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Inflammatory immune response plays a key role in exercise-induced

injury and healing; however, the relevant regulatory mechanisms of

immune infiltration in exercise-induced injuries remain less studied. In the

present study, a highly efficient system for screening immunity-related

biomarkers and immunomodulatory ability of natural nutritional supplements

was developed by integrating intelligent data acquisition, data mining,

network pharmacology, and computer-assisted target fishing. The findings

demonstrated that resting natural killer cells showed a higher rate of

infiltration after exercise, whereas naive B cells and activated dendritic cells

showed higher rate of infiltration before exercise. Four key genes, namely

PRF1, GZMB, CCL4, and FASLG, were associated with exercise-induced injuries

and inflammatory immune response. In total, 26 natural compounds including

echinacoside, eugenol, tocopherol, and casuariin were predicted by using

the HERB databases. Molecular docking analysis showed that GZMB, FASLG,

and CCL4 bound to echinacoside. In vivo experiments in mice showed that

after 30 min swimming, natural killer (NK) cells showed high infiltration

rates, and the key genes (GZMB, PRF1, FASLG, and CCL4) were highly

expressed; however, echinocandin significantly reduced the level of NK cells

and decreased the expression of the four key genes post exercise. This natural

nutritional supplement may act to protect against inflammatory injury after

exercise by suppressing specific immune infiltration.
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Introduction

Exercise and physical activity are effective in the prevention
and treatment of a wide range of chronic diseases, and
there is considerable evidence for a positive association
between long-term exercise and health benefits (1). Physical
activity lowers diabetic blood sugar levels (2) and blood
pressure (3), reduces the risk of acute cardiovascular disease
(4, 5) malignancies such as breast and colon cancer (6),
prevents memory and cognitive impairment (7), and enhances
immunity to pathogens (8). The Physical Activity Guidelines
for Americans (9) recommend that children and adolescents
should engage in moderate-to-vigorous physical activity for
60 min or more per day, and adults should engage in at
least 150 min of moderate-intensity aerobic activity or at
least 75 min of vigorous aerobic activity per week. However,
injuries are an inevitable part of exercise and participation
in sport; they affect continuation of the sport activity, and
the inflammatory response caused by the injury is detrimental
to health and may affect athletes’ ability and performance.
Thus, the prevention and treatment of sports-related injuries is
particularly important. Inflammation is prevalent in the body
after exercise; under normal circumstances, this short-term
immune response facilitates the removal of necrotic damaged
tissue to achieve renewal and repair (10, 11). Inflammation is
also one of the main causes of pain and discomfort from post-
exercise injuries, and non-steroidal anti-inflammatory drugs
(NSAIDs) are used in certain high-intensity competitive sports
(12). Delayed-onset muscle soreness is a common negative
manifestation of post-exercise discomfort in the body, which
was thought to be the result of a combination of factors
such as connective tissue damage, muscle damage, lactic
acid accumulation, and inflammatory response (13). Chronic
inflammation caused by frequent sports-related injuries may
place a greater burden on the body than the benefits of
exercise. A survey of college athletes showed that 94% had used
NSAIDs and 13.9% had overdosed on NSAIDs (14). However,
NSAIDs have side effects such as gastrointestinal bleeding,
kidney damage, and even inhibition of cartilage proliferation
(15). Nutritional therapy is an important strategy to repair
sports injuries; it is more widely available than conventional
medical care and results in significant cost savings (16). In
addition, dietary supplements that relieve pain and discomfort
after sports injuries and promote injury repair have fewer side
effects than, for example, NSAIDs, and are more effective in
improving physical fitness (17). Natural ingredients, such as
curcumin, quercetin, and resveratrol, are a great treasure trove
and have been found to be effective for sports injuries (18–
20). Our previous studies have found that Rhodiola rosea as a
natural supplement has a positive effect on exercise capacity
and performance, reduces post-exercise pain and skeletal muscle
injury, and enhances antioxidant capacity (21). Therefore, we
aimed to identify more natural nutritional supplements that

are effective in the prevention of and recovery from sports-
related injuries. We hope to find some key genes from which
to predict some potential natural ingredients that exert anti-
inflammatory effects in sports injuries, and use experiments
to validate the anti-inflammatory effects of these candidate
ingredients, and eventually convert these candidates into natural
dietary supplements for use in the anti-inflammatory response
to sports injuries.

Materials and methods

Gene expression profiles before and
after exercise

Gene expression profiles of individuals before and after
exercise was obtained by searching the GEO database; gene IDs
were collected and then converted into gene symbols.

Analysis of immune cell infiltration and
differentially expressed genes

The CIBERSORT deconvolution method (perm = 1000) was
used to analyze immune cell infiltration. The gene expression
profiles were screened for differentially expressed genes (DEGs)
after normalization using the R limma package based on the cut-
off criteria | logFC| ≥ 1 and adjP ≤ 0.05 (22).

Immune-related differentially
expressed genes

In addition to immune cell infiltration analysis, we
also studied the differential expression of immune-related
genes before and after exercise. Immune-related genes were
downloaded from the ImmPort database; subsequently, they
were compared with DEGs to obtain a list of immune-related
differentially expressed genes (ImmDEGs) (23).

Protein–protein interaction, hub
genes, and enrichment analyses

We used the STRING database for protein–protein
interaction (PPI) analysis of DEGs with confidence level ≥ 0.04
and filtered the top five genes, which were considered to be the
hub genes according to Cytoscape’s Cytohubba plugin (Degree
algorithm). DEGs were also subjected to gene ontology (GO)
enrichment analyses using the R package clusterProfiler (cutoff:
P ≤ 0.05 and q ≤ 0.05) (24). Furthermore, to examine the
overall gene enrichment more comprehensively, we performed
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a gene set enrichment analysis (GSEA) of all genes after sorting
by logFC descending order using R soft (pvalueCutoff = 0.05,
pAdjustMethod = “BH”) (25).

Prediction of key genes and nutrients
and molecular docking for validation

Key genes were defined as intersecting genes between
ImmDEGs and hub genes. On the basis of the identified
key genes, we used the HERB database to back-predict the
target nutrients (26). Proteins encoded by key genes were
downloaded from the PDB database and subjected to molecular
docking analysis using AutoDock software to validate nutrients
(Table 1).

Materials and experimental animals
and treatment

According to the predicted results, we selected echinacoside
for in vitro validation. Echinacoside was purchased from
Chengdu HerbSubstance Co., Ltd. (Chengdu, China) and the
percentage purity of echinacoside was 99.85%. Echinacoside
was dissolved in 25 mg/mL dimethyl sulfoxide (DMSO) and
diluted to 10mg/mL with phosphate-buffered saline. The final
concentration of DMSO was less than 10%; the solution was
then divided into 1.5 mL aliquots and stored at −80 ◦C
until further use. Specific pathogen-free male C57BL/6 mice
(body weight: 20 ± 2 g, age: 56–62 days, n = 12) were
purchased from the Guangdong Medical Laboratory Animal
Center (Guangdong, China). The mice were maintained
under controlled temperature (22 ± 1 ◦C), humidity (50%),
and lighting (12:12 h light/dark) conditions. After 7 days
of habituation, the mice were randomly divided into four
groups (n = 3 per group; Figure 3D). In the normal control
group (NC group), mice were gavaged with distilled water
(10 mL/kg) once a day for 1 week. In the model group,
mice were gavaged with distilled water (10 mL/kg) once a
day for 1 week and subjected to passive swimming activity
for 30 min on the last day. In the long-term echinacoside
group (LE group), mice were gavaged with echinacoside
(100 mg/kg) (27) once a day for 1 week and subjected
to passive swimming for 30 min on the last day. In the
short-term echinacoside group (SE group), mice were gavaged
with distilled water (10 mL/kg) once a day for 6 days; on
the seventh day, the mice were gavaged with echinacoside
(100mg/kg) (27) and, after 30 min, subjected to passive
swimming for 30 min. Peripheral blood and muscle tissues
were harvested immediately after the swimming session. All
animal experiments were approved by the Animal Care and
Use Committee of Affiliated Hospital of Guangzhou University
of Chinese Medicine (approval number:20200331016), and

TABLE 1 All relevant software and websites used in this study.

Name Entrance

GEO database https://www.ncbi.nlm.nih.gov/geo/

R soft and main plug-in package Version: R 4.1.1; Package: limma, clusterprofiler

ImmPort database https://www.immport.org/home

String database https://cn.string-db.org/

Cytoscape Version: Cytoscape_v3.9.0; Plug-in: Degree

HERB database http://herb.ac.cn/

PubChem database https://pubchem.ncbi.nlm.nih.gov/

ChemOffice Chem3D 19.0

Uniprot database https://www.uniprot.org/

PDB database https://www.rcsb.org/

Autodock vina Autodock vina 1.1.2

experiments were performed in accordance with the Guide for
the Care and Use of Laboratory Animals published by the US
National Institutes of Health.

Flow cytometry analysis

Flow cytometry was used to detect the percentage of
natural killer (NK) cells and dendritic cell (DC) subsets
in the peripheral blood of mice. Peripheral blood was
collected into tubes containing ethylenediaminetetraacetic
acid. Peripheral blood mononuclear cells (PBMCs)
were obtained from whole blood by density gradient
centrifugation. PBMCs (1 × 106) were incubated with
fluorescein isothiocyanate-conjugated rat anti-mouse
antibodies against CD45/PE, NK1.1/APC, CD11C/PE-
CY5, and CD3 for 60 min in the dark. The antibodies
were purchased from Tonbo (Beijing, China). The cell
samples were detected on Novocyte D2060R (Agilent,
CA, USA), and the percentage of CD3−NK1.1+ NK cell
subset and CD11C+NK1.1− DC subset was analyzed using
NovoExpress 1.4.1.

Quantitative reverse transcription PCR

Total RNA was extracted from muscle tissues using
TRIzol reagent. cDNA was synthesized using the EvoM-MLV
kits. Quantitative reverse transcription-PCR (RT-qPCR) was
performed using 2X SYBR Green qPCR Master Mix (K1070-
500, APExBIO, US) on a CFX96 Real-Time PCR Detection
System (Bio-Rad Laboratories) following the manufacturer’s
protocol and analyzed using the 2−11Ct method. The following
optimized thermal conditions were used: 95◦C for 30 s, 95◦C
for 5 s, and 40 cycles at 60◦C for 5 s. The levels of mRNA
were normalized to endogenous GAPDH, and the expression
of target genes was analyzed using the 2−11Ct method.
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TABLE 2 Primers used for quantitative reverse transcription-PCR.

Target Primer Sequence (5′-3′)

GZMB FP CCTGCTACTGCTGACCTTGT

RP GGGATGACTTGCTGGGTCTT

FASLG FP CAGCCCATGAATTACCCATGT

RP ATTTGTGTTGTGGTCCTTCTTCT

CCL4 FP AAGCCAGCTGTGGTATTCCTGA

RP ATCTGAACGTGAGGAGCAAGG

PRF1 FP CTGCCACTCGGTCAGAATG

RP CGGAGGGTAGTCACATCCAT

The experiments were repeated three times independently.
The primer sequences used in this study are listed in
Table 2.

Statistical analysis

Data were expressed as mean ± standard error of the
mean (SEM). GraphPad Prism 8.0 software was used to
perform statistical analysis and construct histograms. The
differences between groups were evaluated by t-tests or one-
way analysis of variance (ANOVA) with appropriate post hoc
tests; and P < 0.05 was considered to indicate statistically
significant differences.

Results

Gene expression profiles

We downloaded a gene expression matrix for GSE14642
from the GEO database. This data matrix contains data
on gene expression levels in peripheral blood of 20 young
women before and after 30 min cycle ergometry exercise
(28). The work rate was calculated to 50% of the work
rate between the anaerobic threshold and the peak oxygen
uptake Individually.

Immune cell infiltration and
differentially expressed genes

There were marked differences in the immune cell
infiltration in these women before and after exercise
(Figure 1A). Subsequently, Wilcoxon tests showed that resting
NK cells were more highly infiltrated after exercise (P = 0.001),
whereas naive B cells and activated DCs were more highly
infiltrated before exercise (P = 0.001 and P = 0.013, respectively;
Figure 1B). Moreover, 61 DEGs were identified: 8 genes were
downregulated, and 53 were upregulated (Figures 1C,D).

Immune-related differentially
expressed genes

Analysis of immune-related gene expression levels identified
23 ImmDEGs: all of them (e.g., PRF1) were highly expressed
after exercise (Figure 1E).

Protein–protein interaction network
construction, hub gene selection, and
enrichment analysis

Five hub genes (PRF1, GZMB, KLRF1, CCL4, and FASLG)
were identified on the basis of PPI analysis (Figures 2A,B).
GO enrichment analysis revealed that DEGs were enriched
in 52 biological processes (GO-BP) mainly associated with,
for example, NK cell-mediated immunity and cellular defense
response. Similarly, DEGs were enriched in eight molecular
functions (GO-MF), with the major categories being immune
receptor activity and chemokine activity (Figures 2C,D).
However, cellular components were not significantly enriched.
GSEA enrichment analysis showed that eight pathways were
enriched; six pathways including NK cell-mediated cytotoxicity
were upregulated after exercise, and two pathways including
ECM-receptor interaction were downregulated after exercise
(Figure 2E and Table 3).

Prediction of key genes and nutrients
and molecular docking

Four common genes (PRF1, GZMB, CCL4, and FASLG)
were obtained by intersecting the sets of ImmDEGs and
hub genes, which were considered as key genes (Figure 2F).
The top five natural Chinese herbs with the lowest P value
predicted on the basis of key genes in the HERB database
were selected (Table 4). The 26 candidate (Table 5) ingredients
were identified by the intersection of the related target
ingredients directly predicted based on key genes by the
HERB database and the active ingredients of above-mentioned
Chinese herbs. However, PRF1 failed to predict natural
Chinese medicine by the database. Of these 26 candidates,
echinacoside (Figure 2G) was the most interesting to us,
as this compound is the active ingredient in our predicted
herb, Herba Cistanches, which have been used in China
for thousands of years and are still used to this day to
enhance physical functions. Based on this fact, we consider
echinacoside to be the highest priority research candidate.
Molecular docking of selected compound to key genes showed
that GZMB, FASLG, and CCL4 bind tightly to echinacoside
with their lowest binding free energies of −8.0kcal/mol,
−7.2kcal/mol, −6.9kcal/mol, respectively (Figures 3A–C).
However, we were unable to analyze the molecular docking
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FIGURE 1

(A) Each column represents a sample, and each row represents a type of immune cells. Color transition from green to red represents an
increase in immune cell infiltration level. Con group = before exercise; trial group = after exercise. (B) Green and red violin columns represent
immune cell infiltration levels before and after exercise, respectively. The vertical axis represents the ratio of immune cell infiltration responsible
for total immune cell infiltration. P value, obtained using the Wilcoxon test, represents the statistical significance of the difference in the immune
cell infiltration levels before and after exercise. (C) Upregulated and downregulated differentially expressed genes (DEGs) are highlighted in red
and blue, respectively. Criteria: |logFC| ≥ 1 and adjP ≤ 0.05. (D) Expression levels of 61 DEGs are shown; the darker the red color, the higher the
expression level, and the darker the green color, the lower the expression level. Con group = before exercise; trial group = after exercise.
(E) Expression levels of 23 immune-related differentially expressed genes are shown; the darker the red color, the higher the expression level,
and the darker the green color, the lower the expression level. Con group = pre-exercise; trial group = post-exercise.
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FIGURE 2

(A) Protein–protein interaction network of differentially expressed genes (DEGs). (B) Hub gene map, the darker the red color of the node, the
stronger the protein interaction. (C,D) Top 10 biological processes and all molecular functions observed to be enriched in gene ontology
enrichment analysis. The horizontal axis represents the gene ratio, that is, the ratio of the number of DEGs to number of total genes. Dot size is
proportional to the gene ratio, and dot color transition from blue to red indicates that the adjusted P value is getting smaller. (E) Gene set
enrichment analysis results, with each colored line representing an enriched pathway. (F) Intersection of immune-related differentially
expressed genes (ImmDEGs) and hub genes; the genes common between the two groups were GZMB, FASLG, CCL4, and PRF1. (G) The
two-dimensional structure of echinacoside.
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TABLE 3 Gene set enrichment analysis results.

Pathway Enrichment score NES P-value Adjusted P q-value

Natural killer cell mediated cytotoxicity 0.8020 2.1665 1.00E-10 3.33E-08 3.09E-08

Antigen processing and presentation 0.7687 1.9303 1.94E-06 0.0002 0.0002

Graft-versus-host disease 0.8231 1.868 1.79E-05 0.0015 0.0014

Herpes simplex virus 1 infection 0.5788 1.7565 5.57E-10 9.27E-08 8.61E-08

Chagas disease 0.6336 1.6734 0.0004 0.0242 0.0226

Cytokine-cytokine receptor interaction 0.4958 1.4536 0.0012 0.0497 0.0462

ECM-receptor interaction −0.5803 −1.6812 0.0007 0.0341 0.0317

Hematopoietic cell lineage −0.6125 −1.7857 5.09E-05 0.0034 0.0031

TABLE 4 Top five herbs with the lowest P value predicted on the basis of key genes.

Key gene GZMB FASLG CCL4

Natural herbs digenea simplex rhizoma Zingiberis millettia reticulata

herba Cistanches fagopyrum esculentum rhamnus davurica

mangifera indica fructus Choerospondiatis pericarpium papaveris

eucalyptus viminalis fructus Leonuri cassia mimosoides

folium camelliae sinensis radix Platycodi verbascum thapsus

TABLE 5 Candidate ingredients.

Key gene GZMB FASLG CCL4

Candidate ingredients Echinacoside Kainic acid 6-shogaol Rottlerin

α-tocopherol Lysine acid Acacetin Morphine

βetaine Tea polyphenols Adeninenucleoside

Carotene TellimagrandinII Arsenic

Casuariin Tocopherol Gallic acid

Ethylparaben Vanilloid Geraniin

Vanilloid Morphine

Soleucine Progesterone

Eugenol Ursolic acid

D-Chiro-Inositol α-tocopherol

Hydroxybenzoic acid Tocopherol

of PRF1 with echinacoside because its 3D structure was not
accessible.

Immune cell infiltration after
echinacoside intervention detected by
flow cytometry

The frequency of infiltrated immune cells in each group
were detected by flow cytometry (Figures 3E,F). The percentage
of infiltrating NK cells significantly increased after swimming.
LE and SE groups both reduced the percentage of infiltrating
NK cells with model group. Long-term supplementation
with echinacoside restricted the infiltration of NK cells

more significantly than short-term supplementation with
echinacoside. However, in contrast, the percentage of DCs was
significantly increased after swimming. Long-term or short-
term supplementation with echinacoside did not significantly
decrease the percentage of DCs after swimming.

Expression of key genes after
echinacoside intervention detected by
quantitative reverse transcription PCR

The mRNA levels of key genes were determined
by quantitative reverse transcription PCR, which
showed that the mRNA levels of all key genes were
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FIGURE 3

(A–C) Lowest-free-energy docking models of echinacoside with GZMB, FASLG, and CCL4, respectively. (D) Depiction of the control and
experimental groups. (E,F) Results of flow cytometry analysis of dendritic cells (DCs) and natural killer (NK) cells, respectively. (G) Quantitative
reverse transcription-PCR results for key gene expression levels averaged over three independent experiments. Data are shown as
mean ± standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001 vs. NC; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. Model; p < 0.05,
p < 0.01, p < 0.001 vs. LE.

significantly increased after swimming (Figure 3G).
Both long-term or short-term supplementation with
echinacoside significantly reduced the expression level

of key genes. GZMB, PRF1, and CCL4 were markedly
downregulated in the SE group compared with the LE
group.
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Discussion

Our analysis of immune cell infiltration in the peripheral
blood before and 30 min after exercise showed that NK cells
showed a higher rate of infiltration post exercise, whereas naive
B cells and activated DCs showed a low rate of infiltration
(see Figure 1B). DCs, the most effective antigen-presenting
cells, play an important role in immune homeostasis, bridging
the gap between innate and adaptive immunity (29). They
rapidly perform uptake and presentation functions when foreign
antigens are present, activating T cells to produce an immune
clearance response and inducing immune tolerance in the
presence of self-antigens (30). Naive B cells are immature B
cells that play an immunomodulatory role in inflammation
by secreting cytokines and other pro-inflammatory indicators
(31). Both of these cells are adaptive immune cells. NK cells
are innate immune cells that determine the inflammatory
microenvironment and are important in the removal of foreign
infectious agents and own necrotic tissue (32). Therefore,
the immune infiltration results do not signify an increase in
immunity after 30 min of exercise but a sterile inflammation
resulting from exercise-induced injury. We found that 53
genes were upregulated and 8 genes were downregulated post
exercise (see Figures 1C,D). Notably, a PPI analysis of these
differentially expressed genes showed that four of the top five
genes (PRF1, GZMB, CCL4, and FASLG) were immune-related
genes (see Figure 2F). GMZB, PRF1, and FASLG are key
cytotoxic proteins in the secretory lysosomes in NK cells and
typically produce cytotoxic effects in the inflammation zone
(33). Thus, the findings suggest that the women developed
immune dysregulation after 30 min of exercise, which was
primarily associated with abnormally high levels of NK cells.

PRF1 is a potent component of NK cells; PRF1 expression
levels are positively correlated with the inflammatory toxic
effects of NK cells, and PRF1 targeting regulates (enhances or
decreases) the activity and function of NK cells (34–37). Thus,
the high expression of PRF1 after exercise is consistent with
the high rate of NK cell infiltration. GZMB is a component
of NK cell endolytic granules and is known for its apoptosis-
promoting function (38, 39). It is an important mediator of
the inflammatory response, and some studies have found that
silencing GZMB reduces tissue damage caused by inflammation,
for example, in a rat model of rheumatoid arthritis, GZMB
silencing significantly reduced the degree of swelling in the ankle
joint and reduced joint soft tissue damage (40, 41). FASLG, a
member of the tumor necrosis factor family, is a transmembrane
protein that forms an apoptotic cascade with FAS that is
important for cell proliferation homeostasis (42, 43). This factor
is widely involved in the inflammatory response and is highly
expressed in inflammatory injury responses such as neurological
injury, acute lung injury, kidney injury, and traumatic brain
injury, and its expression is significantly associated with the

extent of acute burns (44–47). Similar to PRF1, the high
GZMB and FASLG expression was consistent with a high
infiltration rate of NK cells, suggesting an inflammatory
response following exercise. CCL4 is also an inflammatory
chemokine that mediates the inflammatory immune response by
recruiting lymphocytes, NK cells, and eosinophils, among others
(48, 49). Several previous studies have found that the expression
of this chemokine is significantly elevated in the inflammatory
immune response following exercise (50, 51). It has also been
found that CCL4 is a key mediator of neuroinflammatory pain
following nerve injury (52). Overall, the high expression of these
key genes reflects the fact that inflammatory damage does occur
after acute exercise.

Notably, we predicted 26 natural immunomodulatory
compounds on the basis of these immune infiltration findings.
Echinacoside is a key natural component of the traditional
Chinese medicinal herb Herba Cistanches. This compound
remains little studied in the field of exercise, but it is widely used
in traditional Chinese medicine because it is believed to play
a key role in regulating human body functions. Interestingly,
the substance is homologous to food and medicine; therefore,
we intended to investigate whether it regulates inflammation
after sports-related injury and further examine whether it is a
potential sports supplement. Therefore, we selected this natural
ingredient, echinacoside, as the optimal candidate compound
and as the experimentally verified ingredient. Firstly, we verified
the tightness of binding between echinacoside and GZMB
using molecular docking and we found a minimum binding
free energy of −8.0kcal/mol between them, which indicating a
very tight binding. Furthermore, although echinacoside are not
among the other key genetically predicted natural ingredients,
we wanted to explore whether this component could bind tightly
to key genes other than GZMB, such as FASLG. Surprisingly,
we found that the binding free energy of echinacoside to FASLG
and CCL4 was also very low, at−7.2kcal/mol and−6.9kcal/mol,
respectively, suggesting that this natural ingredient also binds
tightly to FASLG and CCL4. Finally, Experiments in mice were
used to verify the modulatory effect of echinacoside on immune
imbalance after sports-related injury. Remarkably, the flow
cytometry results showed that mice gavaged with echinacoside
had significantly lower levels of NK cells in their peripheral
blood; the LE group showed the lowest NK cell levels, equivalent
to those in the NC group, followed by the SE group, whereas the
Model group, which was not supplemented with echinacoside,
showed the highest levels of NK cells in the peripheral blood (see
Figure 3F). However, for DCs, there was no statistical difference
in the DC levels between the Model, LE, and SE groups, which all
showed significant higher DC levels than those in the NC group.
On the basis of this finding, we analyzed the factors affecting
the expression levels of DCs in peripheral blood. DCs maintain
overall immune homeostasis through their own active or passive
regulation during an inflammatory response occurring after
exercise; for example, in tissue damage inflammation, vimentin
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prevents autoimmune damage by inhibiting DCs (53). The
mode of energy supply is another important factor affecting
DC expression. Hypoxia or changes in the nutritional status
affect DC metabolism, aerobic glycolysis significantly promotes
DC activation, and inhibition of glycolytic efficiency directly
prevents DC activation (54, 55). It is difficult to identify which
factor most influences the function of DCs, but these factors
together lead to the dynamic regulation of DCs.

Furthermore, we examined the expression levels of key
genes (GZMB, PRF1, FASLG, and CCL4) in each mouse group
by RT-qPCR and found that the expression levels of these
genes in the LE and SE groups were similar to those in the
NC group, significantly lower than those in the Model group,
and the lowest in the SE group (see Figure 3G). Overall,
the flow cytometry results for NK cells were consistent with
the expression levels of key genes. However, unexpectedly,
the expression of key genes was lower in the SE group than
in the LE group. We then reviewed the pharmacokinetics of
echinacoside and found that this natural active ingredient is
extremely rapidly absorbed in the gastrointestinal tract, with a
peak blood concentration time of 15 min and a short half-life
of 74 min (56). The changes in the expression levels of these
key genes intervened by echinacoside are relatively consistent

with the pharmacokinetics of echinacoside. This may therefore
explain the lowest expression of key genes in the SE group.
Therefore, our preliminary findings suggest that echinacoside
administration for a longer period is more effective in regulating
peripheral blood NK cell levels after exercise and that this
natural supplement is relatively more effective in reducing
inflammation when administered 30 min before exercise.

In summary, echinacoside effectively modulates the
inflammatory immune response following exercise, primarily
by regulating NK cell levels. We report, for the first time to our
knowledge, that echinacoside, a promising natural compound,
may be used as a dietary supplement to reduce inflammatory
damage due to excessive NK cell infiltration following exercise
by reducing the elevated NK cell levels and lowering the levels
of NK cell-associated cytotoxic proteins such as GZMB, PRF1,
FASLG, and CCL4 in the peripheral blood.

In this study, our approach has pioneered a very novel
screening model for natural nutritional candidates, a systematic
model that allows for rapid screening of a number of potential
target natural compounds, greatly improving research efficiency
(see Figure 4). The results of our study, echinacoside, which
can bring preventive and therapeutic effects to patients with
sports injuries, are of great clinical application. Particularly

FIGURE 4

Flow chart of research methodology.
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in the context of the apparent underdevelopment of anti-
inflammatory dietary supplements for the prevention and
mitigation of sports injuries, both our research model and
echinacoside show strong potential in this area.
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