inhibitor
in RAI-R DTC patients with metastatic, rapidly progressive,
symptomatic, and/or imminently threatening diseases not
sensible to local control using other approaches (9, 57).
Currently approved kinase inhibitors for the treatment of
progressive DTC that is refractory to RAI treatment included
sorafenib, lenvatinib, and, most recently, cabozantinib (FDA
approved only). However, several other commercially available
TKIs (e.g., axitinib, pazopanib, motesanib, sunitinib,
vemurafenib, and selumetinib) approved for other diseases are
currently undergoing clinical trials and are being tested for their
use in RAI-R DTC (42).

Optimal management of patients with metastatic DTC
requires careful consideration of multiple tumor-associated and
patient-related factors within the context of an experienced
multidisciplinary team. Optimal decision-making with regard
to when to initiate TKI therapy in the metastatic disease setting
requires the clinicians and the patients to thoughtfully integrate
an understanding of the patients’ symptom burden, tumor
progression, and potential tolerance of treatment-related side
effects (58).

Moreover, it could be useful, as suggested by Tuttle et al.
(2017), to use the doubling time curves to define the critical point
in time when the volume and rate of progression of metastatic
structural disease deserve consideration for starting a systemic
therapy (58).

Patients with disease progression while on initial kinase
therapy should be considered for second-line kinase inhibitor
therapy. Disease progression was evaluated following Response
Evaluation Criteria in Solid Tumors (RECIST) criteria (59).
Frontiers in Endocrinology | www.frontiersin.org 6
In addition, as recently shown, re-challenge with lenvatinib
could be an option in subjects with metastatic DTC in
progression after initial response to the same TKI (60).

4.1.1 Phase II–III Trials in Differentiated
Thyroid Cancer
Sorafenib is an oral MTKI targeting VEGFR1–3, PDGFR, RET,
c-KIT, and BRAF, currently approved for use in metastatic RAI-
R DTC.

Several phase II trials have investigated the efficacy and
tolerability of sorafenib in DTC [Table 3]. Median PFS ranged
from 58 to 84 weeks, partial responses (PR) ranged from 15% to
25% of DTC patients, and stable disease (SD) ranged from 34%
to 68% (61–64).

Sorafenib was approved by the International Regulatory
Agencies after a large, phase III study (43). The DECISION
trial was an international, multicenter, randomized double-blind,
placebo-controlled, phase III study that evaluated the efficacy
and safety of sorafenib in patients with progressive RAI-R DTC.
A total of 417 patients were randomized to receive sorafenib 400
mg twice daily (n = 207) versus placebo (n = 210). Tumor
stratification was 57% PTC, 25% FTC, and 10% PDTC. The
primary endpoint was PFS; the median PFS was 10.8 months in
the sorafenib group versus 5.8 months in the control arm,
showing a significant improvement in the sorafenib group (p <
0.001). OS was not significant across groups, because results in
OS in the sorafenib group were affected by the patients in the
placebo arm who crossed over to treatment (71%). Its objective
RR (ORR) was 12% as compared to the placebo group at 0.5%;
the SD rate for more than 6 months was 42% in those who
TABLE 3 | Phase II trial tested sorafenib in DTC.

Phase II trials of Sorafenib in DTC

Reference Patients (n) Partial Response Disease stabilization mPFS (weeks) Reference

Gupta-Abramson et al., 2008 30 23℅ 53% 79 (61)
Kloss et al., 2009 41 15℅ 56℅ 60 (62)
Hoftijzer et al., 2009 31 25℅ 34℅ 58 (63)
Ahmed et al., 2011 19 25℅ 68% 84 (64)
J
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TABLE 2 | Tyrosine kinase inhibitors tested in thyroid cancers: the table summarize molecular targets of each compound and its label for the use in TCs in clinical practice.

Drug Targets FDA approval EMA approval Clinical indication in TCs treatment

Vandetanib RET, c-KIT, EGFR, VEGFR 04/2011 02/2012 MTC
Cabozantinib RET, MET, c-KIT, VEGFR 12/2012 03/2014 MTC

09/2021 03/2022 RAI-R DTC, progressed after VEGFR therapy
Sorafenib RET, c-KIT, VEGFR 1-3, PDGFR, BRAF 11/2013 04/2014 RAI-R DTC
Lenvatinib RET, c-KIT, VEGFR 1-3, PDGFR, FGFR 02/2015 05/2015 RAI-R DTC
Dabrafenib / Trametinib BRAF/MEK 05/2018 Not approved for the use in TC ATC BRAFv600E mutated
Selpercatinib RET 05/2020 12/2020 RET-mutant MTC, RAI-R TC with RET fusion
Pralsetinib RET 12/2020 03/2022 RET-mutant MTC, RAI-R TC with RET fusion
Larotrectinib NTRK 11/2018 07/2019 Advanced solid tumors with NTRK gene fusion
Entrectinib NTRK, ALK, ROS 08/2019 05/2020 Advanced solid tumors with NTRK gene fusion
*Cabozantinib, Lenvatinib and Vandetanib show activity to RET gene fusion yet, not reported in Table 2.
ATC, anaplastic thyroid cancer; EGFR, epidermal growth factor receptor; BRAF, rapidly accelerated fibrosarcoma kinase; BRAFV600E, valine to glutamic acid substitution of BRAF gene; c-
KIT, stem cell factor receptor; DTC, differentiated thyroid cancer; FGFR, fibroblast growth factor receptor; MEK, mitogen-activated protein kinase; MET, hepatocyte growth factor [HGF]
receptor; MTC, medullary thyroid cancer; NTRK, neurotrophic tyrosine receptor kinase; PDGFR, platelet-derived growth factor receptor; RAI-R, resistant to 131I treatment; RET, rearranged
during transfection receptor; ROS, c-ros oncogene 1; VEGFR, vascular endothelial growth factor.
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received sorafenib as compared to 33% in the placebo group.
Although the independent central review confirmed 12% ORR
by RECIST criteria, most patients experienced a reduction in
target tumor lesions.

Lenvatinib is an oral inhibitor of VEGFR1–3, PDGFR,
FGFR1–4, RET, and c-KIT that has been approved by the FDA
and EMA for the treatment of RAI-R DTC.

Initially, the effectiveness of lenvatinib in RAI-R DTC patients
was assessed in an open-label, non-comparative, phase II study. In
this trial, patients with RAI-R DTC (n = 58) were treated with
lenvatinib 24 mg once daily, in a 28-day cycle. Confirmed PRs
were observed in 29 patients [RR 50%] (65). Based on these data
was planned the SELECT trial, a multicenter, randomized, double-
blind, placebo-controlled study testing lenvatinib in RAI-R DTC
patients. In the SELECT trial, 392 patients were randomized to
receive lenvatinib 24 mg daily in 28-day cycles (n = 261) or
placebo (n = 131). At the time of disease progression, patients in
the placebo group were receiving open-label lenvatinib. The
primary endpoint was PFS. The median PFS was 18.3 months in
the lenvatinib group versus 3.6 months in the placebo group. RR
was 64.8% versus 1.5% in the placebo group. Median OS was not
significant across groups. Four patients in those who received
lenvatinib had a complete response (2.4%). The beneficial effect of
lenvatinib on PFS was also highlighted in all subgroups of patients.
The safety and tolerability of lenvatinib were similar to those of
VEGF-VEGFR targeted therapies and mostly manageable. Based
on these results, lenvatinib was approved by International
Regulatory Agencies for the treatment of RAI-R advanced
DTC (45).

It is relevant to point out the differences between the phase III
trials (DECISION and SELECT). The first one is the inclusion
criteria: previous therapy was not allowed in the DECISION trial,
while previous treatment with VEGFR inhibitor was admitted in
the SELECT study. Also in the SELECT trial, the progression of
disease prior to the inclusion in the trial was established
centrally, whereas in the sorafenib trial, it was assessed by
investigators. Differences in PFS between the lenvatinib–
placebo groups in the SELECT trial were almost three times
Frontiers in Endocrinology | www.frontiersin.org 7
larger than those in the sorafenib–placebo groups in the
DECISION trial. Additionally, the ORR of lenvatinib in the
SELECT trial (64.8% in the lenvatinib group versus 1.5% in
the placebo group) was more than five times larger than the ORR
of sorafenib in the DECISION trial (12.2% in the sorafenib group
versus 0.5% in the placebo group). Sorafenib and lenvatinib
showed similar toxicity profiles; discontinuation for adverse
events (AEs) seems to be equivalent in both trials, but there
were six related deaths in the SELECT study compared to only
one in the DECISION study (Table 4).

4.2 Medullary Thyroid Cancer
Since the development of MTC is often driven by a single
mutation in an oncogenic kinase driver (66), its treatment is
different than that of RAI-R DTC.

According to ATA guidelines, treatment with TKIs targeting
both RET and VEGFR TK should be considered the treatment of
choice in patients with significant tumor burden and advanced
MTC. The FDA and EMA have approved vandetanib (2011) and
cabozantinib (2012) for the treatment of advanced progressive
MTC. Vandetanib was also approved for the treatment of
aggressive and symptomatic MTC in children and adolescents
aged 5 years and older (67).

4.2.1 Phase III Trials in Medullary Thyroid Cancer
Vandetanib is the “first-in-class” drug approved by the FDA (2011)
and EMA (2012) for the treatment of advanced or metastatic MTC
(33). Vandetanib is an oral TKI taken once daily and targets several
cell receptors, including RET, VEGFR2–3, and EGFR.

A phase III trial (ZETA trial) enrolled 331 patients with
advanced (5% of all patients) or metastatic (95%) MTC (47).
Patients were randomized to receive vandetanib 300 mg once
daily (n = 230) versus placebo (n = 100). All MTC patients could
choose to receive vandetanib in an open-label phase. In this
study, 56% of patients showed a RET mutation, 2% were RET
wild type, and 41% were unknown. The primary endpoint was
PFS. Improvement in PFS was significantly longer in patients
treated with vandetanib than in those treated with placebo (30.5
TABLE 4 | Patients main characteristics and results of SELECT and DECISION trials.

DECISION SELECT

Patient (n) 416 392
Arms Sorafenib vs placebo Lenvatinib vs placebo
Median age 63 years 64 years
Histological subtype of DTC [n (%)]
• Papillary
• Follicular
• Poorly differentiated

118 (57%)
50 (24.2%)
24 (11.6%)

132 (50%)
101(38.7%)
28 (10.7%)

mPFS (months) 10.8 vs 5.8 18.3 vs 3.6
ORR 12.2% vs. 0.5%, p < 0.0001 64.8% vs. 1.5%, p < 0.001
OR HR 0.80 (95% CI 0.54–1.19)

p = 0.14
HR 0.73 (95% CI 0.50–1.07)

p = 0.10
Incidence AE (%)
(all grade)

98.6% 97.3%

Death-related treatment (n) 1 6
Reference 43 45
July 2022 |
AE, adverse event; DTC, differentiated thyroid cancer; HR, hazard ratio; mPFS, median progression-free survival; ORR, objective response rate; OS, overall survival.
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vs. 19.3 months, p < 0.001). OS was not significant across the two
arms. There was a good response in patients with M918T-
negative tumors and RET unknown status. Therefore, the
results of the ZETA trial showed that tests evaluating RET
mutational status are required. Patients with no mutation of
RET could not have a benefit from treatment.

These favorable data were conducted for the approval of
vandetanib by the FDA for the treatment of advanced MTC (47).

Kreissl et al. (2020) conducted a post-hoc analysis of the ZETA
trial to assess the efficacy and safety of vandetanib in patients
with progressive and symptomatic MTC (48). This subgroup was
considered an appropriate representation for the EU label
cohort, “aggressive and symptomatic MTC in patients with
unresectable locally advanced or metastatic disease” (48).
Vandetanib showed statistically significant prolonged median
PFS in both the progression and symptoms subgroup and the
symptoms-only subgroup, as compared with placebo.

Cabozantinib is a potent inhibitor of several TK-Rs, including
VEGFR2, MET, and RET. In a preclinical study, cabozantinib
exhibited significant antiangiogenic and antitumor activity in a
broad range of tumor models, including a model of MTC with an
activating RETmutation (68). A phase I dose-escalation study of
oral cabozantinib was conducted in patients with advanced solid
tumors, with an MTC cohort (37/85 patients) (69). PR was
observed in 29% of MTC patients, and 15 of 37 patients with
MTC (41%) had SD for at least 6 months. Additionally, the AEs
were manageable. According to these results, the safety and
efficacy of the drug were evaluated in an international,
multicenter, randomized, controlled, phase III trial (EXAM),
which enrolled 330 patients with progressive, metastatic MTC
(49). Patients were randomized 2:1 to receive cabozantinib 140
mg once daily or a placebo until disease progression or
intolerable toxicity. No crossover was allowed at the time of
progression. The median age of the patients was 55 years. The
main sites of metastatic disease were lymph nodes (79.9%), liver
(69.4%), lung (53%), and bone (51.1%), with more than 85% of
patients having the involvement of two or more sites.

Approximately 50% of patients were found to be RET
mutation-positive, with M918T being the predominant RET
mutation (49).

The primary endpoint was PFS. Secondary endpoints were
the evaluation of tumor RR and OS. The main efficacy outcomes
measured were PFS, ORR, and response duration. Patients in the
cabozantinib group showed a significant improvement in PFS
compared with the placebo group (11.2 vs. 4.0 months; p <
0.0001). PRs were observed only among patients in the active
treatment arm (27% vs. 0%; p < 0.0001); 47.3% of patients in the
cabozantinib group were alive and free of disease progression at 1
year as compared with 7.2% of patients in the placebo group. The
median duration of response was 14.7 months.

Subsequently, the authors investigated the association
between RET/RAS mutational status and PFS/tumor RR in the
MTC patients of the EXAM trial. Across the group of patients
treated with cabozantinib, those with a RETmutation had longer
median PFS (60 weeks) than those with wild-type tumors (p =
0.0001). In addition, the patients in which tumors possess
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a RET M918T mutation showed a longer median PFS on
treatment than those with any other RET mutation (p =
0.009). Patients with hereditary MTC had similar PFS to those
with sporadic disease. The RAS-mutated patients showed a
similar RR (31%) and PFS (47 weeks) as the RET-mutated
group (with RR and PFS of 32% and 60 weeks, respectively) (49).

4.3 Cabozantinib Approval in Progressed
Advanced Thyroid Cancer Resistant to 131I
Treatment Differentiated Thyroid Cancer
In September 2021, the FDA approved cabozantinib for the
treatment of RAI-R DTC that has progressed after previous
treatment with a VEGFR inhibitor. This approval is based on the
results of the phase III, randomized, double-blind, placebo-
controlled clinical trial COSMIC-311, ClinicalTrial.gov ID:
NCT03690388 (51). Enrolled patients (n = 187) were
randomized 2:1 to receive cabozantinib 60 mg once daily or a
placebo. The primary endpoints of the study included PFS and
ORR. Cabozantinib showed significant improvement in PFS of
11 versus 1.9 months as compared to the placebo group (hazard
ratio (HR), 0.22; 95% CI, 0.15–0.31). Cabozantinib could
represent an important treatment option in patients affected by
RAI-R DTC who have progressed following prior therapy.

4.4 Selective RET Kinase Inhibitors:
Selpercatinib and Pralsetinib in RET-
Mutant Thyroid Cancer
Selpercatinib and pralsetinib are highly selective RET kinase
inhibitors. Approval of both agents provided new treatment
options for the patient population with RET-altered TC.
Selpercatinib was approved by the FDA and EMA in 2020 for
the treatment of RET-mutated MTC and RAI-R RET-fusion TC.
The efficacy of selpercatinib in RET-mutated TC was
investigated in a phase I–II study (LIBRETTO-001,
ClinicalTrials.gov ID: NCT03157128), showing durable efficacy
with mainly low-grade toxic effects in patients with MTC who
previously received cabozantinib or vandetanib (n = 55), or were
treatment naive (n = 88), and in patients harboring RET fusion-
positive TC (n = 19) (53). Results of the trial documented high
efficacy of selpercatinib associated with minimal side effects and
excellent tolerability.

In December 2020, the FDA approved pralsetinib for
advanced or metastatic RET-mutant MTC or RET-positive
RAI-R TC. In March 2022, EMA approved pralsetinib for the
same indications. The efficacy of pralsetinib in patients with
RET-altered TC was investigated in a multi-cohort, open-label,
phase I/II trial (ARROW, ClinicalTrials.gov ID: NCT03037385)
(54). The clinical trial enrolled both patients with RET-mutant
MTC (n = 122) who were treatment naive or had previously
received cabozantinib or vandetanib, or both, as well as patients
with RET-fusion positive TC (n = 20) (RR of 71%, 60%, and 89%,
respectively) (54). Pralsetinib had a manageable safety profile in
patients with RET-altered TC and provided meaningful clinical
activity in patients irrespective of previous treatment
history (54).
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Although vandetanib and cabozantinib were previously
approved for the treatment of metastatic MTC, some patients
are not eligible for these therapies on the basis of an unacceptable
risk of bleeding or concerns about wound healing (70). Indeed,
treatment with both agents required dose reduction in 35% of the
patients receiving vandetanib and 79% of those receiving
cabozantinib and permanent discontinuation of therapy in
12% and 16% of the patients, respectively observed in the
ZETA trial and EXAM trial (47, 49, 53). Until the introduction
of selpercatinib and pralsetinib in clinical practice, there were no
standard therapies in patients who progressed on cabozantinib
or vandetanib (54). Both selpercatinib and pralsetinib showed
high activity in patients who previously received cabozantinib or
vandetanib, or both (ORRs of 60% and 69%, respectively),
including in patients with the gatekeeper V804L/M mutation,
which confers resistance to both therapies (53, 54). In the
LIBRETTO-001 and ARROW clinical trials, in the arms of
patients with treatment-naive RET-mutant MTC who received
selpercatinib or pralsetinib, ORRs were 73% (95% CI, 62–82) and
71% (95% CI, 48–89), respectively, suggesting that these RET-
targeted inhibitors might have a therapeutic advantage over
available first-line MTKIs in the RET-altered population (53,
54). The utility of RET inhibitors in the population of patent with
RET fusion-positive TC who previously received RAI was also
demonstrated: pralsetinib showed favorable activity in these
patients’ ORRs (89%), compared with rates reported in
patients with radioiodine-refractory TC treated with sorafenib
(12%) and lenvatinib (65%1) (54).

4.5 Anaplastic Thyroid Cancer
Since ATC is a rare and aggressive tumor, it is still challenging to
predict the patient clinical therapy responsiveness. Until a few
years ago, there were no efficient treatments leading to an
improvement in survival in those patients. Several genetic
mutations have been described in ATC, involved in different
molecular pathways linked to tumor progression (shown in
Table 1). Few clinical trials investigated the use of TKIs in the
treatment of ATC (71–74), to improve the quality of life in these
patients. Collectively, the results of these studies including target
therapy in the treatment of ATC have been overall disappointing.
Among these studies, a phase II/III trial (FACT, ClinicalTria.gov
ID: NCT00507429) evaluated combretastatin A (CA4P) in
combination with carboplatin and paclitaxel in patients with
ATC (n = 80) and suggested a survival benefit with the
combination therapy. Indeed, the median survival time was 5.2
months in the CA4P arm versus 4.0 months in the control group,
showing a reduction in the risk of death of 35%. The 1-year
survival was 27% in the CA4P group versus 9% in the
control group.

Treatment of ATC has had major advances in the last several
years (75). Ferrari et al. (2019) conducted a systematic review of
studies involving the treatment of anaplastic thyroid from 1995
to 2017 (76). They highlighted that great attention has been given
to the epigenetic alterations underlying thyroid carcinogenesis,
including those that drive PDTC and ATC (76, 77). Among
these, BRAFV600E is a common somatic mutation occurring in
ATC, which can be effectively treated with BRAF/MEK
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inhibitors (78). Recently, the FDA approved dabrafenib and
trametinib in BRAFV600E mutant ATC, based on a phase II
trial in which the treatment using these two TKIs showed a
remarkable RR of 69% in patients with ATC (n = 16), with one
patient achieving complete response (52). NTRK fusion also can
occur in ATC; rare ATC harboring NTRK fusion can be treated
with recent approved agnostic therapies (75).

4.6 NTRK Inhibitors in Thyroid Cancer
The guidelines of the American Society of Clinical Oncology
and European Society for Medical Oncology recommended
the use of larotrectinib and entrectinib as treatment of choice
for solid tumors with NTRK gene fusions, including TC (79),
but not NTRK-mutated, solid tumors (75). Regulatory
approval of both agents was based on data from single-arm
phase I/II studies, including tumor-agnostic basket trials that
enrolled patients based on the presence of NTRK gene
fusions (55).

Larotrectinib is an inhibitor of TRK 1–3 and was tested in
adult, adolescent, and pediatric patients with solid tumors
harboring NTRK gene fusion (a phase I study, ClinicalTria.gov
ID: NCT02122913; SCOUT phase 1/2 study, ClinicalTria.gov ID:
NCT02637687; NAVIGATE basket study, ClinicalTria.gov ID:
NCT02576431) (79). The efficacy of larotrectinib in TC was
provided in a recent pooled data analysis derived from three
phase I/II clinical trials (ClinicalTria.gov ID: NCT02576431,
NCT02122913, NCT02637687) that enrolled 29 patients with
TRK fusion-positive TC (80). Patient stratification and the main
clinical outcome of this study are shown in Table 5.

Entrectinib inhibits TRK 1–3, as well as the ALK and ROS1
TKs; its approval was based on a pooled analysis of 3 single-arm
phase 1/2 trials that enrolled a total of 54 adult patients with solid
tumors harboring NTRK gene fusion (ALKA-372-001, EudraCT:
2012-000148-88, STARTRK-1, Cl inicalTria .gov ID:
NCT02097810, and STARTRK-2, ClinicalTria.gov ID:
NCT02568267) (26). The results of this study highlighted that
entrectinib is a safe and active treatment option for patients with
NTRK fusion-positive solid tumors.

The efficacy and safety of entrectinib and larotrectinib
highlighted the need to routinely test for NTRK fusions (26).

These tumor agnostic therapies may be relevant also in ATC
with RET fusions (75).

4.7 No-Label Investigated Use of Tyrosine
Kinase Inhibitors in Thyroid Cancer
Sorafenib and lenvatinib have been investigated for use in MTC
(81, 82), and a clinical trial was conducted to investigate the use
of vandetanib and cabozantinib in RAI-R DTC (51, 83, 84),
which led to recent cabozantinib approval as second-line therapy
of RAI-R DTC. These studies are summarized in Table 6.

Several other TKIs approved for the treatment of other
tumors by national and international regulatory agencies have
been extensively investigated in clinical trials for the treatment of
all types of TC (e.g., axitinib, pazopanib, motesanib, sunitinib,
vemurafenib, and selumetinib). These trials, previously reviewed
by other authors in the last years (41, 85, 86), are summarized
in Table 7.
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5 ADVERSE EVENTS ASSOCIATED WITH
TYROSINE KINASE INHIBITORS AND
THEIR MANAGEMENT

Currently, treatment of TC is based on the use of TKIs.
Nevertheless, target therapy shows some limitations due to the
development of AEs or the development of tumor resistance
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mechanisms. Adequate management of side effects is important
to minimize toxicities: thus, patients can continue therapy and
obtain a response in terms of survival prolongation (57, 105).
Although the use of TKIs has largely avoided the common
toxicities associated with the use of chemotherapeutic agents
(e.g., alopecia, nausea, and vomiting), these drugs present
particular side effects depending on their on-target and off-
target effects. Side effects can be “on-target,” related to exalted
effect at the target, or “off-target,” when they result from the
modulation of other targets that could be biologically or totally
unrelated to the target (14, 106). The most common side effects
related to treatment with TKIs include hepatic impairment,
gastrointestinal events, hypertension, proteinuria, and fatigue.
AEs frequently occur in about 2–3 weeks after the start of drug
treatment and influence the adherence of patients to the
treatment. AEs rarely are severe and life-threatening.
Moreover, TKIs consist of pills taken daily at patients’ homes
for a long time, until progression or unacceptable toxicity. New
challenges in the treatment approach using TKIs are a balance
between inhibition of oncogenic driver kinase activity and drug
side effect management in order to achieve an optimization of
patients’ quality of life. In this context, in order to manage early
toxicities related to drugs, both patients and physicians should be
educated to recognize them.

The latest TKIs approved (selpercatinib and pralsetinib)
showed a better toxicity profile as compared to other MTKIs.
In the ARROW study, pralsetinib was well tolerated with a
predictable safety profile, and the rates of dose reductions and
treatment discontinuations because of treatment-related AEs
were low when compared with available MTKIs (54).

The major AEs associated with TKIs used in TC will be
discussed, as follows (Table 8) (107).
TABLE 6 | Not-approved use of sorafenib, lenvatinib, vandetanib and cabozantinib.

Drug Study design /
ClinicalTrial.gov ID

Enrolled patients Treatment arm(s) Results Reference

Sorafenib Phase II,
open label

Hereditary or
sporadic MTC: 16

sorafenib 400 mg orally twice daily PR: 6.3%
SD: 87.6%
mPFS: 17.9 months

(81)

Lenvatinib Phase II,
multicenter,
open-label,
single-arm
[NCT00784303]

MTC: 59 lenvatinib 24 mg orally once daily ORR: 36%
DCR: 80%
SD: 44%
mPFS: 9 months

(82)

Vandetanib Phase II,
randomized, Double-Blind,
Placebo-Controlled
[NCT00537095]

DTC (advanced or
RAI-R): 145

vandetanib 300 mg per day (n=72) vs placebo
(n=73)

mPFS: 11.1 (vandetanib) vs 5.9
(placebo) months

(83)

Phase III, randomized,
Double-Blind, Placebo-
Controlled, Multi-Centre
[NCT01876784]

DTC (advanced or
RAI-R): 238

vandetanib 300 mg once daily vs placebo (119
patients for each group)

N/A
Estimated end date 12/2022

Cabozantinib Phase II,
single arm,
open label
[NCT02041260]

RAI-R DTC: 35 cabozantinib 60 mg orally once a day PR: 54%
SD: 43%
durable SD (≥6 months): 26%
mPFS not reached

(84)
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DCR, disease control rate; DTC, differentiated thyroid cancer; MTC, medullary thyroid cancer; N/A, not reported; ORR, objective response rate; PFS, progression-free survival; PR, partial
response; RAI-R, resistant to 131I treatment; SD, stable disease.
TABLE 5 | Patients main characteristics and results of pooled data from three
phase I/II larotrectinib clinical trials (NCT02576431, NCT02122913, NCT02637687).

Reference 79

Patient (n) 29
Median age 60 years

(2 children)
Histological subtype [n (%)]
• PTC
• FTC
• ATC

20 (69%)
2 (7%)
7 (24%)

mPFS
10.8 vs 5.8

ORR
• PTC/FTC
• ATC

71% (95% CI 51-87)
29% (95% CI 4-71)

TTR 1.87 months
mPFS 69%
OS 76%
AEs Grade 1-2
DCR (24 weeks)
• PTC/FTC
• ATC

91% (95% CI 71-99)
29% (95% CI 4-71)
AE, adverse event; ATC, anaplastic thyroid cancer; CR, complete response; DCR, disease
control rate; FTC, follicular thyroid cancer; mPFS, median progression-free survival; ORR:
objective response rate; OS, overall survival; PD, progressive disease; PTC, papillary
thyroid cancer; TTP, time to treatment failure.
icle 860671

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Puliafito et al. Target Therapy Management in TCs
5.1 Hepatic Impairment
TKIs can cause liver injury. Currently, the mechanism
underlying hepatotoxicity is partially unknown but probably is
not related to kinase inhibition in hepatocytes (108). TKI-
associated hepatotoxicity may not only be due to the parent
drug but also due to metabolites produced from the metabolism
of cytochrome P450 3A2 (109, 110).

The onset of TKI-induced hepatotoxicity usually appears
within the first 2 months of starting treatment but could be
delayed and is usually reversible. Fatality from TKI-induced
hepatotoxic i ty i s uncommon but requires di l igent
surveillance (108).

The first clues of hepatotoxicity occurrence are vague
symptoms such as fatigue, anorexia, nausea, discomfort in
the right upper quadrant, and dark urine (111). Biochemical
markers of liver injury include elevation of alanine
aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (ALP), and bilirubin, as well
as an alteration in protein synthesis, which is reflected
in albumin concentration and time of prothrombin
(PT) (108).

Ghatalia et al. (2014) conducted a meta-analysis of
randomized controlled trials to determine the RR of
hepatotoxicity with VEGFR TKIs (112). High-grade ALT
elevation occurred in 168 of 9,930 (1.7%) patients and AST
elevation in 159 of 9,986 (1.6%) patients receiving VEGFR TKI.
The incidence of high-grade liver failure/dysfunction was
0.7% (112).

In the phase I/II LIBRETTO-001 trial, approximately one-
half of treated patients had elevations in transaminases during
treatment with selpercatinib; they were G3 or G4 in
approximately 10%. The median time to onset was
approximately 4 weeks. Elevations in total bilirubin occurred
in approximately one-fourth of treated patients; they were G3 or
G4 in 2% (113).

In the phase I/II ARROW study (n = 438), pralsetinib-treated
patients were reported to have increased AST and ALT levels in
34% and 23% of the cases, respectively (114).

Although the incidence of life-threatening liver failure
reported with VEGFR TKIs is quite small, careful monitoring
of hepatic function and exclusion of patients with moderate
hepatic impairment may be essential in patients receiving
VEGFR TKIs. Patients treated with any of these agents should
have a baseline evaluation of liver function tests and periodic re-
evaluation during therapy.

5.2 Gastrointestinal Toxicities
Gastrointestinal toxicities of TKIs include diarrhea, nausea,
vomiting, and, in some cases, pancreatic atrophy.

In clinical trials, nausea of any grade has been reported in 23%
to 58% of treated patients, and rates are the highest in patients
treated with lenvatinib, cabozantinib, and selpercatinib (45, 49,
113). Vomiting of any grade has been reported in a range of 10%
to 48% of treated patients; rates are the lowest with pazopanib
and sorafenib and the highest with lenvatinib and cabozantinib
(49, 106, 113).
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Diarrhea is a common side effect related to TKIs. In clinical
trials, diarrhea of any grade has been reported in a range of 30%
to 79% of patients treated with TKI (highest rates with
vandetanib). Severe forms of diarrhea (G3 or G4) occurred in
3% to 17% (115). Vandetanib acts as a moderately potent EGFR
and VEGFR inhibitor; its mechanism of action explains the
somewhat higher incidence of diarrhea associated with this
agent (83).

In the case of G1–G2, diarrhea may improve with loperamide;
if it persists, a coproculture test and antibiotic therapy are useful,
followed by hydration and octreotide administration.

If antidiarrheal therapies are not sufficient, a dose reduction
or discontinuation of TKI therapy could be necessary. In the case
of severe toxicity, it could be necessary to restart TKI therapy at a
reduced dose. It is suggested to take the medication with a large
meal and plenty of water to reduce side effects (107).

Long-term therapy with sorafenib is associated with
pancreatic atrophy. The possibility of pancreatic exocrine
insufficiency should be considered in patients treated with
sorafenib who develop refractory diarrhea.

5.3 Cardiovascular Effects
TKIs are associated with cardiovascular toxicity, due to the
involvement of TK-R in normal cellular homeostasis. Common
cardiovascular events are hypertension, reduced ejection
fraction, myocardial infarction, and QT prolongation. Clinical
drug-by-drug cardiotoxicity incidence of TKIs has been
extensively reviewed by Jin et al. (2020) (116).

5.3.1 Hypertension
Hypertension is a frequent AE related to the use of angiogenesis
inhibitors, depending on the blocking of VEGF action in
normal physiology.

VEGF inhibition is associated with decreased production of
nitric oxide (NO) in the wall of vessels. Vasoconstriction is
caused by lower production of NO: this lower production causes
an increase in peripheral resistance and blood pressure (117). It
has been suggested that the mechanism of hypertension is based
also on elevated fluid retention and disruption of the
endothelium (118).

In the phase III study SELECT, hypertension occurred in 73%
of lenvatinib-treated patients compared with 15% of placebo-
treated patients (119).

Hypertension can occur any time after the start of therapy.
Antihypertensive drug treatment could be helpful for its
management during treatment with TKIs. The main classes of
drugs include ACE inhibitors, calcium channel blockers (CCBs),
angiotensin II receptor blockers (ARBs), beta-blockers, and
diuretics. ACE inhibitors represent the first step of treatment.
In case of inadequate control of blood pressure, a dose increase is
requested and the addition of other drugs such as diuretics, beta-
blockers, or CCBs. Cardiovascular conditions and renal
dysfunction may influence the choice of treatment.

Blood pressure <140/90 is considered adequate. Once
treatment with a TKI is started, blood pressure needs to be
measured within 1 week. Daily monitoring of blood pressure is
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TABLE 7 | Phase II-III trials investigated target therapy in all type of TCs.

Drug Targets Study design /
ClinicalTrial.gov ID

Enrolled patients and
timing

Treatment arm(s) Results Reference

Selumetinib MEK Pilot study, single
arm
[NCT00970359]

Metastatic TC: 20
(enrolled from 08/2010 to
12/2011)

75 mg selumetinib twice daily. Within 1 month,
patients with adequate RAI uptake may receive 131I
per standard of care and continue selumetinib until 2
days following 131I.

12/20 increased
the uptake of
iodine-124
PR: 5/20
SD: 3/20

(87)

Phase II, single arm,
open label
[NCT00559949]

RAI-R PTC: 39 (enrolled
from 12/2007 to 06/2009)

100 mg selumetinib twice daily PR: 3%
SD: 54%
PD: 28%
mPFS: 32 weeks

(88)

Phase III,
randomized, double
blind
(ASTRA)
[NCT01843062]

DTC at high risk of
primary treatment failure:
233 (enrolled from 08/
2013 to 03/2016)

Selumetinib 75 mg BD + RAI CR: 40% (89)

Pazopanib VEGFR,
PDGF, c-KIT

Phase II
[NCT00625846]

RAI-R DTC: 39 (enrolled
from 02/2008 to 01/2009)

800 mg pazopanib once daily PRs: 49%
FTC PRs: 73%
PTC PRs: 33%

(90)

Phase II
[NCT00625846]

RAI-R DTC: 60 800 mg pazopanib once daily PRs: 36.7% (91)

Phase II PAZOTHYR
[NCT01813136]

RAI-R TC: 168 (enrolled
from 06/2013 to 01/2018)

800 mg pazopanib once daily
(n=100 were randomized 1:1 to receive continuos
[CP] vs intermittent [IP] pazopanib treatment)

IP TTP:
14.7
CP TTP 11.9
(p=0.35)

(92)

Phase II, multicenter
(enrolled from 09/
2008 to 12/2011)
[NCT00625846]

MTC: 35 (enrolled from
09/2008 to 12/2011)

800 mg pazopanib once daily PR: 14.3%
PFS: 9.4 months
OS: 19.9 months

(93)

Phase II,
multicenter, single
arm
[NCT01236549]

ATC: 16 (enrolled from
02/2008 to 02/2011)

800 mg pazopanib once daily No confirmed
RECIST
responses

(71)

Sunitinib VEGFR,
PDGFR;
RET, c-KIT,
FLT

Phase II single
center,
nonrandomized,
open-label
[NCT00668811]

Advanced DTC: 23
(enrolled from 09/2008 to
02/2015)

37.5 mg sunitinib once daily ORR: 26%
mPFS: 241 days

(94)

Phase II,
single arm,
open label (THYSO)
[NCT00510640]

RAI-R DTC, MTC or ATC:
71
[DTC: 41, ATC: 4, MTC:
26] (enrolled from 08/
2007 to 10/2009

50 mg sunitinib once daily DTC ORR: 22%
MTC ORR: 38.5%
ATC ORR : not
observed

(72)

Phase II,
single center

RAI-R DTC or MTC: 35
[DTC: 28
MTC: 7] (enrolled from
08/2007 to 02/2009)

37.5 mg sunitinib once daily ORR: 31% (95)

Motesanib VEGFR 1-3,
PDGFR, c-
KIT, RET
wild type

Phase II,
open label
[NCT00121628]

RAI-R DTC: 93
MTC: 91 (enrolled from
07/2005 to 03/2006)

125 mg motesanib once daily DTC ORR: 14%
DTC SD: 67%
(maintained for 6
months in 35% of
patients)
MTC ORR: 2%
MTC SD: 81%
MTC durable SD
(≥24 weeks): 48%

(96) (97),

Apatinib VEGFR-2 Phase II
[NCT02731352]

RAI-R DTC: 20 (enrolled
from 03/2016 to 02/2021)

500 or 750 mg apatinib once daily ORR: 80%
DCR: 95%

(98) (99),

Phase III,
exploratory,
randomized, double
arms
[NCT03048877]

RAI-R DTC: 92 (enrolled
from 09/2017 to 08/2020)

500 mg apatinib once daily vs placebo mPFS: 22.2
months

(100)

(Continued)
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requested, and if necessary, antihypertensive treatment should be
rapidly titrated or new drugs added to the regimen (117). Blood
pressure elevation related to TKI is reversible; thus,
discontinuation or dose reduction of TKI can also be used to
control hypertension. Discontinuation is useful when the control
of symptoms is tough; in this case, after stopping treatment, the
patients should be readmitted at the previous treatment with the
same dose; in other cases, the dose will be scaled down until
blood pressure control is obtained (120).

5.3.2 Other Cardiovascular Effects
Decreases in left ventricular function can be seen in patients
treated with any of the VEGF-targeted therapies. A total of
Frontiers in Endocrinology | www.frontiersin.org 13
29,252 patients from 71 randomized controlled trials
were included in a meta-analysis of VEGFR TKIs,
which demonstrated a higher cardiac ischemia relative
risk (RR 1.69, 95% CI, 1.12–2.57), with the highest risks
observed for sorafenib (121). Left ventricular systolic
dysfunction was also increased after VEGFR TKIs (RR
2.53, 95% CI, 1.79–3.57), with the highest risks observed
for sunitinib (121).

History of hypertension and coronary artery disease is
assumed to increase the risk of cardiotoxicity.

Less data on cardiotoxicity are available with sorafenib (122,
123), but the risk seems to be lower than with sunitinib (about
2%–3%).
TABLE 7 | Continued

Drug Targets Study design /
ClinicalTrial.gov ID

Enrolled patients and
timing

Treatment arm(s) Results Reference

Axitinib VEGFR Phase II
[NCT00389441]

RAI-R DTC or MTC : 52
(enrolled from 12/2006 to
09/2008)

5 mg axitinib twice daily ORR: 35% (101)

Phase II,
single arm
[NCT00094055]

RAI-R TC: 60 [DTC: 45
MTC: 11
ATC: 2
Other: 2]

5 mg axitinib twice daily ORR: 30%
PFS: 18.1 months
[MTC PRs: 18%
MTC SD: 27%]

(73) (74),

RAI-R DTC or MTC: 47
(enrolled from 10/2012 to
11/2014)

5 mg axitinib twice daily mORR: 27,7%
(DTC
ORR:29.4%; MTC
ORR: 23.1%)

(102)

Donafenib VEGFR,
PDGFR,
RAF

Phase II
[NCT02870569]

RAI-R DTC: 35 300 mg donafenib twice daily (17) or 200 mg twice
daily (18)

200 mg group
ORR: 12.5% 300
mg group ORR:
13.33%

(103)

Phase III,
randomized
[NCT03602495]

RAI-R DTC: 204 Patients were randomized 2:1 to receive 300 mg
donafenib twice daily vs placebo

N/A

Dovitinib VEGFR,
FGFR

Phase II TC: 40 [DTC: 28; MTC:
12] (enrolled from 01/
2013 to 10/2014)

Dovitinib 500 mg once daily for five consecutive days,
followed by a 2-day rest every week

ORR: 20.5%
PFS: 5.4 months
OS not reached

(104)
July 202
2 | Volume 13 | Art
ATC, anaplastic thyroid cancer; c-KIT, stem cell factor receptor; CR, complete response; DTC, differentiated thyroid cancer; FGFR, fibroblast growth factor receptor; MTC, medullary
thyroid cancer; N/A, not reported; ORR, objective response rate; OS, overall survival; PDGFR, platelet-derived growth factor receptor; PFS, progression-free survival; PD, progressive
disease; PRs, partial responses; RAF, rapidly accelerated fibrosarcoma; RAI-R, resistant to 131I treatment; RECIST, response evaluation criteria in solid tumors; RET, rearranged during
transfection receptor; TTP, time to treatment failure; VEGFR, vascular endothelial growth factor.
TABLE 8 | Major AEs (> grade 3) associated with available TKIs approved for the use in TC.

Vandetanib Cabozantinib Sorafenib Lenvatinib Selpercatinib Vandetanib

Hepatic impairment
ALT
ASP

11%
9%

Diarrhea 11% 15.9% 2% 8% 6%
Hypertension 9% 8.4% 4% 41.8% 21% 17%
ECG QT prolonged 8%
Proteinuria 0.9% 10%
Hand foot syndrome 12.6% 6% 3.4%
Fatigue 13% 9.3% 5% 9.2%
Other AEs Decreased appetite: 4%

Rash: 8%
Asthenia: 3%

Mucosal inflammation: 2.8%
Hypocalcemia: 2.8%

Thromboembolic effects: 3.8% Neutropenia: 13%
Lymphopenia: 17%

Anemia: 10%
Discontinuous therapy n=35/214

16%
n=37

(14.2%)
n=12/531

(2%)
n=5/142
(4%)

Death n=6 n=1
Reference (47) (49) (43) (45) (53) (54)
icle 860671
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In a placebo-controlled trial in patients with advanced TC
treated with lenvatinib, cardiac dysfunction (decreased ejection
fraction, cardiac failure, or pulmonary edema) was reported in
7% versus 2% in the placebo group (121). Similar data were
found in patients treated with pazopanib (124).

A baseline assessment of left ventricular systolic dysfunction
could be useful in all patients receiving these drugs.

These drugs delay cardiac repolarization, an effect that is
reflected on the surface ECG by a prolonged heart rate corrected
QT (QTc) interval. A prolonged QTc interval can be associated
with potentially fatal cardiac arrhythmias. The ventricular
tachyarrhythmia most typically triggered is of a unique form,
known as torsades de pointes, which is usually associated with a
fatal outcome.

Patients with a history of QT prolongation or on treatment
with antiarrhythmic agents need particular attention. The US
Prescribing Information recommends monitoring ECG in
patients with congenital long QT syndrome, heart failure, or
bradycardia or those taking drugs known to prolong the
QT interval.

QTc prolongation is a very important AE in vandetanib and
lenvatinib treatment; torsades de pointes and sudden death
have been reported in vandetanib-treated patients (125). In the
ZETA trial, 14% of patients who received vandetanib showed
QTc > 500 ms. Vandetanib is not indicated in patients with
QTc > 450 ms (USA) or 480 ms (EU) (124, 126). Thus,
cabozantinib may be preferred in patients with preexisting
cardiac conditions or patients who are unable to comply with
the cardiac monitoring parameters required in this warning
(127). Before starting vandetanib, it is helpful to perform ECG
and echocardiogram; during vandetanib treatment, it is
necessary not to use drugs that prolong QTc and maintain
electrolyte levels and serum thyroid-stimulating hormone
(TSH) levels in the normal range (128).

QT interval prolongation and cardiac dysfunction are the two
main cardiac AEs observed in lenvatinib-treated patients: QTc
interval prolongation occurred in 9%, 11%, and 8% of lenvatinib
treated arms in the SELECT trial, Study 205, and REFLECT
trials, respectively (116); QTc interval prolongation of greater
Frontiers in Endocrinology | www.frontiersin.org 14
than 500 ms was observed in 2%, 6%, and 2% of patients,
respectively (129). As suggested by Reed et al. (2020), the
higher-risk patients should undergo echocardiography and
cardiac troponin and natriuretic peptide measurement at
baseline and should be monitored via echocardiograms at each
treatment with lenvatinib (130).

5.4 Proteinuria
Incidences of proteinuria of any grade during TKI treatment
correlate with VEGFR inhibition; thrombotic microangiopathy
and acute interstitial nephritis are common with sorafenib. In the
SELECT trial, 10% of lenvatinib-treated patients experienced
grade 3 proteinuria. While VEGF is present on glomerular
podocytes, VEGFR is present on endothelial cells of the
glomerulus. The alteration of VEGF and VEGFR mechanisms
leads to capillary endotheliosis and proteinuria. Deprivation of
endothelial fenestrations in capillaries, an increase of endothelial
cells, and deprivation of podocytes inside the glomerulus are a
consequence of depletion of VEGF in podocytes. The lack of
interaction between podocytes and endothelium maltreats the
filtration barrier, leading to proteinuria.

Monitoring of proteinuria is based on a dipstick test, which
should be done before initiation of TKI and then every 14 days
during treatment. In case of the absence of proteinuria, a test can
be performed every 28 days. When proteinuria is G2 or higher, it
is useful to evaluate the protein/creatinine ratio (PCR) using a
specimen of urine collected in a universal container early in the
morning. An alternative test to PCR is the albumin/creatinine
ratio (ACR).

G2 proteinuria matches with PCR of 100–300 mg/mmol or
ACR of 70–250 mg/mmol. G3 proteinuria matches with PCR >
300 mg/mmol or ACR > 250 mg/mmol. Treatment of high blood
pressure with drugs such as ACE inhibitors or ARB can be useful
in the management of proteinuria.

5.5 Hand-Foot Syndrome
Hand-foot syndrome occurs commonly during therapy with
sorafenib or sunitinib (Figure 2). These drugs probably impact
the growth of skin cells and capillaries of the hands and feet.
FIGURE 2 | Palma-plantar erythodysesthesia in a patient treated with sorafenib. (A) hand syndrome, (B) plantar syndrome.
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Symptoms include redness, swelling, tenderness, and
tightness of the skin. When the syndrome is severe, peeling
skin, ulcers, and intense pain leading to the limitation in the use
of the hands or walking are common. Generally, hand-foot
syndrome appears in the 1st to 6th week of treatment.

Prevention measures include limiting exposure to hot water,
avoiding contact with chemicals used in cleaning products, and
avoiding activities that cause friction on the hands or feet.

Treatment consists of i) topical anti-inflammatory medications,
such as corticosteroid creams; ii) topical anesthetics, which are
available as creams or patches to apply on palms or soles in the
presence of pain; iii) topical moisturizing and exfoliating creams
containing urea; iv) pain relievers.

In addition, when the syndrome is severe enough to affect
patients’ quality of life, dose reduction or drug discontinuation is
necessary until symptoms of hand-foot syndrome will
improve (131).

Sorafenib is associated with hand-foot syndrome in 30% of
patients. In case of a G1 toxicity, it is suggested to continue
sorafenib and use topical therapy. In case of a G2 toxicity, it is
suggested to use topical therapy; if no improvement within 7
days will be seen, treatment should be interrupted until toxicity
resolves to grade 0–1. If G2 or G3 toxicity recurs, it can be
useful to decrease the sorafenib dose by one dose level; in case
of a 4th occurrence, it will be appropriate to discontinue
therapy (132).

5.6 Fatigue
Fatigue is a common side effect related to TKIs. The etiology is
complex. It can depend on cardiac dysfunction, renal dysfunction,
or gastrointestinal side effects, such as diarrhea or nausea. It is very
frequent in patients treated with motesanib and axitinib (133).
Supportive care is necessary and includes adequate nutrition,
exercise, and stress-reducing techniques (107).

Thyroid function should be monitored in case of asthenia in
patients receiving TKI therapy.

During TKI therapy, thyroid function abnormalities have
been observed in athyrotic patients on thyroxine substitution.

The mechanism of worsening hypothyroidism in
thyroidectomized patients is still unclear. These drugs can
cause an alteration in the transport and metabolism of thyroid
hormones. In particular, sunitinib and sorafenib increase the
Frontiers in Endocrinology | www.frontiersin.org 15
activity of type 3 deiodinase (as evidenced by the decrease in T3/
T4 and T3/rT3 ratios) resulting in hypothyroidism because of
lower tissue availability of the active hormone T3, locally
inactivated in T2 or rT3 (134).

During the treatment with TKIs, it is required to monitor
TSH levels monthly and to adjust thyroid replacement
medication as needed. If patients present severe chronic
asthenia, primary adrenal insufficiency (PAI) should be
excluded. A frequent occurrence of PAI has been reported
after the first month of treatment with lenvatinib or
vandetanib in patients with advanced TC. Importantly,
replacement therapy is associated with substantial relief of
these major AEs (135).

The mechanisms involved in the development of lenvatinib-
induced PAI are unknown. It was hypothesized that the target of
lenvatinib (in particular, VEGFRs and PDGFRa) may be
implicated in adrenal control (136).
6 CONCLUSION

Treatment of TC has changed in the last few years. The analysis
of the molecular basis of TC guided the development of novel
therapeutics. Therapy using TKIs represents an important option
i) for first-line treatment, ii) for the succeeding treatments after
the first, iii) for the treatment of cancer types that became
resistant to other treatments, and iv) for the treatment of rare
cancer isotype with no chance of cure. Several TKIs have been
studied and approved, leading to an improvement in RR and
survival in populations affected by various TC types.

The correct management of potential AEs of these drugs
remains a goal of interest. We have reported some practical
suggestions to better control them.
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