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Abstract

Inflammation in the central nervous system (CNS) and disruption of its immune privilege are 

major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, 
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experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental 

endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-

dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege 

status of the CNS. Intriguingly, Del-1 expression decreased in chronic active MS lesions and in 

the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE 

severity, accompanied by increased demyelination and axonal loss. As compared to control mice, 

Del-1−/− mice displayed enhanced disruption of the blood brain barrier and increased infiltration 

of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels 

of inflammatory cytokines, including IL-17. The augmented levels of IL-17 in Del-1-deficiency 

derived predominantly from infiltrated CD8+ T cells. Increased EAE severity and neutrophil 

infiltration due to Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17-receptor, 

indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in 

Del-1−/− mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in 

relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS 

protecting from neuroinflammation and demyelination. Our findings provide mechanistic 

underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and 

suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and 

demyelinating disorders.

Introduction

The hallmark of neuroinflammatory demyelinating diseases in the central nervous system 

(CNS), such as multiple sclerosis (MS), is exacerbated inflammatory cell accumulation. 

Under normal conditions, the intact blood-brain barrier (BBB) prevents inflammatory cells 

from extravasating into the CNS. The BBB is thereby a component of the immune-privilege 

status of the CNS. In the course of MS and of its animal model, experimental autoimmune 

encephalomyelitis (EAE), the disruption of the BBB and the infiltration of autoreactive T 

cells, e.g. of the Th1 and Th17 lineages, and their respective cardinal cytokines, IFN-γ and 

IL-17, trigger a strong inflammatory response including the recruitment of further immune 

cells, such as neutrophils, monocytes/macrophages, and the activation of resident microglia, 

thereby leading to myelin damage1, 2.

Regulation of leukocyte-endothelial interactions and immune cell recruitment represent an 

important therapeutic modality in EAE and MS3-5. For example, natalizumab, an antibody 

targeting the interaction between the leukocyte integrin VLA-4 and its endothelial counter-

receptor VCAM-1, is an efficient treatment for MS3, 6, 7. In addition, we and others have 

shown that leukocyte function-associated antigen-1 (LFA-1) is involved in immune cell 

infiltration in the course of EAE progression, and that blocking the interaction between 

LFA-1 and its endothelial counter-receptor ICAM-1 ameliorates the severity of EAE4, 5, 8, 9. 

Whereas the majority of studies so far have focused on the activation of autoreactive and 

inflammatory cells in EAE and MS disease development, very little is known about 

alterations in homeostatic factors of the CNS that may counter-act MS/EAE pathogenesis.

We previously identified the endothelial cell-secreted developmental endothelial locus-1 

(Del-1) as a novel endogenous homeostatic anti-inflammatory factor that interferes with 
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leukocyte integrin beta2-integrin-dependent inflammatory cell adhesion to the 

endothelium10-14. Moreover, we recently showed that IL-17 can downregulate endothelial 

Del-1, thereby promoting LFA-1-dependent neutrophil recruitment and inflammatory bone 

loss15. Consistently, decreased Del-1 expression in men and mice was associated with 

elevated IL-17-dependent inflammation and inflammatory bone loss15.

Intriguingly, the highest expression of Del-1 has been observed in the CNS12 and Del-1 is a 

candidate MS susceptibility gene16. We have thus hypothesized that Del-1 acts as an 

endogenous homeostatic CNS factor that contributes to the immune privilege status of the 

CNS. This hypothesis is strongly supported by our present findings that Del-1 expression is 

reduced in MS and EAE, whereas Del-1-deficiency is associated with enhanced BBB 

disruption, an elevated inflammatory response and exacerbated EAE disease severity 

featuring increased demyelination.

Materials and Methods

Antibodies and Reagents

Antibody to mouse CD31 (clone 2H8) was purchased from AbDSerotec (Kidlington, UK) 

and rabbit polyclonal Antibody to NeuN was from Millipore (Darmstadt, Germany). 

Antibodies to neurofilament 200 and MBP were from Abcam (Cambridge, UK). 

Monoclonal antibody to β-gal (clone GAL-13) was from Sigma (St. Louis, MO). PE-

conjugated anti-mouse CD45 (clone 30-F11), APC-conjugated anti-mouse CD11b (clone 

M1/70) and PE-conjugated anti-mouse Ly6G (clone 1A8) were from BD Biosciences 

(Heidelberg, Germany). FITC-conjugated anti-mouse CD4 (clone GK1.5) and PerCP-

conjugated anti-mouse CD8 (clone 53-6.7) were from Miltenyi Biotec (Bergisch Gladbach, 

Germany). APC-conjugated anti-mouse F4/80 (clone BM8), FITC-conjugated anti-mouse 

IL-17A (clone eBio17B7) and APC-conjugated anti-mouse IFN-γ (clone XMG1.2) and 

FITC-conjugated anti mouse CD45 were from eBioscience (Frankfurt, Germany). Rat anti-

mouse CD8α (clone 53-6.7) was from Novusbio (Littleton, CO). Rabbit polyclonal antibody 

to IL-17 was from Abcam (Cambridge, UK). Goat anti-rat Alexa 568 and goat anti-rabbit 

Alexa 488 were from Life Technologies (Darmstadt, Germany). Del-1-Fc was constructed, 

expressed, and purified as previously described17.

Mice and induction of EAE

Del-1−/− mice, IL-17RA−/− and Del-1−/−IL-17RA−/− in the C57BL/6 background were 

previously described15. Animal experiments were approved by the Landesdirektion Sachsen, 

Germany. Nine to twelve week old female mice were subcutaneously injected with 200 μg 

of MOG35-55 peptide (American Peptide Company, Sunyvale, CA) in incomplete Freund’s 

adjuvant (Sigma) containing 500 μg inactivated Mycobacterium tuberculosis H37RA (Difco 

Laboratories, Detroit, MI), immediately followed by intraperitoneal injection of 400 ng 

pertussis toxin (Merck, Darmstadt, Germany), following previous protocols4, 18. Two days 

later, the same quantity of pertussis toxin was injected. In the course of EAE development, 

mice were scored daily according to the following scale: 0, no clinical sign; 1, limp tail or 

hind limb weakness; 2, limp tail and hind limb weakness; 3, limp tail and unilateral hind 
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limb paralysis; 4, limp tail and bilateral hind limb paralysis; 5, four leg paralysis; 6, 

moribund or dead.

Relapsing and remitting EAE was induced in SJL/J mice (Charles River) that were 

immunized with 100 μg proteolipid protein peptide 139-151 (PLP139-151; Genemed 

Synthesis) emulsified in complete Freund’s adjuvant with 6 mg/ml Mycobacterium 

tuberculosis (Difco). Pertussis toxin (200 ng) was intraperitoneally injected into the mice on 

the day of immunization and 2 days later. 68 μg Del-1-Fc per mouse was intraperitoneally 

administered daily for four consecutive days after remission of first clinical RR-EAE attack. 

An equimolar amount of recombinant human IgG Fc (control-Fc; R&D Systems) was 

administered into control animals. All animals were kept under standard conditions and had 

access to water and food ad libitum. The clinical scores were measured by a blinded 

investigator using the following scoring system: 0, no abnormality; 1, limp tail tip; 2, limp 

tail; 3, moderate hind limb weakness; 4, complete hind limb weakness; 5, mild paraparesis; 

6, paraparesis; 7, heavy paraparesis or paraplegia; 8, tetraparesis; 9, quadriplegia or 

premoribund state; 10, death. Relapsing-remitting experiments were approved by the 

Landesamt für Natur, Umwelt und Verbraucherschutz, Nordrhein-Westfalen, Germany.

Further detailed Methods (Cell culture, Immunohistochemistry, Isolation of CNS 

inflammatory cells and flow cytometry analysis, Intracellular cytokine staining, In vivo BBB 

permeability assay, Real-time RT-PCR, Statistical analysis) are included in the 

Supplementary Information.

Results

Del-1 expression in the inflamed CNS of MS patients and of mice subjected to EAE

We have previously shown that the highest expression of the endogenous anti-inflammatory 

factor, Del-1, is found in the brain12. Here, we set out to analyze the expression of Del-1 in 

the brain in detail. To this end, we first examined the expression pattern of Del-1 by 

performing β-galactosidase (β-gal) staining in the brain of wild-type (WT) and Del-1−/− 

mice. It should be noted that Del-1−/− mice contain a LacZ knock-in and the LacZ gene is 

controlled by the Del-1 promoter, thereby serving as a reporter for Del-1 expression12. 

Del-1−/− brains displayed abundant β-gal-staining, especially in the cerebellum and the 

hippocampus, whereas as expected no β-gal staining could be detected in WT brains (Figure 

1a). Given the expression of Del-1 in endothelial cells in several other tissues12, 15, 19, 20, 

endothelial cells in the brain were expectedly positive for Del-1 (Supplementary Figure 

S1a). Moreover, we identified neuronal cells, characterized by NeuN staining, as a novel 

cellular source of Del-1 expression (Supplementary Figure S1b). In addition, the expression 

of Del-1 in neuronal cells was verified by using the human SH-SY5Y neuroblast cell line, 

which displayed strong Del-1 expression (Supplementary Figure S1c). Together, these data 

demonstrate for the first time that, besides endothelial cells, neuronal cells are a source for 

Del-1 in the CNS.

A previous whole genome association study implicated Del-1 as a candidate MS 

susceptibility gene16. We therefore investigated the regulation of Del-1 expression in EAE 

and MS. Quantitative PCR analysis demonstrated that Del-1 mRNA was downregulated in 
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chronic active MS lesions, whereas Del-1 expression in chronic-inactive MS lesions was not 

significantly changed, as compared to samples from healthy control brain (Figure 1b). 

Consistently, Del-1 mRNA expression was decreased in the inflamed spinal cord of mice 

after induction of EAE (Figure 1c). Together, these data indicate that Del-1 expression is 

reduced in the course of human MS and murine EAE.

Del-1 deficiency increases EAE severity

Our findings so far suggested that the reduction of Del-1 expression may be associated with 

the development of neuroinflammatory and demyelinating disorders, such as MS or EAE. 

To address this hypothesis, we assessed the development of EAE in Del-1-deficient and -

proficient mice. Strikingly, Del-1−/− mice displayed significantly increased EAE severity in 

the effector phase of the disease, as compared to WT mice (Figure 2a). Consistent with this 

finding, Del-1−/− mice showed higher extent of demyelination, as assessed by staining for 

myelin basic protein (MBP) (Figure 2b and c) and by luxol fast blue staining 

(Supplementary Figure S2). Moreover, Del-1−/− mice displayed increased axonal damage, as 

assessed by axonal staining with NF200 (Figure 2d), as compared to WT mice. Together, 

Del-1 deficiency increased EAE disease severity associated with increased demyelination 

and axonal damage.

Del-1 deficiency increases inflammation and immune cell infiltration in the CNS in the 
course of EAE

As the number of recruited inflammatory cells correlates with neuroinflammation and EAE 

severity21, 22, and Del-1 is an endogenous negative regulator of leukocyte recruitment10, 12, 

we next assessed inflammatory cell infiltration in the course of EAE. To analyze this in 

detail, we performed flow cytometric analysis, in order to study different immune cell 

populations in the inflamed spinal cord. As immune cell infiltration often precedes clinical 

disease development, we analyzed immune cell populations at the onset of the disease 

(defined as the first day of appearance of clinical symptoms; days 9-13)23, 24 and in the 

effector phase (at the peak of the disease; day 19). Flow cytometric analysis was performed 

for CD4+ T cells, CD8+ T cells, neutrophils as well as recruited monocytes/macrophages. 

We found that Del-1−/− mice had significantly higher numbers of infiltrated neutrophils 

(defined as CD45+F4/80−Ly6G+) at the onset and peak phase of the disease, whereas, 

strikingly, other cell populations, such as CD4+ or CD8+ cells or infiltrated monocytes/

macrophages (defined as CD45highCD11b+ cells)25, 26 were not altered at the onset or peak 

of the disease due to Del-1-deficiency (Figure 3a-f).

Del-1 deficiency increases IL-17 levels and blood-brain barrier breakdown in the CNS in 
the course of EAE

We continued to assess possible mechanisms underlying the enhanced neutrophil infiltration 

in Del-1−/− mice. We and others have shown that IL-17 cytokine is capable of stimulating 

neutrophil accumulation in inflammation15, 27, 28. Moreover, as we have shown previously, 

IL-17 could decrease endothelial Del-1 expression in vivo and in vitro15, whereas IL-17 

levels were elevated in Del-1-deficiency15. We therefore assessed, whether IL-17 levels 

were upregulated in Del-1-deficiency in the course of EAE. IL-17 expression was increased 
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in Del-1−/− mice (Figure 4a). In addition, more pro-inflammatory factors involved in EAE 

pathogenesis, such as IFN-γ, GM-CSF, TNF-α, IL-6 and iNOS, were upregulated in the 

inflamed spinal cord in Del-1-deficiency at the onset of EAE (Figure 4a and 4b). 

Furthermore, multiple pro-inflammatory mediators, such as the neutrophil-recruiting 

chemokine KC, the neutrophil granulocyte chemotactic receptor CXCR2, or further pro-

inflammatory chemokines and cytokines, such as RANTES, MCP-1, IL-1β, TNF-α or IL-6, 

as well as iNOS and CCR2 were significantly increased in Del-1−/− mice as compared to 

WT mice at the peak of EAE disease (Supplementary Figure S3). Together, these findings 

suggest that increased EAE severity in Del-1 deficiency was associated with enhanced 

inflammation in the CNS.

We then set out to identify the source of the elevated IL-17 in the inflamed CNS due to 

Del-1-deficiency. As we found increased neutrophil infiltration in the inflamed spinal cord 

due to Del-1-deficiency and neutrophils have been implicated as a major effector cell type of 

the Th17 immune response, which is strongly implicated in EAE disease pathogenesis28-30, 

we assessed whether the presence of IL-17-producing CD4+ cells (Th17 cells) was altered in 

Del-1-deficiency. To determine whether Th17 cells were altered in Del-1−/− mice upon EAE 

development, we isolated leukocytes from the inflamed spinal cord, re-activated them in 

vitro with MOG and then performed flow cytometric analysis for CD4 and IL-17. 

Unexpectedly, we found no increase in Th17 cells (defined as CD4+IL-17+) in the inflamed 

spinal cords of Del-1−/− mice (Figure 4c). Additionally, numbers of IFN-γ-producing CD4+ 

T cells (Th1) were also not altered by Del-1-deficiency at the onset of EAE (data not 

shown).

However, by this experimental approach, we identified increased numbers of IL-17-

producing CD8+ T cells in the inflamed spinal cord owing to Del-1-deficiency (Figure 4d), 

although the total number of CD8+ T cells in the spinal cord was not enhanced in Del-1-

deficient mice (Figure 3c and 3f). Interestingly, IL-17-producing CD8+ T cells have been 

recently identified as an important cellular player contributing to the pathogenesis of EAE 

and MS31, 32. To verify this finding by an independent approach, we performed histological 

immunofluorescence staining of Del-1-deficient and –proficient inflamed spinal cords for 

IL-17 and CD8. Consistently, we found significantly increased numbers of IL-17-positive 

CD8+ T cells in Del-1-deficient mice, as compared to control Del-1-proficient littermates 

(Supplementary Figure S4). In contrast, by flow cytometry and immunofluorescence 

staining we found that IL-17-production in myeloid cells33 was not elevated in the inflamed 

spinal cord of Del-1-deficient mice (data not shown). Taken together, we found that CD8+ T 

cells (but not Th17 or myeloid cells) are the source of higher IL-17 levels in Del-1-

deficiency.

We then assessed a further possible mechanism that could potentially account for enhanced 

neutrophil infiltration to the inflamed CNS in Del-1-deficiency. The breakdown of the BBB 

in EAE and MS promotes immune cell recruitment34 and, several of the cytokines including 

IL-17 that we found upregulated in the Del-1−/− inflamed CNS have been implicated in BBB 

breakdown in EAE34. To assess permeability of the vessels of the inflamed CNS and, thus 

BBB breakdown, we studied the accumulation of systemically administered sodium 

fluorescein in the spinal cord. Del-1−/− mice displayed increased vascular permeability in 
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the spinal cord upon EAE development, as compared to Del-1-proficient mice (Figure 4e). 

Taken together, both elevated cytokines, including IL-17, and enhanced BBB breakdown 

could account for the increased EAE severity and neutrophil accumulation into the inflamed 

spinal cord in Del-1-deficiency.

Abrogation of IL-17 signaling reverses the increased EAE severity due to Del-1-deficiency

Since we found increased IL-17 levels in the Del-1−/− inflamed CNS, we continued to 

identify whether the IL-17-dependent pathway was responsible for the increased EAE 

severity due to Del-1-deficiency. To this end, we generated Del-1−/−IL-17RA−/− double 

deficient mice. Interestingly, the increased EAE disease severity due to Del-1-deficiency 

was reversed in Del-1−/−IL-17RA−/− mice that developed a much milder EAE disease that 

was comparable to disease development in WT mice (Figure 5a); here it should be noted that 

independent experiments (e.g. as presented in Figure 2a or 5a) demonstrate the well-known 

variability in the time course and intensity of EAE development between experiments35. 

Moreover, Del-1−/− IL-17RA−/− mice showed decreased number of recruited neutrophils but 

no significant alterations in the numbers of CD4+ or CD8+ T lymphocytes, as compared to 

Del-1−/− mice (Figure 5b and 5c). Expression of another cardinal cytokine for EAE 

development, IFN-γ, was also increased in the inflamed spinal cords of Del-1−/− mice 

(Figure 4a). However, the EAE phenotype of Del-1-deficiency was unaffected by anti-IFN-γ 

treatment (data not shown). These data suggest that the increased EAE severity and 

inflammatory cell accumulation due to Del-1-deficiency is, at least in part, due to enhanced 

IL-17-mediated inflammation and neutrophil recruitment.

Administration of Del-1-Fc ameliorates EAE severity

Our findings so far demonstrated enhanced EAE-severity due to Del-1-deficiency. Given 

that Del-1 is a secreted molecule, one could envision that soluble Del-1 could represent a 

therapeutic approach in EAE. In a clinical setting of MS, therapeutic intervention can only 

be started after the onset of the disease, e.g., in an effort to inhibit disease relapse. We 

therefore engaged the relapsing-remitting EAE model in SJL/J mice and assessed the 

therapeutic efficacy of Del-1 administration therein. We have previously shown that Del-1-

Fc fusion protein circulates and exerts anti-inflammatory actions15. Therefore, after the first 

clinical attack, mice were treated systemically with either Del-1-Fc or control-Fc. Strikingly, 

the clinical relapse was considerably ameliorated in mice receiving Del-1-Fc (Figure 5d), 

thus, suggesting that soluble Del-1 could serve as a novel therapeutic approach in MS.

Discussion

The present study identified for the first time that Del-1 is an endogenous homeostatic factor 

of the CNS protecting from neuroinflammation in the course of CNS autoimmunity. Del-1 

limits the immune response and leukocyte recruitment to the inflamed CNS during EAE. 

Del-1−/− mice displayed exacerbated EAE disease severity with increased demyelination. 

Moreover, Del-1 expression was decreased in the inflamed CNS in murine EAE and in 

human chronic-active MS lesions. These novel findings, in combination with those by Goris 

et al. that identified Del-1 as a candidate MS susceptibility gene in a whole genome 
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association study16, suggest that Del-1 acts as an endogenous gatekeeper protecting from 

neuroinflammation.

IL-17 as well as IFN-γ have been strongly implicated in EAE development29, 30, 36-38, 

although inhibition of IFN-γ-dependent signaling has yielded controversial results in 

EAE39-41. In this regard, Del-1-deficiency was associated with elevated IL-17 and IFN-γ, as 

well as with an increase in several pro-inflammatory cytokines. Whereas the increased EAE 

disease severity in Del-1-deficiency was reversible in Del-1−/−IL-17RA−/− mice, blocking 

IFN-γ did not affect EAE severity in Del-1−/− mice. In keeping with the notion that IL-17-

mediated inflammation stimulates neutrophil infiltration in the context of several diseases, 

including EAE15, 27, 28, the increased severity of EAE due to Del-1-deficiency was 

accompanied by enhanced neutrophil accumulation, which was reversed in 

Del-1−/−IL-17RA−/− mice. Moreover, we found increased BBB vascular permeability in 

Del-1−/− mice in the course of EAE; this finding could be related to the IL-17-mediated 

BBB breakdown, published previously34, 42. Our present findings agree with and 

substantiate the reciprocal regulatory loop between IL-17 and Del-1 that we have recently 

described to operate in inflammatory bone loss15. In particular, the IL-17-dependent 

downregulation of endothelial Del-1 promoted inflammatory cell recruitment and 

inflammatory bone loss, whereas Del-1-deficiency was associated with higher IL-17 levels 

and spontaneous inflammatory bone loss15.

Interestingly, the major source of IL-17 upregulation in the inflamed spinal cord of Del-1−/− 

mice was CD8+ T cells, whereas Th17 cells did not seemingly contribute to elevated IL-17 

in Del-1-deficiency. Despite the unabated association of Th17 cells with CNS 

autoimmunity43, 44, the evidence that Th17 cells play a causative role in development of 

CNS autoimmunity is not as strong44, 45. The contribution of IL-17 isoforms and IL-17-

receptor isoforms has been addressed in different studies. IL-17RA−/− or IL-17RC−/− mice 

develop a considerably ameliorated EAE disease46, 47. However, IL-17RA is expressed on 

several CNS cells, such as microglia or astrocytes48, suggesting that IL-17, independent of 

its source, may contribute to CNS pathology. Our data presented here provide a paradigm 

where increased levels of IL-17 and enhanced IL-17-related immunopathology are not 

necessarily associated with elevated Th17 activity. Thus, caution is required when functions 

of the IL-17/IL-17R axis are interpreted; functions of this inflammatory axis do not always 

reflect Th17 activity; likely the actions of the IL-17/IL-17R axis are much broader than 

Th17 actions.

On the other hand, IL-17-producing CD8+ T cells have been identified in human MS 

lesions49 and their contribution to the pathogenesis of murine EAE has been established 

recently31. We propose here that the absence of the endogenous homeostatic factor Del-1 

results in higher inflammation with upregulation of several cytokines including IL-17, which 

derives from CD8+ T cells but not from Th17 cells, and that IL-17 can aggravate EAE by 

several mechanisms including enhanced neutrophil accumulation. Murine EAE models 

favor the induction of CD4+ T cell-triggered autoimmune mechanisms, whereas CD8+ T 

cells actually prevail in human MS lesions, which has been discussed as a potential reason 

for the frequent failure to translate therapeutic approaches from mice to men32. Del-1-

deficient mice develop a CD8+IL-17+ T cell-biased EAE; thus, EAE in Del-1-deficient mice 
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may represent a more relevant mouse model for human MS, which merits further 

investigation.

Intriguingly, we show for the first time that besides endothelial cells, at least neuronal cells 

also express Del-1 in the CNS. Whether Del-1, besides its anti-inflammatory role to limit 

leukocyte infiltration, could directly regulate neuronal cell functions was not addressed in 

our present study and requires further investigation. Nevertheless, the previous identification 

of Del-1 as a potential MS susceptibility gene16, together with our present findings that its 

levels are reduced in chronic active MS lesions in combination with the increased EAE 

development in Del-1−/− mice suggest that decline in the expression or function of Del-1 

may be a predisposing factor for MS. We therefore propose Del-1 as an important 

endogenous component of the immune privilege status of the CNS. Interestingly, Del-1 was 

recently identified also as a disease susceptibility gene in Alzheimeŕs disease50, suggesting 

that the protective function of Del-1 against neuroinflammation may be relevant in several 

CNS pathologies, which is worth assessing in future studies.

Finally, our findings suggest that Del-1 may provide a novel platform for developing 

effective therapeutic approaches for MS. As a proof of principle, we systemically treated 

EAE mice with Del-1-Fc, which we have previously shown to exert anti-inflammatory 

actions15. To better imitate the clinical setting, we chose the relapsing-remitting EAE model 

in SJL/J mice. Strikingly, Del-1-Fc administration after the first clinical attack resulted in a 

major amelioration of the EAE relapse. Although these data indicate that soluble Del-1-

based therapeutic approaches may be promising for the treatment of EAE/MS, this 

possibility will have to be meticulously scrutinized in further preclinical models, for instance 

in non-human primates, before translating to a clinical scenario.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Del-1 is expressed in the CNS and down-regulated in neuroinflammation
(a) Del-1 is constitutively expressed in the CNS. Frozen sections obtained from 8-week old 

mice were subjected to staining for β-galactosidase to assess Del-1 expression. Staining of 

whole brain sections from a WT (left panel) and a Del-1−/− (right panel) mouse are shown. 

Del-1−/− mice contain a LacZ knock-in, whereby LacZ gene is controlled by the Del-1 

promoter and thereby serves as a reporter for Del-1 expression. The white arrow indicates 

granular layers in cerebellum and I, II, III indicates hippocampus zone, subventricular zone, 

and choroid plexus, respectively. The stitched mosaic microscope images are shown. Scale 

bar = 2 mm. (b) Human Del-1 mRNA levels assessed in brain tissues from healthy controls 

or patients with multiple sclerosis (MS). The mRNA expression was normalized against 18S 

and the gene expression of white matter from healthy controls was set as 1. Data are means 

± SEM (n = 5-6/group). (c) Mouse Del-1 mRNA levels assessed in the spinal cords from 

control or experimental autoimmune encephalomyelitis (EAE) mice on day 19 after MOG-

immunization. 18S was used for normalization of mRNA expression and the gene 

expression of control mice was set as 1. Data are means ± SEM (n = 5-8 mice/group). * P < 

0.05; n.s. not significant.
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Figure 2. Del-1-deficiency aggravates EAE
(a) Clinical scores of WT and Del-1−/− mice after MOG-immunization. Data are means ± 

SEM (n = 6). A representative experiment is shown, similar results were observed in at least 

3 additional independent experiments. (b-d) Myelin and axonal staining are shown in the 

spinal cords of WT and Del-1−/− mice on day 19 after MOG-immunization. (b) Sections 

were stained for MBP. The stitched mosaic microscope images are shown. Scale bar = 1 mm 

(c) The intensity of MBP immunostaining was assessed by ImageJ software; the intensity of 

MBP staining of WT mice represents the 100% control. Data are means ± SEM (n = 3 mice/

group). (d) Sections were stained for neurofilament 200 to assess for neuronal damage. * P < 

0.05.
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Figure 3. Del-1 deficiency is linked to increased recruitment of neutrophils to the inflamed spinal 
cord in the course of EAE
Leukocytes were isolated from the spinal cords of WT and Del-1−/− mice at the peak (a-c) or 

onset (d-f) of EAE disease. Flow cytometry analysis was performed for recruited 

monocytes/macrophages (CD45highCD11b+cells; a and d), neutrophils 

(CD45+F4/80−Ly6G+; b and e), as well as CD4+ T cells and CD8+ T cells (c and f) at the 

peak (a-c; n = 15-17 mice/group) and onset (d-f; n = 8-10 mice/group) phases of EAE. The 

numbers of the respective cell types are shown as % of control; the absolute cell number of 

each cell type in WT mice was set as the 100% control. Data are means ± SEM. *P < 0.05; 

n.s. not significant.
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Figure 4. Increased IL-17 levels and accumulation of CD8+IL-17+ T cells as well as elevated 
blood brain barrier permeability owing to Del-1 deficiency in the course of EAE
(a, b) mRNA levels of (a) IFN-γ and IL-17 and (b) of further inflammatory mediators (IL-6, 

TNF-α, iNOS, and GM-CSF) are shown in the spinal cords of WT (open bars) and Del-1−/− 

(filled bars) mice at the onset of EAE. The mRNA expression was normalized against 18S 

and the gene expression of spinal cords of WT was set as 1. Data are means ± SEM (n = 6-8 

mice/group). (c, d) Leukocytes were isolated from inflamed spinal cords at the peak of EAE, 

were re-stimulated with MOG in vitro, stained for intracellular IFN-γ and IL-17, together 

with CD4 and CD8 antibodies and then analyzed by flow cytometry. The numbers of the 
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respective cell types are shown as % of control; the absolute cell number of each cell type in 

WT mice was set as the 100% control. Data are means ± SEM (n = 13-15 mice/group). (e) 

Blood-brain barrier (BBB) permeability was assessed by NaFlu uptake in the spinal cords of 

WT and Del-1−/− mice at day 15 of EAE. The NaFlu uptake is shown; the NaFlu uptake of 

WT mice was set as 1. Data are means ± SEM (n = 6-7 mice/group). * P < 0.05.
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Figure 5. The phenotype of Del-1 deficiency in EAE is reversed by IL-17R deficiency and Del-1-
Fc administration ameliorates relapsing-remitting EAE
(a) Clinical scores of WT, Del-1−/− and Del-1−/−IL-17R−/− mice after MOG-immunization. 

Data are means ± SEM (n = 5-8). * and #: P < 0.05. *: indicates the statistical significance 

between Del-1−/− and WT mice; #: indicates the statistical significance between Del-1−/− 

and Del-1−/−IL-17R−/− mice. (b-c) Leukocytes were isolated from the spinal cords of mice 

on day 19 after MOG-immunization and total leukocytes were counted and then analyzed by 

flow cytometry. Infiltrated neutrophils, defined as CD45+F4/80−Ly6G+, as well as CD4+ T 

cells and CD8+ T cells are shown. The numbers of the respective cell types are shown as % 
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of control; the absolute cell number of each cell type in Del-1−/− mice was set as the 100% 

control. Data are means ± SEM (n = 3-8 mice/group). * P < 0.05; n.s. not significant. (d) 

Relapsing-remitting EAE was induced in SJL/J mice with PLP. Clinical scores of mice 

treated with Del-1-Fc or control-Fc for four consecutive days after the first clinical EAE 

attack. The arrows indicate the days of administration. Data are means ± SEM (n = 6 mice/

group). * P < 0.05.
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