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ABSTRACT

The current state of the COVID-19 pandemic is a
global health crisis. To fight the novel coronavirus,
one of the best-known ways is to block enzymes es-
sential for virus replication. Currently, we know that
the SARS-CoV-2 virus encodes about 29 proteins
such as spike protein, 3C-like protease (3CLpro),
RNA-dependent RNA polymerase (RdRp), Papain-
like protease (PLpro), and nucleocapsid (N) protein.
SARS-CoV-2 uses human angiotensin-converting en-
zyme 2 (ACE2) for viral entry and transmembrane ser-
ine protease family member II (TMPRSS2) for spike
protein priming. Thus in order to speed up the discov-
ery of potential drugs, we develop DockCoV2, a drug
database for SARS-CoV-2. DockCoV2 focuses on pre-
dicting the binding affinity of FDA-approved and Tai-
wan National Health Insurance (NHI) drugs with the
seven proteins mentioned above. This database con-
tains a total of 3,109 drugs. DockCoV2 is easy to
use and search against, is well cross-linked to ex-
ternal databases, and provides the state-of-the-art
prediction results in one site. Users can download
their drug-protein docking data of interest and ex-
amine additional drug-related information on Dock-
CoV2. Furthermore, DockCoV2 provides experimen-
tal information to help users understand which drugs
have already been reported to be effective against
MERS or SARS-CoV. DockCoV2 is available at https:
//covirus.cc/drugs/.

INTRODUCTION

From December 2019 to June 2020, SARS-CoV-2 has in-
fected over 10 million people, and caused >500 thousand

deaths worldwide (1). As a result, the last few months has
seen a rapid expansion of COVID-19 research (2–7) includ-
ing the discovery of potential inhibitors and drugs against
SARS-CoV-2 (8–12).

The SARS-CoV-2 genome contains ∼30 000 nucleotides
that encode about 29 proteins such as spike protein, 3C-
like protease (3CLpro, also called main protease, Mpro),
Papain-like protease (PLpro), RNA-dependent RNA poly-
merase (RdRp, also named nsp12), and nucleocapsid (N)
protein (9,13–15). These five proteins are all known to play
important roles in the viral replication process in some way.
For example, the surface spike glycoprotein is known to be
critical for virus entry through binding to the major anti-
gens of host receptors such as angiotensin-converting en-
zyme 2 (ACE2) (16,17). The 3CLpro is a key enzyme which
digests pp1a and pp1ab, two proteins that yield functional
viral proteins in the virus’ life cycle (10,18). Blocking the
activity of this enzyme would therefore suppress viral repli-
cation, making it an efficient therapeutic strategy. Likewise,
PLpro is responsible for the cleavage of the viral polypeptide
(19), and RdRp catalyzes viral RNA synthesis and plays
an important role in the replication and transcription ma-
chinery of SARS-CoV-2 (20). Remdesivir, the potent in-
hibitor against SARS-CoV-2, is effective because of how it
targeted the RdRp protein (20,21). N protein is an RNA-
binding protein necessary for viral RNA transcription and
replication (15). In addition to the viral proteins, SARS-
CoV-2 uses human ACE2 for viral entry and human trans-
membrane serine protease family member II (TMPRSS2)
for spike protein priming (16). We therefore hypothesize
that these five SARS-CoV-2 proteins, spike, 3CLpro, PL-
pro, RdRp, N protein, and two host proteins, ACE2 and
TMPRSS2, can be potential druggable targets.

Previously, researchers have targeted these viral proteins
for drug discovery by using structure-assisted design, vir-
tual and high-throughput screening (8,11). Similarly, these
approaches can also be used for SARS-CoV-2 research (22).
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For example, Jin et al. used a computer-aided drug design
and virtual screening to identify the mechanism-based in-
hibitor (N3) and the antineoplastic drug carmofur targeting
Mpro (10,11). They further determined the crystal struc-
tures of the N3- and carmofur-Mpro complexes and con-
firmed the antiviral activities of N3 and carmofur using the
plaque-reduction assays (10,11).

Drug repositioning is the process of finding new uses
for existing approved drugs, and is believed to offer
great benefits over de novo drug discovery, as well as
enable rapid clinical trials and regulatory review for
COVID-19 therapy (23). Here we develop the database,
DockCoV2, by performing molecular docking analy-
ses of seven proteins including spike, 3CLpro, PLpro,
RdRp, N protein, ACE2 and TMPRSS2 with 2285 FDA-
approved and 1478 NHI drugs. DockCoV2 also pro-
vides appropriate experimental information with litera-
ture support. Several databases focus on delivering re-
purposing drugs against SARS-CoV-2. For example, Ex-
celra’s COVID-19 Drug Repurposing Database includes
128 small molecules and biologics (https://www.excelra.
com/covid-19-drug-repurposing-database/) and the Open-
Data collected the actionable data and validated method-
ologies (https://doi.org/10.1101/2020.06.04.135046). Addi-
tionally, Covid19 DB lists the curated data of clinical tri-
als in Covid-19/2019-nCoV (http://www.redo-project.org/
covid19db/). To our knowledge, no database provides a
more up-to-date and comprehensive resource with drug-
target docking results for repurposed drugs against SARS-
CoV-2.

DATA SOURCES

For drug repositioning, we selected FDA and Taiwan NHI
(National Health Insurance Administration) as our list
of approved drugs. FDA-approved drugs were retrieved
from the ZINC15 database (24), and Taiwan NHI-approved
drugs were downloaded from the website of NHI. Drug
names were extracted from the top five ingredients of each
product, and drug structures were obtained from the Pub-
Chem Compound database (25). Due to the limitation of
the ligand preparation pipeline, we dropped some com-
pounds with ions which could not be converted properly by
the gen3d operation of OpenBabel (version 3.0.0) (26). Note
that we also added some additional FDA-approved drugs
which are not in the ZINC15 database. In total, 2285 FDA-
approved drugs and 1478 Taiwan NHI-approved drugs
were recruited as our candidates for virtual screening.

Seven target proteins were selected because of their
involvement in viral entry and replication. The protein
structures, including 3CLpro (PDB ID: 6LU7) (10), PL-
pro (PDB ID: 6WX4) (https://doi.org/10.1101/2020.04.29.
068890), RdRp (PDB ID: 7BV2) (21), spike receptor-
binding domain (RBD) (PDB ID: 6M0J) (27), N protein
(PDB ID: 6M3M) (15) and ACE2 (PDB ID: 1R42) (28)
were retrieved from Protein Data Bank. To ensure the avail-
ability of the binding sites of the proteins, we removed the
compounds added for protein structure determination such
as ligands, cofactors, and ions. For the spike protein, only
the RBD was used for molecular docking and for 7BV2,
only the nsp12 was used out of the nsp7–nsp8–nsp12 com-

plex. The structure of human TMPRSS2 is currently not
available in Protein Data Bank, so we used homology mod-
eling on the sequence of TMPRSS2 from Uniprot (ID:
O15393) (29) to build an approximate structure based on
the template of the human serine protease hepsin (PDB ID:
5CE1) using SWISS-MODEL (30).

DATABASE CONTENT

DockCov2 aims to speed up the process of finding po-
tential drugs by providing a computational representation
of molecular docking with the most commonly-used drug
databases (31–35). Through our website, researchers can
query the docking scores of candidate drugs with essen-
tial drug-related information from the database to identify
which drugs could be potential drugs. We designed a vir-
tual screening pipeline, and docked 2285 FDA approved
drugs and 1478 Taiwan National Health Insurance (NHI)
approved drugs with the seven main proteins of the SARS-
CoV-2 infection mechanism (36–38). All of our docking re-
sults are saved in the formats of Protein Data Bank, Par-
tial Charge (Q) and Atom Type (T) (PDBQT), and can be
viewed either directly on the website through NGLView (39)
or downloaded for further docked structure refinement.

The overview of the database is shown in Figure 1. In
addition to the molecular docking score, the joint panel
section has three tabs: docking structure, ligand informa-
tion and experimental data. The docking structure panel
visualizes the docking PDBQT from the self-calculated
database, which also contains druglikeness information
and compound similarity. The ligand information panel
contains (a) structural information from PubChem Com-
pound database (25); (b) drug information from DrugBank
(33); (c) pathway information from Kyoto Encyclopedia of
Genes and Genomes (KEGG) (40); (d) clinical-related in-
formation from Repurposing Hub (34); and (e) other chem-
ical information. In the experimental data panel, we col-
lected experimental and literary evidence from ChEMBL
(35), a study of gene set enrichment analysis (GSEA) from
Zhou et al. (41) and COVID-19 Crowd Generated Gene and
Drug Set Library (https://amp.pharm.mssm.edu/covid19).

DATA PROCESSING AND INTEGRATION

Identifier conversion

We chose PubChem compound identifiers (CIDs) as the key
identifier in DockCoV2 because it is unique and widely used
and can be easily linked to other external databases. For
drugs retrieved from NHI, drug names were translated into
CIDs using whole source mappings provided by UniChem
(31) and PubChem Identifier Exchange Service (https://
pubchem.ncbi.nlm.nih.gov/idexchange/). Specifically, mul-
tiple CIDs may be returned by PubChem Identifier Ex-
change Service for each drug name. We canonically chose
the first returned record in order to be consistent with
the result by manual search via the graphical interface
of PubChem. Once we have the PubChem CIDs of our
compound library, simplified molecular-input line-entry
system (SMILES) (42), international chemical identifier
(InChI), hashed values of international chemical identifiers
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Figure 1. The overview of the database content. In addition to the docking scores, DockCoV2 designed a joint panel section to provide the following
related information: docking structure, ligand information and experimental data.

(InChIKey), and synonyms were fetched through the Pub-
Chem PUG API (43).

Ligand information

For drug development, Lipinski’s rule of five (44), Ghose fil-
ter (45), Veber filter (46), rapid elimination of swill (REOS)
filter (47) are several available indicators to evaluate the
druglikeness. Therefore, components of these rules were cal-
culated by RDKit (http://www.rdkit.org). Moreover, frag-
ment screening is able to find a sensible starting point for the
evolution of a new molecule in modern drug discovery. Pre-
viously, a large crystallographic fragment screen (48) was
performed against 3CLpro by the Diamond Light Source
group. Seventy-eight hits were released to the public in
March 2020. In DockCoV2, we performed the substruc-
ture matching of these fragments toward the drug library
we used here. To let the user easily fetch structurally sim-

ilar compounds, similarity search (49) strategies were also
adopted. Similarity search within the DockCoV2 and to-
ward whole PubChem compound databases are both sup-
ported. To generate similarity values between any two com-
pounds in DockCoV2, a 512-bit fingerprint of each com-
pound is calculated using the Morgan algorithm (50). Each
bit represents the presence or absence of a particular struc-
tural feature. From here, similarity values between any com-
pound pairs are represented by the Dice coefficient. In the
current version of DockCoV2, the rule of five, substructure
matching, and the calculation of similarity values were all
done by using the RDKit 2020.03.2 release.

Pathway information can serve as the basis of hypothe-
sis in drug discovery. Therefore, two databases of KEGG
(namely, KEGG Drug and KEGG Compound) were in-
tegrated into DockCoV2. PubChem CIDs were converted
into DrugBank IDs first, then further converted into
KEGG Drug IDs and KEGG Compound IDs. Alterna-

http://www.rdkit.org
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tively, PubChem CIDs were directly converted to KEGG
Drug IDs and KEGG Compound IDs by PubChem Identi-
fier Exchange Service. Clinically related information includ-
ing approval information, clinical phase, mechanism of ac-
tion (MoA), target, disease area, and indication were also
retrieved from the metadata file from the Drug Repurpos-
ing Hub.

Experimental data

To provide useful validation information for drug repurpos-
ing and development, chemical information was aggregated
either from external databases or directly calculated from
structures. Three biological assays CHEMBL4303805,
CHEMBL4303810, CHEMBL4303819 were fetched from
ChEMBL (35). All of these three assays are functional as-
says. For CHEMBL4303805, Antiviral activities were deter-
mined as inhibition of SARS-CoV-2 induced cytotoxicity of
Caco-2 cells at 10 uM after 48 h by high content imaging.
Ratios of inhibition of each compound were reported. For
CHEMBL4303810, Antiviral activities against SARS-CoV-
2 (USA-WA1/2020 strain) were measured by imaging in
HRCE cells at MOI 0.4 after 96 h. Hit scores were reported
from 0 to 1 for on-disease versus off-disease activity: scores
>0.6 are considered hits. For CHEMBL4303819, Inhibition
of cell viability relative to arbidol control (inhibition index)
was measured by fluorescence (OD590nm) in Vero E6 cells,
which were infected with SARS-CoV-2 (strain BavPat1) at
MOI 0.002 after 72 h. Inhibition index with a value over 1
indicates higher activity. ChEMBL IDs were translated into
CIDs using whole source mappings provided by UniChem
(31) and PubChem Identifier Exchange Service as well.

Gene Set Enrichment Analysis (GSEA) is a method
that determines whether an a priori defined set of genes
show statistically significant expression differences between
two biological states (51). Here, three NCBI Gene Ex-
pression Omnibus (GEO) data, GSE1739, GSE33267 and
GSE122876 were used to identify sets of differentially ex-
pressed genes post SARS or MERS infection. Gene expres-
sion profiles of drug treatment were retrieved from the Con-
nectivity Map (CMAP) database. The GSEA enrichment
scores indicate the potential effectiveness of candidate drugs
to reverse the gene expression signature of HCoV infection.
For detailed information, please see Zhou et al. (41). Lit-
erature was also fetched from COVID 19 Coward Gener-
ated Gene and Drug Set Library to assist the user to vali-
date the hypothesis of an interaction between a drug and its
target. Only compounds that were reported in experiments
were collected.

VIRTUAL SCREENING

There are many softwares that exist for virtual screening
such as VSDK (52), AUDocker (53), DockoMatic (54),
PyRx (55), etc. However, the efficiency of these tools may
not be applicable on large drug banks such as the complete
FDA-approved drug list. Therefore, we used AutoDock
Vina (version 1.1.2) (56) as the core docking utility to re-
construct our virtual screening pipeline, and ran it on a Ku-
bernetes server with parallel computing (Figure 2). Kuber-
netes is an engine server, which can automatically deploy,

Figure 2. The virtual screening pipeline. We used AutoDock Vina as the
core docking utility to reconstruct the virtual screening pipeline. In addi-
tion, the Kubernetes server and Redis data store were adopted for parallel
computing. After finishing docking, the top 20 docking poses were taken
to build a protein heatmap for visualization.

scale and manage the containerized tasks to clusters. In
practice, we uploaded the FDA-approved and Taiwan NHI-
approved drug lists to Redis data storage, and generated
128 Kuberenetes pods in parallel. Each pod continuously
takes up a new docking task of a drug until the Redis drug
list is completed. Based on our implementation, the virtual
screening for our drug list only costs 3 days per protein.

To simulate binding affinity between protein and lig-
ands, each of the drug’s 3D structure was obtained from
the PubChem database in structure-data file (SDF) format.
The gen3d operation of OpenBabel (version 3.0.0) (26) was
used for energy minimization. This operation iterated 500
cycles of performing the geometry optimization with the
MMFF94 force field and conducting the weighted rotor
conformational search, in order to generate a likely global
minimum energy conformer in MOL2 file format. Since
AutoDock Vina only takes the PDBQT format as input,
we used AutoDockTool 1.5.7 (http://autodock.scripps.edu/
resources/adt) to convert the file format from MOL2 to
PDBQT with default parameter settings excluding a pa-
rameter -A, which would add hydrogens to structure only
if there are none already. After that, we applied rigid-body
docking on these converted files using AutoDock Vina. In
order to consider all of the potential docking poses, the en-
tire protein is taken as the search space for blind search. We
noted that the number of runs of the docking simulation
should be adjusted accordingly by considering the variety

http://autodock.scripps.edu/resources/adt


D1156 Nucleic Acids Research, 2021, Vol. 49, Database issue

Figure 3. The docking score distribution of each protein. The x-axis is the minimum docking score of each protein–ligand pair, and the y-axis is the
probability density estimated by kernel density estimation.

Figure 4. A demonstration of the bound structure of 3CLpro (PDB ID: 6LU7, where the ligand was colored in red) with molecular docking. The left-hand
side shows the results of the top 20 docking poses (colored in blue). Eight out of 20 docking poses are located in the binding pocket of the protein. The
right-hand side zooms in the binding pocket and shows that the top docking pose (colored in blue) is close to the bound ligand (colored in red).

of protein sizes. In AutoDock Vina, the number of runs is
set by the exhaustiveness parameter, and the default setting
of exhaustiveness is set at eight for a search space below
30 × 30 × 30 Å (56). We proportionally scaled the exhaus-
tiveness depending on the size of the protein by a factor of
2. For example, if the size of a protein is 60 × 60 × 60 Å,
the exhaustiveness would be 8 × (60/30) × (60 /30) × (60
/30) × 2 = 128. AutoDock Vina reported multiple docking
scores for each run, and the top score was selected as the fi-
nal result shown on the website. The distribution of the final
scores of each protein is shown in Figure 3. By comparing
the scores between systems (different proteins), there is no
bias of docking scores toward any protein we are interested
in. By examining the intra-system scores, we observed that
for each protein if there is a group or few ligands that are
with particularly good docking scores.

After finishing docking, AutoDock Vina will generate
multiple docking poses for each ligand–protein pair. For the
sake of a straightforward representation of the docking re-
sults, the top 20 docking poses from AutoDock Vina were

taken to build a protein heatmap. For each pose, a sphere
centered at the centroid of ligand with a radius of 5 Å is
highlighted, and the frequency of residues inside the sphere
is incremented. The protein heatmap and the ligand dock-
ing position with the best affinity score are shown on the
main page of each entry (a ligand–protein pair) in Dock-
CoV2, where the red scale of the protein heatmap denotes
the frequency of residues over twenty trials. Figure 4 is a
demonstration of the structure of 3CLpro (PDB ID: 6LU7)
(10) with molecular docking. In order to validate our vir-
tual screening pipeline, we separated the original structure
into a ligand and a receptor, and docked them with the pro-
posed pipeline. The left-hand side of Figure 4 shows that
eight out of the top 20 docking poses (colored in blue)
are located in the binding pocket of the protein. This fig-
ure also demonstrates that users can explore the binding
pocket through the hot spot of our heatmap. The right-hand
side zooms in the binding pocket and shows that the top
docking pose (colored in blue) of our pipeline is close to
the ligand (colored in red) in the crystal structure. For re-
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producing our results or repurposing the proposed pipeline
for other drugs or proteins, we released our scripts and
the configuration file for docking procedures on GitHub
(https://github.com/ailabstw/DockCoV2).

INTERFACE

In order to provide an efficient searching interface for users,
we built a website with a search engine based on Django
3.0 (https://djangoproject.com) and Bootstrap 4.3.1 (https:
//getbootstrap.com/). The search bar, which can be found
either in the index page or on navbar, allows the user to
input the drug name, PubChem CID or synonym to ex-
plore the docking score with all proteins. The details of
each ligand are shown after choosing a specific ligand–
protein pair, including docking structure, ligand informa-
tion and experimental data. PDBQT files of ligand and pro-
tein from AutoDock Vina are also provided on the main
page of each ligand-protein pair. In the docking structure
panel, both protein heatmap and sequences are displayed
on the right-side of the detail page. Protein heatmap is in-
teractively demonstrated with the NGL viewer tool, which
is a WebGL-based molecular viewer (57). To easily visual-
ize the targeted binding sites on the proteins, not only basic
operations on protein heatmap, but also selecting or limit-
ing atoms/residues through the selection language is avail-
able on the docking structure panel. The ligand information
panel is divided into ligand relative, clinical relative, drug-
likeness, other relative info and drug similarity. Ligand rela-
tive part consists of basic compound Information, including
3D structure view, CAS number, SMILES, InChI, InChI
key, synonyms and pathway from KEGG Drug and KEGG
Compound databases. Clinical Relative consists of approval
information, which denotes whether or not this ligand has
been approved by the Taiwan NHI or FDA, as well as other
corresponding data from Drug Repurposing Hub, includ-
ing clinical phase, mechanism of action (MoA), target, dis-
ease area, and indication. Results and components of Lip-
inski’s rule of five, Ghose filter, Veber filter and REOS filter
are shown in druglikeness section. External links to Pub-
Chem and Drugbank are also provided in the other relative
info section. SARS-CoV-2 relative, related documents and
drug assays are included in experimental data.

CONCLUSION

Drug repositioning, the exploration of repurposing exist-
ing drugs that have already passed the safety screening
for new indications, is a relatively quick therapeutic so-
lution for emerging infectious diseases like SARS-CoV-2.
For the purpose of drug repositioning, molecular dock-
ing is a well-known virtual screening method to evaluate a
great amount of compounds automatically. Based on the
urgent need to find effective drugs, we established Dock-
CoV2, the first virtual screening database for SARS-CoV-2.
DockCoV2 focuses on predicting 2285 FDA-approved and
1478 Taiwan NHI-approved drugs targeting five proteins
relating to the mechanism of viral entry and replication.
Those docked structures could also be further utilized and
get more accurate binding poses and the correct ranking of
the binding affinity through methods such as molecular me-
chanics Poisson-Boltzman surface area (MM/PBSA) and

molecular mechanics generalized Boltzman surface area
(MM/GBSA) calculations (22,58). In addition, DockCoV2
also provides experimental data, including biological as-
says, pathway information, and gene set enrichment anal-
ysis recruited from other validated databases. Future ver-
sions will include the prediction of binding affinity with
other potentially druggable targets against SARS-CoV-2
and the reported experimental assays and high-throughput
screening results to support our prediction.
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Erichsen,S., Schiergens,T.S., Herrler,G., Wu,N.-H., Nitsche,A. et al.
(2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and
is blocked by a clinically proven protease inhibitor. Cell, 181,
271–280.

17. Yuan,M., Wu,N.C., Zhu,X., Lee,C.-C.D., So,R.T.Y., Lv,H.,
Mok,C.K.P. and Wilson,I.A. (2020) A highly conserved cryptic
epitope in the receptor binding domains of SARS-CoV-2 and
SARS-CoV. Science, 368, 630–633.

18. Zhang,L., Lin,D., Sun,X., Curth,U., Drosten,C., Sauerhering,L.,
Becker,S., Rox,K. and Hilgenfeld,R. (2020) Crystal structure of
SARS-CoV-2 main protease provides a basis for design of improved
�-ketoamide inhibitors. Science, 368, 409–412.

19. Freitas,B.T., Durie,I.A., Murray,J., Longo,J.E., Miller,H.C.,
Crich,D., Hogan,R.J., Tripp,R.A. and Pegan,S.D. (2020)
Characterization and noncovalent inhibition of the deubiquitinase
and deISGylase activity of SARS-CoV-2 papain-like protease. ACS
Infect Dis, 6, 2099–2109.

20. Gao,Y., Yan,L., Huang,Y., Liu,F., Zhao,Y., Cao,L., Wang,T., Sun,Q.,
Ming,Z., Zhang,L. et al. (2020) Structure of the RNA-dependent
RNA polymerase from COVID-19 virus. Science, 368, 779–782.

21. Yin,W., Mao,C., Luan,X., Shen,D.-D., Shen,Q., Su,H., Wang,X.,
Zhou,F., Zhao,W., Gao,M. et al. (2020) Structural basis for inhibition
of the RNA-dependent RNA polymerase from SARS-CoV-2 by
remdesivir. Science, 368, 1499–1504.

22. Panda,P.K., Arul,M.N., Patel,P., Verma,S.K., Luo,W.,
Rubahn,H.-G., Mishra,Y.K., Suar,M. and Ahuja,R. (2020)
Structure-based drug designing and immunoinformatics approach for
SARS-CoV-2. Sci. Adv., 6, eabb8097.

23. Guy,R.K., Kiplin Guy,R., DiPaola,R.S., Romanelli,F. and
Dutch,R.E. (2020) Rapid repurposing of drugs for COVID-19.
Science, 368, 829–830.

24. Sterling,T. and Irwin,J.J. (2015) ZINC 15 – ligand discovery for
everyone. J. Chem. Inf. Model., 55, 2324–2337.

25. Kim,S., Thiessen,P.A., Bolton,E.E., Chen,J., Fu,G., Gindulyte,A.,
Han,L., He,J., He,S., Shoemaker,B.A. et al. (2016) PubChem
substance and compound databases. Nucleic Acids Res., 44,
D1202–D1213.

26. O’Boyle,N.M., Banck,M., James,C.A., Morley,C., Vandermeersch,T.
and Hutchison,G.R. (2011) Open Babel: an open chemical toolbox. J.
Cheminform., 3, 33.

27. Lan,J., Ge,J., Yu,J., Shan,S., Zhou,H., Fan,S., Zhang,Q., Shi,X.,
Wang,Q., Zhang,L. et al. (2020) Structure of the SARS-CoV-2 spike
receptor-binding domain bound to the ACE2 receptor. Nature, 581,
215–220.

28. Towler,P., Staker,B., Prasad,S.G., Menon,S., Tang,J., Parsons,T.,
Ryan,D., Fisher,M., Williams,D., Dales,N.A. et al. (2004) ACE2
X-ray structures reveal a large hinge-bending motion important for
inhibitor binding and catalysis. J. Biol. Chem., 279, 17996–18007.

29. UniProt Consortium (2019) UniProt: a worldwide hub of protein
knowledge. Nucleic Acids Res., 47, D506–D515.

30. Waterhouse,A., Bertoni,M., Bienert,S., Studer,G., Tauriello,G.,
Gumienny,R., Heer,F.T., de Beer,T.A.P., Rempfer,C., Bordoli,L.
et al. (2018) SWISS-MODEL: homology modelling of protein
structures and complexes. Nucleic Acids Res., 46, W296–W303.

31. Chambers,J., Davies,M., Gaulton,A., Hersey,A., Velankar,S.,
Petryszak,R., Hastings,J., Bellis,L., McGlinchey,S. and
Overington,J.P. (2013) UniChem: a unified chemical structure
cross-referencing and identifier tracking system. J. Cheminform., 5, 3.

32. Kim,S., Chen,J., Cheng,T., Gindulyte,A., He,J., He,S., Li,Q.,
Shoemaker,B.A., Thiessen,P.A., Yu,B. et al. (2019) PubChem 2019
update: improved access to chemical data. Nucleic Acids Res., 47,
D1102–D1109.

33. Wishart,D.S., Feunang,Y.D., Guo,A.C., Lo,E.J., Marcu,A.,
Grant,J.R., Sajed,T., Johnson,D., Li,C., Sayeeda,Z. et al. (2018)
DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res., 46, D1074–D1082.

34. Corsello,S.M., Bittker,J.A., Liu,Z., Gould,J., McCarren,P.,
Hirschman,J.E., Johnston,S.E., Vrcic,A., Wong,B., Khan,M. et al.
(2017) The Drug Repurposing Hub: a next-generation drug library
and information resource. Nat. Med., 23, 405–408.

35. Mendez,D., Gaulton,A., Bento,A.P., Chambers,J., De Veij,M.,
Félix,E., Magariños,M.P., Mosquera,J.F., Mutowo,P., Nowotka,M.
et al. (2019) ChEMBL: towards direct deposition of bioassay data.
Nucleic Acids Res., 47, D930–D940.

36. Li,G. and De Clercq,E. (2020) Therapeutic options for the 2019 novel
coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 19, 149–150.

37. Zumla,A., Chan,J.F.W., Azhar,E.I., Hui,D.S.C. and Yuen,K.-Y.
(2016) Coronaviruses - drug discovery and therapeutic options. Nat.
Rev. Drug Discov., 15, 327–347.

38. Wang,Q., Zhang,Y., Wu,L., Niu,S., Song,C., Zhang,Z., Lu,G.,
Qiao,C., Hu,Y., Yuen,K.-Y. et al. (2020) Structural and functional
basis of SARS-CoV-2 entry by using human ACE2. Cell, 181,
894–904.

39. Nguyen,H., Case,D.A. and Rose,A.S. (2018) NGLview–interactive
molecular graphics for Jupyter notebooks. Bioinformatics, 34,
1241–1242.

40. Kanehisa,M. (2000) KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res., 28, 27–30.

41. Zhou,Y., Hou,Y., Shen,J., Huang,Y., Martin,W. and Cheng,F. (2020)
Network-based drug repurposing for novel coronavirus
2019-nCoV/SARS-CoV-2. Cell Discov., 6, 14.

42. Weininger,D. (1988) SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J. Chem.
Inf. Model., 28, 31–36.

43. Kim,S., Thiessen,P.A., Cheng,T., Zhang,J., Gindulyte,A. and
Bolton,E.E. (2019) PUG-View: programmatic access to chemical
annotations integrated in PubChem. J. Cheminform., 11, 56.

44. Lipinski,C.A., Lombardo,F., Dominy,B.W. and Feeney,P.J. (2001)
Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. Adv.
Drug Deliv. Rev., 46, 3–26.

45. Ghose,A.K., Viswanadhan,V.N. and Wendoloski,J.J. (1999) A
knowledge-based approach in designing combinatorial or medicinal
chemistry libraries for drug discovery. 1. A qualitative and
quantitative characterization of known drug databases. J. Comb.
Chem., 1, 55–68.

46. Veber,D.F., Johnson,S.R., Cheng,H.-Y., Smith,B.R., Ward,K.W. and
Kopple,K.D. (2002) Molecular properties that influence the oral
bioavailability of drug candidates. J. Med. Chem., 45, 2615–2623.

47. Walters,W.P. and Namchuk,M. (2003) Designing screens: how to
make your hits a hit. Nat. Rev. Drug Discov., 2, 259–266.

48. Hubbard,R.E. (2006) Fragment Screening: An Introduction. In:
Hubbard,R.E. (ed). Structure-Based Drug Discovery. Royal Society of
Chemistry, pp. 142-172.

49. Willett,P., Barnard,J.M. and Downs,G.M. (1998) Chemical similarity
searching. J. Chem. Inf. Comput. Sci., 38, 983–996.

50. Rogers,D. and Hahn,M. (2010) Extended-connectivity fingerprints. J.
Chem. Inf. Model., 50, 742–754.

51. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L., Golub,T.R.,
Lander,E.S. et al. (2005) Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression
profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550.

52. Baba,N. and Akaho,E. (2011) VSDK: virtual screening of small
molecules using AutoDock Vina on Windows platform.
Bioinformation, 6, 387–388.



Nucleic Acids Research, 2021, Vol. 49, Database issue D1159

53. Sandeep,G., Nagasree,K.P., Hanisha,M. and Kumar,M.M.K. (2011)
AUDocker LE: a GUI for virtual screening with AUTODOCK Vina.
BMC Res. Notes, 4, 445.

54. Bullock,C., Cornia,N., Jacob,R., Remm,A., Peavey,T., Weekes,K.,
Mallory,C., Oxford,J.T., McDougal,O.M. and Andersen,T.L. (2013)
DockoMatic 2.0: high throughput inverse virtual screening and
homology modeling. J. Chem. Inf. Model., 53, 2161–2170.

55. Dallakyan,S. and Olson,A.J. (2015) Small-molecule library screening
by docking with PyRx. Methods Mol. Biol., 1263, 243–250.

56. Trott,O. and Olson,A.J. (2010) AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem., 31, 455–461.

57. Rose,A.S., Bradley,A.R., Valasatava,Y., Duarte,J.M., Prlic,A. and
Rose,P.W. (2018) NGL viewer: web-based molecular graphics for
large complexes. Bioinformatics, 34, 3755–3758.

58. Wang,E., Sun,H., Wang,J., Wang,Z., Liu,H., Zhang,J.Z.H. and
Hou,T. (2019) End-Point binding free energy calculation with
MM/PBSA and MM/GBSA: strategies and applications in drug
design. Chem. Rev., 119, 9478–9508.


