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Abstract: Salmonella spp. are among the most frequent causes of foodborne diseases, and the
increasing occurrence of MDR strains is an additional cause for concern. In the three-year period
2019–2021, we collected Salmonella spp. strains isolated from different food categories analysed in
the context of Regulation (EC) No 2073/2005 in order to assess their antibiotic susceptibility profiles
and ESBL production. To determine the susceptibility profiles and identify MDR strains, we used the
Kirby–Bauer method to test 17 antibiotics. Double-disc and PCR testing then allowed us to assess the
production of ESBLs and the presence of beta-lactamase resistance genes. Phenotypic tests showed
that 36 out of 67 strains were MDR and 52.7% of these were ESBL producers. Finally, molecular
investigations conducted on ESBL-producing strains revealed the presence of blaSHV, blaCTX-M and
blaTEM genes. Our results confirmed the prevalence of S. Infantis, an MDR strain and ESBL producer,
in chicken meat. This suggests that further research on the prevalence of antibiotic resistance genes
(ARGs) in foodborne strains is needed, especially from a One Health perspective.

Keywords: Salmonella; food pathogens; S. Infantis; antibiotic resistance; resistance gene; ESBLs

1. Introduction

Salmonellosis is a commonly reported gastrointestinal infection in humans, and an
important cause of foodborne outbreaks. In the European Union (EU) in 2019, the number
of confirmed salmonellosis cases was 87,923; in 2020, the number was 57,702, which was
the lowest recorded number since 2007 because of the impacts of the withdrawal of the
United Kingdom from the EU and the COVID-19 pandemic [1]. The main route of infection
is ingestion of food or water contaminated with Salmonella spp., Gram-negative, facultative
anaerobic bacilli belonging to the Enterobacteriaceae family [2,3]. Salmonella is ubiquitous in
the human food chain and is one of the most important foodborne pathogens in the world.
In particular, S. Enteritidis, S. Typhimurium, monophasic S. Typhimurium, S. Infantis and S.
Derby are the five serotypes most commonly involved in human infections [1]. In the EU,
microbiological food controls carried out in the context of Regulation (EC) No. 2073/2005
found the highest percentages of Salmonella-positive samples in egg products, poultry meat
and poultry products, which are the most critical sources of Salmonella spp. transmission to
humans [1,4].

Although salmonellosis is generally self-limited and usually does not require specific
treatment, antibiotic therapy with quinolones, beta-lactams, aminoglycosides, tetracyclines
or sulfamethoxazole–trimethoprim is necessary in severe cases [5]. However, the overuse
of antibiotics has contributed to the selection of MDR Salmonella strains, i.e., resistant
simultaneously to three or more classes of antibiotics, including those most commonly
prescribed for the treatment of salmonellosis [6]. The spread of MDR Salmonella represents
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a significant health problem, as it causes longer hospitalisations, prolonged illnesses and
higher mortality rates than susceptible strains [7,8]. The World Health Organization
estimates that of the 100,000 cases of salmonellosis each year, a large number are caused by
MDR Salmonella [9], with the majority acquired through the consumption of contaminated
food of animal origin, particularly beef, pork and poultry products [10,11].

In Enterobacteriaceae such as Salmonella, the main mechanism of resistance to beta-
lactams is the acquisition of genes (bla gene) that encode for beta-lactamase hydrolytic
enzymes, which inactivate the antibiotic [12]. Extended-spectrum beta-lactamases (ESBLs),
which hydrolyse first-, second-, and third-generation penicillins and cephalosporins, are
encoded by genes belonging to the TEM, SHV, and CTX-M families, including multiple
variants of the blaTEM, blaSHV and blaCTX-M genes [13]. These ESBL genes have been iden-
tified in bacteria isolated from animals and food products of animal origin [7,14], as well
as from other types of foods, such as seafood [15], raw vegetables [16] and ready-to-eat
(RTE) foods [17], suggesting the possible role of the food production chain as a reservoir
for this group of bacteria. Indeed, factors such as selective pressure in animal and en-
vironmental microbiomes, the circulation of bacteria between animals and environment
and ineffective food safety management can contribute to the presence and persistence
of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the food
production context [18].

The aim of this study was to evaluate the MDR potential of Salmonella strains isolated
in the period from January 2019 to December 2021 from food samples analysed in the
context of the Regulation (EC) No 2073/2005 [4]. Furthermore, for every MDR Salmonella
strain, ESBL production and ESBL gene presence were determined by double-disc diffusion
and PCR tests, respectively.

2. Materials and Methods
2.1. Salmonella Isolation

From January 2019 to December 2021, 493 food samples, subjected to controls accord-
ing to European Community legislation, were analysed [4]. Specifically, these samples were
poultry meat (n = 145), pig meat (n = 106), beef (n = 54), bivalve molluscs (n = 109), eggs
(n = 43) and sprouted seeds (n = 36).

Isolation according to ISO 6579-1:2017 was performed, and strains were then identified
by biochemical enzymatic assays and serotyping, according to the Kauffmann–White–Le
Minor scheme (Supplementary Materials Table S1) [19].

2.2. Antibiotic Susceptibility Profile Determination

Antibiotic susceptibility was assessed using the Kirby–Bauer method on Mueller Hin-
ton agar medium (Oxoid, Milan, Italy), testing 17 antibiotics: kanamycin (30 µg), gentamicin
(10 µg), streptomycin (10 µg), tobramycin (10 µg), ampicillin (10 µg), amoxicillin/clavulanic
acid (30 µg), cefotaxime (30 µg), ceftriaxone (30 µg), ceftazidime (30 µg), imipenem (10 µg),
nalidixic acid (30 µg), ciprofloxacin (5 µg), enrofloxacin (5 µg), levofloxacin (5 µg), sul-
famethoxazole/trimethoprim (25 µg), tetracycline (30 µg) and chloramphenicol (30 µg).

Interpretation of inhibition zones and classification of isolates as susceptible (S), inter-
mediate (I) or resistant (R), was done in accordance with CLSI guidelines [20].

2.3. ESBL Production Evaluation by Double-Disc Test

The double-disc test (DDT) was conducted on 36 MDR Salmonella strains to pheno-
typically assess ESBL production. Discs containing cephalosporins (cefotaxime 30 µg,
ceftazidime 30 µg, cefepime 30 µg) were placed next to a disc with clavulanic acid (30 µg
amoxicillin–clavulanic acid), as recommended by EUCAST [21]. When zones of inhibition
around any of the cephalosporin discs were increased or there was a ‘keyhole’ in the
direction of amoxicillin–clavulanic acid disc, the test was considered positive.
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2.4. Detection of Beta-Lactamase Genes

The beta-lactamase gene detection was conducted on the 19 strains that were found
by the double-disc test to be ESBL-producing. Bacterial DNA was extracted using 100 µL
of PrepMan™ ultra Sample Preparation Reagent (Thermo Fisher Scientific, Waltham, MA,
USA), according to the procedure recommended by the manufacturer. Real Time PCR
reactions were performed using 10 ng of DNA template and 0.5 µM of the forward and
reverse primers listed in Table 1, for a total volume of 25 µL of 1X of Advanced Universal
SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA, USA), in order to amplify
blaTEM, blaCTX-M, blaSHV and blaOXA genes.

Table 1. Primers used in this study.

Target Primers Sequence (5′-3′) Amplicon Size
(bp) Reference

blaTEM
blaTEM_F ATTCTTGAAGACGAAAGGGC 661

[22]

blaTEM_R ACGCTCAGTGGAACGAAAAC

blaCTX-M
blaCTX-M_F CGCTTTGCGATGTGCAG 585blaCTX-M_R ACCGCGATATCGTTGGT

blaSHV
blaSHV_F CACTCAAGGATGTATTGTG 807blaSHV_R TTAGCGTTGCCAGTGCTCG

blaOXA
blaOXA_F ACACAATACATATCAACTTCGC 590blaOXA_R AGTGTGTTTAGAATGGTGATC

The amplification program included an initial denaturation at 94 ◦C for 10 min, followed
by 32 cycles of 94 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 15 s, and a final extension at 72 ◦C for
10 min. Subsequently, 10 µL of the PCR product were used for electrophoresis on 2% E-Gel™ Go!
Agarose Gels (Thermo Fisher Scientific, Waltham, MA, USA) to determine the size of the product.
In each Real Time PCR reaction, a positive and a negative control were used. The positive one
was represented by DNA belonging to a strain of Salmonella in which the presence of the bla gene
was previous confirmed by sequencing; the negative control was represented by a Not Template
Control (NTC), in which the reaction volume with DNase free water was obtained.

3. Results
3.1. Isolation Results

Microbiological analysis of the 493 food samples resulted in the isolation of 67 strains
of Salmonella spp. (15 out of 172 were isolated in 2019, 17 out of 132 in 2020 and 35 out of
189 in 2021). Supplementary Materials Table S1 shows the samples that tested positive for
the presence of Salmonella spp. and the serotypes identified. Notably, poultry meat was the
main source of Salmonella, showing a prevalence of 40%, 52.9% and 71.4% in 2019, 2020 and
2021, respectively (Figure 1).
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S. Infantis was the predominant serotype (48%), present in 32 poultry meat samples.
Instead, S. Typhimurium (9%), S. Derby (6%) and S. Enteritidis (3%) serotypes were found to
have a low prevalence (Figure 2).
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Figure 2. Salmonella spp. research results and serotypes identified in the 2019–2021 three-year period.

3.2. Antibiotic Susceptibility and ESBL Production Test Results

Antibiotic susceptibility testing conducted on the 67 Salmonella strains showed the
absence of resistance in 24 of these strains, whereas 43 strains (64%) were resistant to one or
more of the tested antibiotics. Supplementary Materials Table S1 provides an overview of
these strains and their resistances.

Notably, 31.3% of these strains were resistant to kanamycin, 43.2% to sulphonamides,
47.7% to nalidixic acid, 49.2% to ampicillin and 50.7% to tetracycline. Few strains showed
resistance to levofloxacin (5%) or chloramphenicol (6%), whereas no resistance against
imipenem, ciprofloxacin or enrofloxacin was detected.

An MDR profile was found in 36 strains that showed resistance to three (n = 4), four
(n = 22) and five (n = 10) antibiotic classes (Supplementary Materials Table S1). Specifi-
cally, the most frequent MDR profiles were: aminoglycosides, beta-lactams, quinolones,
sulphonamides and tetracyclines; resistance to these was found in eight S. Infantis, one S.
Salamae and one S. Kentucky. Resistance to beta-lactams, quinolones, sulphonamides and
tetracyclines was found in nine S. Infantis and one S. Cerro.

Finally, the double-disc test allowed detection of ESBL production in 19 strains. Indeed,
for these strains, an increase in the zones of inhibition in the direction of amoxicillin or
clavulanic acid was recorded around the tested cephalosporins (Table 2).

Table 2. Resistance and ESBL production test results of the 36 MDR Salmonella strains.

ID Food Salmonella
Serotype

Isolation
Year Resistance ESBL

Production

AL-3 Poultry meat S. Infantis 2019 AMP, CTX, NAL, SXT, TET −
AL-11 Poultry meat S. Newport 2019 KAN, AMP, SXT, TET +
AL-14 Poultry meat S. Infantis 2019 KAN, AMP, CTX, NAL, TET −
AL-15 Poultry meat S. Infantis 2019 KAN, AMP, CTX, NAL, SXT, TET −
AL-30 Poultry meat S. Infantis 2020 KAN, NAL, SXT, TET +
AL-20 Poultry meat S. Infantis 2020 NAL, SXT, TET +
AL-21 Poultry meat S. Infantis 2020 KAN, NAL, SXT, TET +
AL-25 Poultry meat S. Infantis 2020 STR, AMP, NAL, SXT, TET +
AL-26 Poultry meat S. Infantis 2020 STR, NAL, SXT, TET +
AL-27 Poultry meat S. Infantis 2020 KAN, STR, NAL, SXT, TET +
AL-32 Poultry meat S. Infantis 2020 KAN, STR, NAL, SXT, TET +
AL-34 Poultry meat S. Infantis 2021 KAN, STR, AMP, CTX, NAL, LEVO, CHL −
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Table 2. Cont.

ID Food Salmonella
Serotype

Isolation
Year Resistance ESBL

Production

AL-35 Poultry meat S. Infantis 2021 KAN, STR, AMP, CTX, NAL, LEVO, CHL −
AL-37 Poultry meat S. Agona 2021 STR, AMP, SXT +
AL-38 Pig meat S. Salamae 2021 KAN, GEN, TOB, AMP, AMC, NAL, SXT, CHL +
AL-39 Poultry meat S. Infantis 2021 KAN, SXT, TET +
AL-43 Poultry meat S. Infantis 2021 KAN, AMP, STR, NAL, SXT, TET +
AL-44 Poultry meat S. Infantis 2021 KAN, TOB, AMP, CTX, CRO, NAL, SXT −
AL-45 Poultry meat S. Infantis 2021 AMP, CTX, CRO, NAL, SXT, TET −
AL-46 Poultry meat S. Infantis 2021 STR, AMP, NAL, TET −
AL-47 Beef S. Cerro 2021 AMP, AMC, CTX, CRO, NAL, SXT, TET −
AL-48 Poultry meat S. Infantis 2021 KAN, GEN, TOB, AMP, AMC, CTX, CRO, NAL, SXT, TET −
AL-49 Poultry meat S. Infantis 2021 KAN, AMP, AMC, CTX, CRO, NAL, SXT, TET −
AL-50 Poultry meat S. Infantis 2021 KAN, AMP, AMC, CTX, CRO, SXT, TET −
AL-51 Pig meat S. Typhimurium 2021 STR, AMP, TET +
AL-52 Poultry meat S. Infantis 2021 AMP, CTX, CAZ, CRO, NAL, SXT, TET +
AL-53 Poultry meat S. Kentucky 2021 STR, AMP, CAZ, CTX, CRO, NAL, SXT, TET +
AL-56 Poultry meat S. Infantis 2021 AMP, AMC, CRO, NAL, SXT, TET −
AL-57 Poultry meat S. Infantis 2021 TOB, AMP, AMC, CTX, CRO, NAL, SXT, TET +
AL-58 Poultry meat S. Infantis 2021 AMP, AMC, CTX, NAL, SXT, TET +
AL-59 Poultry meat S. Infantis 2021 GEN, AMP, CTX, NAL, SXT, TET −
AL-60 Poultry meat S. Infantis 2021 KAN, TOB, AMP, CTX, NAL, SXT, TET +
AL-63 Poultry meat S. Infantis 2021 STR, AMP, CTX, CAZ, NAL, SXT, TET, CHL +
AL-65 Poultry meat S. Infantis 2021 AMP, CTX, CAZ, CRO, NAL, SXT, TET −
AL-66 Poultry meat S. Infantis 2021 KAN, STR, AMP, NAL, TET −
AL-67 Poultry meat S. Infantis 2021 KAN, AMP, NAL, TET −

AMP, Ampicillin; CTX, Cefotaxime; NAL, Nalidixic Acid; SXT, Sulphamethoxazole/Trimethoprim; TET, Tetracy-
cline; KAN, Kanamycin; GEN, Gentamicin; STR, Streptomycin; TOB, Tobramycin; AMC, Amoxicillin/Clavulanic
acid; CAZ, Ceftazidime; CRO, Ceftriaxone; LEVO, Levofloxacin; CHL, Chloramphenicol.

3.3. Detection of Beta-Lactamase Genes

Genes responsible for beta-lactamase activity in 19 ESBL-producing Salmonella strains
were screened by PCR. The presence of beta-lactamase genes was detected in all tested
strains, confirming the phenotypic results of ESBL production tests (Table 3).

Table 3. Beta-lactamase resistance gene detection results.

ID Strains Food Salmonella
Serotype

ESBL
Production

bla Gene
Detected

AL-11 Poultry meat S. Newport + blaTEM, blaSHV
AL-30 Poultry meat S. Infantis + blaCTX-M
AL-20 Poultry meat S. Infantis + blaSHV
AL-21 Poultry meat S. Infantis + blaCTX-M
AL-25 Poultry meat S. Infantis + blaSHV
AL-26 Poultry meat S. Infantis + blaSHV
AL-27 Poultry meat S. Infantis + blaCTX-M
AL-32 Poultry meat S. Infantis + blaSHV
AL-37 Poultry meat S. Agona + blaSHV
AL-38 Pig meat S. Salamae + blaCTX-M, blaSHV
AL-39 Poultry meat S. Infantis + blaSHV
AL-43 Poultry meat S. Infantis + blaCTX-M
AL-51 Pig meat S. Typhimurium + blaSHV
AL-52 Poultry meat S. Infantis + blaSHV
AL-53 Poultry meat S. Kentucky + blaCTX-M
AL-57 Poultry meat S. Infantis + blaCTX-M
AL-58 Poultry meat S. Infantis + blaCTX-M, blaSHV
AL-60 Poultry meat S. Infantis + blaSHV
AL-63 Poultry meat S. Infantis + blaCTX-M, blaSHV

The most frequently identified genes were blaSHV and blaCTX-M, which were present
in 68.4% and 47.3% of strains, respectively. Furthermore, the blaTEM gene was harboured
by only one strain, while blaOXA was not detected. Specifically, nine strains harboured
only the blaSHV gene, six strains harboured only the blaCTX-M gene, three strains harboured
the blaCTX-M and blaSHV genes together, and one strain harboured the blaTEM and blaSHV
genes together.
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4. Discussion

Salmonella spp. are among the most frequent causes of foodborne diseases, and the
increasing occurrence of MDR strains is an additional cause for concern. Thus, in the
three-year period 2019–2021, we collected Salmonella spp. strains isolated from different
food categories analysed in the context of Regulation (EC) No 2073/2005 [4], in order to
assess their antibiotic susceptibility profiles and ESBL production.

Our data show that among the different food categories analysed, poultry meat was a
relevant source of Salmonella. Moreover, regarding poultry meat, it is possible to note that
the prevalence of Salmonella significantly increased over the three-year period, rising from
40% in 2019 to 71.4% in 2021; the prevalent serovar was S. Infantis (48%).

We performed a screening test using the Kirby–Bauer method to estimate the antibiotic
susceptibility profiles of these strains, and we found a very high rate of strains showing
at least one phenotypic resistance (64%). Among these, the highest rates of resistance
were found against sulphonamides (43.2%), a class of antibiotics used in severe Salmonella
infections, but also against nalidixic acid (47.7%) and kanamycin (31.3%). In addition, a
high percentage of strains showed resistance to tetracyclines (50.7%), despite the fact that,
in 2006, the European Union, in an attempt to counteract this trend, imposed a ban on
the non-therapeutic use of antibiotics of human importance, such as tetracyclines, in farm
animal feed. However, resistance to these drugs in Salmonella from food samples continues
to be of concern [8,23]. This observation may be related to the human manipulation of these
kinds of foods [24].

Of the strains tested, 53.7% showed an MDR profile with resistance to four or five
classes in the majority of strains. These data are alarming, not only because of the real
risk for consumers of becoming infected with an MDR strain, but also because many
of these strains showed resistance to antibiotic classes important in human medicine,
such as beta-lactamases. Thus, in order to obtain a complete overview of the resistance
profiles of all the MDR strains isolated, we conducted a double-disc test (DDT) for ESBL
phenotype detection. This test is one of the four different methods for confirming the
ESBL phenotype recommended by EUCAST [21]. Despite the EFSA 2018/2019 report’s
observation of resistance to third-generation cephalosporins at the overall low levels of 1.8%
and 1.2% for cefotaxime and ceftazidime, respectively, for Salmonella spp., our experiment
indicated that 52% of all MDR strains had an ESBL phenotype [8]. Finally, because these
phenotypes could be conferred by several ARGs [25], the detection of beta-lactamase
genes was performed in order to confirm phenotypic pattern. The PCRs we conducted
allowed us to identify at least one gene encoding for β-lactamase enzymes in each strain
that had an ESBL profile (Table 3). The blaCTX-M gene was present in 9 out of 19 ESBL
strains, and in three of these, it was in association with the blaSHV gene, which was found
to be the most prevalent gene among our isolates, because of its detection in 12 out of
19 ESBL strains. The blaCTX-M genes encode for extended-spectrum β-lactamases (ESBLs)
frequently identified in Gram-negative pathogens. These types of enzymes are active
against cephalosporins and monobactams (but not cephamycins or carbapenems), and
are currently of great epidemiological and clinical interest [26]. The blaSHV gene has been
identified mainly in Enterobacteriaceae causing nocosomal infections, but also in isolates
from different contexts (human, animal and environment) [27,28]. Probably originating
from a chromosomal penicillinase of Klebsiella pneumoniae, SHV β-lactamases currently
comprise a large number of allelic variants, including extended-spectrum β-lactamases
(ESBLs), non-ESBLs and several unclassified variants [29]. Our isolates showed an ESBL
phenotype, so we have probably identified blaSHV genes encoded for extended-spectrum
β-lactamases.

These data are certainly alarming, since all of our strains came from food samples,
particularly poultry, intended for human consumption. Indeed, although cooking these
products may reduce the risk of foodborne disease, ARGs can resist high temperatures
and, once ingested, can be transferred to the gut microbiota and confer resistance to other
bacteria [30]. Therefore, our data are in line with the latest EFSA recommendations, which
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confirm how important it is in the monitoring and surveillance of antibiotic resistance
(AMR) to assess the presence of ARGs in foodborne strains, especially in a One Health
approach that recognises the circularity of human, animal and environmental health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10040780/s1. Table S1: Analysed strains and
their phenotypic resistances.
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