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Abstract: Multiple sclerosis (MS) is a neurological disorder that progressively distorts the myelination
of axons within the central nervous system (CNS). Increased core body temperature or metabolism as
a result of exercise are common causes of short-term exacerbations of neurological symptoms in MS.
About 60–80% of patients with MS experience a worsening of their symptoms when exposed to heat.
In comparison, less data are available on the relationship between ambient meteorological conditions
(e.g., temperature and relative humidity (RH)) and fluctuations in such variables in relation to MS
symptoms. Thus, this study examined associations between time-lagged exposure to meteorological
conditions and risk of a clinic visit due to MS among US veterans between 2010 and 2013. This study
leveraged data from the Veterans Affairs (VA) and National Climactic Data Center (NCDC) for the
continental US, partitioned into eight climate zones. We used a case crossover design to assess the risk
of a MS clinic visit with respect to several meteorological conditions. Location-specific time-lagged
daily (ambient) exposure to temperature, RH, and temperature variations (standard deviation (SD)
of temperature) were computed (up to 30 days) for each case (i.e., day of MS visit) and control (a
randomly assigned date ± 90–270 days prior to visit). Statistical analyses were conducted to examine
independent associations between the selected meteorological conditions and risk of MS visits at the
national and regional levels. A total of 533,066 patient visits received a MS diagnosis (International
Classifications of Diseases (ICD)-9 code = 340). The Northeast (NE) and Upper Midwest (UMW)
regions reported the highest frequency of clinic visits due to MS. Clinic visits were 9% more likely
to occur in the spring, summer, and fall months (March–October) than in the winter (OR = 1.089;
95% CI = 1.076–1.103; p < 0.01). In the univariate analyses, the SD of temperature, temperature, and
temperature–RH interaction were positively associated with an elevated risk of a MS clinic visit, while
the RH was negatively associated with the risk for a clinic visit. In multivariate analyses, the strongest
association of a MS clinic visit was observed with the SD of the temperature (OR = 1.012; 95% CI
1.008–1.017; p < 0.01). These associations between MS clinic visits and meteorological conditions
varied across climate regions, with the strongest associations being observed in the LMW, UMW,
DSW, and NE zones. The SD of the temperature was again the strongest associated predictor when
examined regionally. Temperature variations and temperature–RH interactions (a proxy of the heat
index) showed significant associations with MS clinic visits. These associations varied across climate
regions when examined geographically. Our findings have implications for the management of MS
in severe or recurrent cases, especially considering the impending changes in the daily temperature
variations and intensity of the heatwaves expected with the intensification of global warming.
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1. Introduction

Multiple sclerosis (MS) is a neurological disorder characterized by disturbed axon
myelination within the central nervous system (CNS) leading to altered, slowed, or blocked
conduction pathways of CNS axons [1]. MS is typically diagnosed during the young adult-
hood years (mean age of diagnosis of 35 years), and is considered to be the most common
disabling disease of young adults without an underlying traumatic etiology [2]. While
the pathogenesis of the disease is not entirely understood, MS is believed to stem in part
from a T-cell mediated autoimmune process—inflammatory infiltrates dominated by MHC
class 1 CD8+ T-cells seen in tissue biopsy of individuals with MS are thought to directly
lead to oligodendrocyte damage and demyelination as a result of local inflammation [2].
When immune responses are activated in individuals with MS, various changes are noted
in the CNS including inflammation, demyelination, loss of axons and disarrangement [1].
Overall, these histopathologic changes can manifest as a myriad of paroxysmal symptoms
(e.g., fatigue, reduced vision, double vision, muscle weakness, loss of sensation, spastic
bladder) which can range from mild to severe [1].

Several factors have been implicated in the risk for the development of MS (e.g.,
incidence), including female gender, specific ethnicities, smoking, Epstein-Barr virus (EBV)
infection, lower levels of vitamin D, and certain HLA gene haplotypes [3,4]. Interestingly,
environmental factors have also been implicated in disease pathophysiology [1]. For
example, a greater distance from the equator has been implicated in a higher MS prevalence
compared to areas near the equator [5,6]. Supporting this idea, the prevalence of MS in
Europe is over 100 per 100,000 persons, as compared to 10 per 100,000 persons in areas
near the equator [5].

Literature has also examined how environmental factors relate to risk for MS symp-
toms (e.g., exacerbations), such as heat stress (e.g., increased core body temperature), with
upwards of 60–80% of individuals with MS reporting worsening of symptoms when ex-
posed to heat stress such as during physical activity [1,7]. Exacerbation of MS symptoms
has been previously termed as Uhthoff’s phenomenon and can be described as transient
worsening of neurological function in symptoms of multiple sclerosis (e.g., worsening
visual acuity) in response to increases in core body temperature, hypothesized to be sec-
ondary to temperature-sensitive conduction blockade of partially demyelinated axons in
MS lesions within the CNS [8]. While this connection is not entirely understood, hypotheses
have been raised as to why heat stress may exacerbate MS [9]. Most notably, genetic varia-
tion in proteins related to adaptability to environmental factors may connect heat stress
and MS. For example, heat shock proteins (HSP), proteins that act as chaperones (assisting
in folding of newly synthesized proteins and degrading of unstable or misfolded proteins),
are known to be upregulated during stress (e.g., sudden exposure to heatwave, hypoxia,
and exposure to free-radicals or toxic metal ions) in order to maintain cellular homeostasis
and survival [4,10]. Literature has consistently reported a relationship between increased
synthesis of HSP70 and MS, [9,10]—as MS lesions trigger inflammation and oxidative
stress in the CNS, the expression of several HSP proteins including HSP70 increases, and
this increased release of HSP70 is thought to promote the T-cell immune response by
either acting as an adjuvant for myelin peptides or as a proinflammatory cytokine [10,11].
This stress-induced wave of inflammation may explain the noted relationship between
elevated body temperature and worsened MS symptoms. Less studied than HSP70, a null
mutation in the gene encoding PLP1 (proteolipid protein 1), which normally functions
to regulate thermal hyperalgesia, has also been associated with axonal degeneration and
development of MS [12,13]. While the exact mechanism is less studied than that of HSP,
animal models have shown that PLP1 mutations lead to apoptosis of oligodendrocytes
(similar to T-lymphocyte mediated toxicity in MS) due to accumulation of PLP1 in the
endoplasmic reticulum and the induction of the unfolded protein response (UPR), leading
to demyelination and onset of MS-like symptoms [12,13].

Less established are the associations between MS and ambient environmental condi-
tions, such as temperature, relative humidity (RH), and temperature variation. A handful
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of studies have examined these links, namely those regarding ambient temperature, with
varying findings. It has been reported that up to 60–80% of MS patients experience wors-
ening of symptoms (triggered short-term exacerbations of clinical signs symptoms of MS)
when exposed to higher ambient temperature and/or increased core body temperature
such as during exercise [1]. Supporting this statistic, a 5-year retrospective Irish study
(1981–1985) of 87 patients with MS found that the duration of exacerbation was positively
correlated with ambient temperature (r = 0.83, p < 0.001) [14]. Furthermore, an American
study of 40 individuals with MS and 40 controls found that cognitive status (a combination
score of processing speed [via Symbol Digit Modalities Test (SDMT)] and learning/memory
[via Selective Reminding Test (SRT)]) in patients with MS was worsened when outdoor
temperature increased (r = −0.45, p < 0.05) while this relationship was not seen in controls
(r = 0.0, p = 0.98), with longitudinal cognitive decline over time (scores at baseline vs. after
6 months) as patients were exposed to prolonged increased ambient temperature (r = −0.39
p = 0.01) [15]. Results have not been entirely cohesive—a French study that examined MS
hospital admissions over a 3 year period (2000–2003) which included a summer heatwave
found that while a higher frequency of MS visits occurred during the summer compared to
winter (OR = 1.04 vs. 0.85, p = 0.03), the associations between ambient temperature with
MS admissions and MS exacerbations were insignificant (data not provided; p > 0.05) [16].
Similarly, a 14 year study (2001–2014) of 2000 patients in Iran found that both RH and
ambient temperature in this area were not significantly related to risk of MS clinic visits
(data not provided) [17].

Overall, while the associations between MS and environmental factors have been
explored, findings have been variable across the literature. A more robust understanding
of how exposure to temperature, RH, and temperature variation are warranted, especially
considering that global warming is expected to lead to more erratic and extreme weather
patterns, including increased frequency and intensity of heat waves [18]. In order to
advance this literature, we leveraged national health and weather datasets to examine the
associations between ambient meteorological conditions and MS clinic visit risk both across
the continental US and within domestic climate regions. Our central hypothesis was that
changes in ambient meteorological conditions, namely increase in ambient temperature,
temperature variation, and simultaneous increase in temperature and RH, increased the
risk of MS clinic visit due to exacerbation of the disease symptoms and signs. We further
hypothesized that this risk varied across regions.

2. Materials and Methods
2.1. Study Population

This study included all veterans who visited any US Veteran Affair hospitals and/or
clinics (VA) located in the continental US between January 2010 to December 2013. All
veterans who were diagnosed with MS (by International Classification of Diseases, ICD-9
340) were included in this retrospective analysis. A total of 27,290 unique patients were
seen during this period with most of them having multiple visits. During this period,
a total of 530,075 visits received a MS ICD-9 code. Approval was obtained from the
Miami VA Institution Review Board to allow the retrospective analysis of patient data (IRB
protocol number: 3011.01). The study was conducted in accordance with the principles of
the Declaration of Helsinki and complied with requirements of the US Health Insurance
Portability and Accountability Act.

2.2. Method

We used a case-crossover design in which each visit (or encounter) to a VA clinic had a
control on a randomly identified date between 90 to 270 days prior to the date of MS coded
clinic visit. All data included the date and time of clinic visit, location of the clinic as well
as patient’s demographics. All encounters were geocoded using latitude and longitude
coordinates of each patient’s treatment facility. We used ArcGIS 10.8 [19] to display the
distribution of MS clinic visits in the US. Since we did not have access to veteran population
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data for the catchment of each VA clinic/hospital, we computed MS visit encounters per
10,000 veterans visiting each clinic.

2.3. Meteorological Data

All meteorological data from 2009 to 2014 were acquired from the National Climactic
Data Center (NCDC) [20]. Although the health data were from January 2010, we needed
weather data for control dates randomly assigned on days within 3 and 9 months prior to
the diagnosis dates. One of the main assumptions of our study is that all subjects seen in a
VA clinic on a given day had the same ambient meteorological conditions around the clinic
location on that day. Thus, we identified all meteorological stations within 0.75◦ distance
(=82.5 km at equator) from the location of each clinic, and then computed daily averages
and standard deviations (SD) of hourly measurements of the selected meteorological
conditions for each day. Based on date and zip code both meteorological and clinical
data were integrated, assigning daily meteorological data to all MS visits a VA clinic on
a given day and corresponding controls days. Once the data were collocated, daily time-
lagged exposures were computed for all (clinic) encounters who received multiple sclerosis
diagnosis (MS clinic visits here to after) and controls for up to 30 days. In mathematical
form, if xijt is a meteorological condition, x, at/around a given zip code, j, on a given day, t,
then time-lagged exposure for a given lag (l) is xij(t-l), i.e., the meteorological condition lth

day before the diagnosis day for an encounter and the day randomly chosen as a control
for a given MS visit.

2.4. Statistical Analysis

All analyses were conducted in STATA (StataCorp LLC, College Station, TX, USA) [21].
We conducted three sets of analyses: descriptive analyses of MS clinic visits by seasons and
climate regions, multivariate analyses of the associations of meteorological conditions with
MS clinic visits and variations in the associations of meteorological conditions (1) ambient
temperature, (2) standard deviation (SD) of temperature [a proxy of temperature variation],
(3) relative humidity (RH), and 4) temperature-RH interaction [a proxy of heat index] with
MS clinic visits across climate regions in the US. We then stratified zip codes based on the
eight climate regions: Desert Southwest (DSW), Lower Midwest (LMW), Northeast (NE),
Pacific Northwest (PNW), Pacific Southwest (PSW), Southeast (SE), Subtropical (ST) and
Upper Midwest (UMW). We conducted analyses for each climate region separately to assess
region-specific association of time-lagged meteorological conditions with MS clinic visits.
We used multivariate logistic regression adjusting for seasonality and weekday/weekend
effects. We used cluster option for zip code and day assuming correlation in the occurrence
of MS clinic visits within a zip code on a given day, and computed robust standard error
(see logit function in STATA with cluster and robust options) [21]. We computed model
parameters for each lag separately. Thus, we computed coefficients of each variable for
each lag up to 30 days, which allowed us to examine changes in associations of meteoro-
logical conditions with the increase in time lag. For all models, statistical significance was
considered at p ≤ 0.05, and likelihood of the occurrence of MS visit was reported as odds
ratio (OR) with corresponding 95% confidence intervals (CI).

3. Results
3.1. Study Population & Clinic Visits

Between January 2010 and December 2013, a total of 27,290 patients made 530,075 visits
and received an ICD-9 code for MS, all which were considered as cases for the purposes of
our analyses. The average number of clinic visits per patient was 19.4, suggesting that MS
patients required frequent access to medical care. The majority of the study population
consisted of elderly, white, non-Hispanic males (mean age 59.5 years, 81.2% male, 92.0%
non-Hispanic, 75.2% white, and 18.3% black).

Nationally, there were 39.4 clinic visits per 10,000 patient visits to VA clinics during
the study period. However, visit rates varied across geographic regions. The North-
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east and PNW zones, along with some areas of the Midwest regions, showed relatively
higher rates of MS clinic visits (Figure 1; Table 1). The highest MS clinic visit rate of 67.6
per 10,000 patient visits was observed in PNW, followed by the NE (64/10,000) and ST
(46.8/10,000 patients) zones. The lowest MS clinic visit rate was observed in the LMW
(15.1 MS clinic visits/10,000 patients) followed by UMW (24.6 MS clinic visits/10,000 pa-
tients) zones.
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Table 1. Region-specific MS clinic visits by US veterans, 2010–2013 (number of MS visits/per 10,000
patient visits).

Region Mean CI

DSW 25.4 9.7–41.1

LMW 15.1 11.2–18.9

NE 64.0 −16.7–144.8

PNW 67.6 −24.0–159.2

PSW 25.2 3.1–47.2

SE 41.7 −10.3–93.7

ST 46.8 −19.0–112.5

UMW 24.6 13.4–35.8

Total 39.4 17.6–61.1
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The visit rates also varied across seasons (Table 2). Nationally, the highest frequency of
MS clinic visits was observed in March (8.9%), followed by August (8.8%). In comparison,
the winter months had a relatively low frequency of MS clinic visits as compared to other
months, e.g., November (8.1%), December (7.7%), and January (8.0%). There were also
regional variations in the frequency of MS clinic visits in the DSW, LMW, PNW, and
SE zones. The highest frequency of MS clinic visits occurred in March (8.9%), followed
by August (8.8%) (Table 2). Among all the regions, the desert SW reported the highest
frequency of MS clinic visits (9.2%) in August. Overall, there are two seasonal peaks of MS
clinic visits: spring (March and April) and early fall (August and September).

Table 2. Monthly distribution MS clinic visits by US veterans, 2010–2013 in the US regions (% of total MS visit in the region).

Month DSW LMW NE PNW PSW SE ST UMW Total

1 8.2 7.7 7.9 8.1 8.3 7.8 8.6 8.0 8.0

2 7.9 7.5 7.4 7.7 7.9 8.0 7.8 7.6 7.7

3 8.9 8.8 9.0 8.8 9.1 8.9 9.0 8.9 8.9

4 8.3 8.6 8.6 8.3 8.6 8.2 8.4 8.5 8.5

5 8.4 8.6 8.8 8.7 8.7 8.3 8.4 8.8 8.6

6 8.5 8.5 8.5 8.5 8.5 8.3 8.3 8.4 8.4

7 8.3 8.4 8.3 8.0 8.3 8.3 8.0 8.4 8.3

8 9.2 9.0 8.6 9.0 8.7 9.0 8.8 8.9 8.8

9 8.3 8.4 8.4 8.2 8.1 8.3 8.1 8.2 8.3

10 8.6 8.9 8.8 8.8 8.4 8.8 8.5 8.6 8.7

11 8.0 8.1 8.1 8.2 7.9 8.3 7.9 8.0 8.1

12 7.6 7.4 7.6 7.8 7.7 7.7 8.0 7.8 7.7

Total 100 (53,191) 100 (54,100) 100 (119,781) 100 (44,443) 100 (52,531) 100 (56,871) 100 (55,128) 100 (94,030) 100 (530,075)

3.2. Seasonal and Regional Trends in Meteorological Conditions

The mean temperature in the US was 13.3 ◦C (SD 10.4 ◦C), and the mean RH was 68.0%
(SD 16.3%). Stratifying these data by seasonality, the winter and fall months accounted for
the highest standard deviations in the mean temperature (higher dispersion or fluctuations
in the temperature), while the spring and summer months showed comparatively higher
fluctuations in the RH (Table 3). These data were also examined by region—among all the
climate zones, the ST region accounted for the least variation in temperature (mean 21.9 ◦C,
SD 6.2 ◦C), followed by the PSW (mean 16.4 ◦C, SD 7.3 ◦C) and the PNW (mean 9.6 ◦C, SD
8.3 ◦C) (Table 3). On the other hand, the ST region accounted for the least variation in RH
(mean 74.5%, SD 9.8%) (Table 4). However, this region had the highest average among all
the regions. The UMW (mean 8.5 ◦C, SD 11.2 ◦C), LMW (mean 12.3 ◦C, SD 10.8 ◦C), and
DSW (mean 16.0 ◦C, SD 10.4 ◦C) regions exhibited the highest variations in temperature,
while the PSW (mean 54.1%, SD 23.2%) and PNW (mean 68.3%, SD 18.5%) zones showed
the highest variation in RH. Although the PSW had the highest variation in RH, this region
registered the lowest average RH among all the regions (Table 4). .

3.3. Nationwide Associations

In order to examine the nationwide associations between the MS clinic visit rates
and each of the four variables (hourly ambient temperature, SD of hourly temperature,
RH, and temperature–RH interactions), our analyses began with univariate analyses, with
adjustments for weekend–weekday effects only (Figure 2 and Table S1 in the Supplementary
Online Materials (SOM)). Across the US, independent exposure to all four variables showed
significant associations with MS clinic visit risk at varying magnitudes and directions.
Although there was a slight decline in the associations of all four meteorological conditions
over a time lag, all four associations were significant for each of the 30-day lags. For
the ambient temperature, a positive association was observed, with a 10 ◦C increase in
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temperature on a given day being associated with a 0.3% increased likelihood of a clinic
visit (OR = 1.003; 95% CI 1.002–1.004; p < 0.01). The SD of the temperature represented
the strongest association with MS clinic visits among all the meteorological conditions,
with a one SD increase in the temperature on a given day being associated with as high
as a 1.6% increased likelihood of a MS clinic visit on that day. However, the strength of
this association changed with the increase in time lag, starting from its peak association
on day lag 0 (OR = 1.016; 95% CI = 1.012–1.019; p < 0.01, each) and falling to its lowest
value on day lag 30 (OR = 1.006; 95% CI = 1.002–1.010; p < 0.01). In comparison, a
negative association with the RH was noted, with a 10% increase in RH on a given day
being associated with a 0.08% lower likelihood of a MS clinic visit risk (OR = 0.9992; 95%
CI = 0.99893–0.99952; p < 0.001). Finally, for the temperature–RH interaction effect (e.g.,
heat index), a simultaneous 10 ◦C increase in temperature and 10% increase in RH was
associated with an increased risk, although to a much lesser degree than the other variables,
with its strongest effect as OR = 1.00004; 95% CI = 1.000034–1.000047; p < 0.01. When
stratifying these relationships by time of year, it was noted that the seasonality was also
significantly associated with MS clinic visits—visits were 8.9% more likely to occur in the
spring, summer, and fall months (March–October) in comparison to the winter (OR = 1.089;
95% CI 1.076–1.103; p < 0.01).

Table 3. Monthly average temperature (◦C) in the United States and US regions by month, 2009–2014 (standard deviation
in parenthesis).

Month US DSW LMW NE PNW PSW SE ST UMW

Jan 1.5 (9.0) 4.9 (7.8) −2.1 (6.9) −2.1 (6.5) 1.4 (6.6) 9.4 (5.2) 5.1 (6.8) 14.7 (6.3) −6.3 (7.2)
Feb 3.2 (8.6) 6.5 (8.6) 0.1 (6.8) −0.3 (5.5) 2.2 (6.1) 9.9 (4.6) 7.2 (6.2) 16.2 (5.8) −4.6 (6.5)
Mar 7.9 (7.8) 11.6 (7.4) 6.8 (7.0) 4.3 (6.1) 5.3 (4.8) 12.6 (4.6) 11.6 (5.9) 18.2 (4.6) 1.8 (7.2)
Apr 12.9 (6.7) 15.9 (7.3) 12.9 (5.4) 10.4 (5.2) 8.1 (4.3) 15.0 (5.4) 16.9 (4.4) 21.9 (3.3) 7.9 (5.4)
May 17.7 (5.9) 20.0 (6.6) 18.3 (5.0) 16.0 (4.6) 11.9 (4.2) 18.5 (6.0) 21.0 (4.0) 24.6 (2.5) 14.5 (5.3)
Jun 22.0 (5.3) 25.4 (5.1) 23.4 (3.6) 20.1 (4.0) 15.5 (4.0) 21.8 (6.9) 25.2 (2.8) 27.1 (1.7) 19.2 (4.0)
Jul 24.0 (4.5) 26.3 (4.5) 24.9 (3.7) 22.9 (3.5) 19.7 (4.5) 23.9 (7.1) 25.8 (2.7) 27.5 (1.6) 21.9 (3.5)

Aug 23.3 (4.6) 26.4 (5.0) 23.9 (3.3) 21.5 (3.1) 19.2 (4.0) 23.6 (6.6) 25.5 (2.7) 27.8 (1.6) 20.9 (3.1)
Sep 19.8 (5.3) 22.4 (5.5) 19.2 (4.2) 17.8 (4.3) 16.2 (3.8) 22.2 (5.8) 22.4 (3.5) 26.5 (2.1) 16.3 (4.3)
Oct 14.0 (6.2) 16.3 (6.9) 12.7 (4.9) 12.2 (4.7) 10.0 (4.5) 17.4 (4.9) 16.3 (4.7) 23.1 (4.1) 9.7 (4.9)
Nov 8.2 (7.0) 10.2 (7.5) 6.4 (5.7) 6.2 (5.0) 4.6 (6.0) 12.6 (4.8) 10.5 (5.2) 18.7 (5.2) 3.1 (5.9)
Dec 3.6 (8.1) 5.3 (8.2) 0.6 (6.1) 1.5 (5.6) 0.9 (7.0) 8.9 (5.0) 7.1 (5.9) 16.4 (6.1) −3.0 (6.6)

Total 13.2 (10.4) 16.0 (10.4) 12.3 (10.8) 10.9 (9.8) 9.6 (8.3) 16.4 (7.8) 16.3 (8.8) 21.9 (6.2) 8.5 (11.2)

N 2,249,597 260,647 296,187 529,893 155,558 220,850 273,826 164,316 348,320

Table 4. Monthly average relative humidity (%) in the United States and US regions by month, 2009–2014 (standard
deviation; number of observations in parenthesis).

Month US DSW LMW NE PNW PSW SE ST UMW

Jan 69.7 (16.0) 61.8 (17.4) 71.0 (13.4) 69.5 (14.0) 79.8 (13.1) 57.9 (22.5) 70.8 (15.2) 73.5 (12.8) 75.2 (10.0)
Feb 69.4 (15.3) 63.6 (18.5) 71.2 (12.8) 67.6 (14.0) 76.6 (12.5) 61.0 (20.8) 70.2 (14.1) 73.9 (12.2) 74.6 (10.1)
Mar 65.6 (16.8) 57.7 (19.9) 67.9 (13.5) 64.9 (15.9) 71.8 (14.7) 55.8 (23.1) 68.6 (14.3) 70.1 (11.2) 69.5 (13.3)
Apr 63.1 (17.3) 56.8 (20.6) 64.5 (14.5) 63.5 (15.9) 66.3 (16.2) 51.0 (23.7) 67.2 (12.9) 71.4 (9.5) 64.8 (14.8)
May 66.2 (17.6) 57.8 (20.6) 69.0 (13.3) 71.9 (13.9) 62.8 (17.2) 47.2 (24.8) 72.9 (10.7) 72.8 (8.7) 66.3 (13.8)
Jun 67.3 (17.2) 55.0 (19.7) 70.5 (10.8) 74.1 (10.8) 62.4 (18.0) 46.9 (25.9) 73.1 (9.4) 75.0 (7.0) 70.4 (11.8)
Jul 68.1 (15.6) 58.5 (16.1) 70.6 (10.8) 73.8 (10.2) 56.1 (19.7) 51.8 (21.9) 75.4 (8.8) 76.9 (6.7) 70.3 (10.5)

Aug 69.2 (15.8) 55.5 (14.2) 72.1 (10.5) 76.9 (8.6) 57.2 (19.7) 51.9 (21.9) 76.1 (8.8) 77.3 (6.4) 72.4 (11.2)
Sep 70.1 (16.1) 60.6 (17.8) 72.1 (11.5) 77.2 (9.6) 60.2 (20.0) 51.7 (21.6) 75.8 (10.0) 77.9 (6.9) 72.3 (12.3)
Oct 69.6 (15.8) 61.0 (16.9) 69.2 (13.1) 75.3 (11.3) 70.5 (17.1) 53.3 (22.3) 73.6 (11.7) 73.8 (9.5) 72.4 (12.4)
Nov 68.7 (15.4) 61.1 (16.8) 68.8 (12.7) 69.9 (13.2) 76.2 (14.8) 56.3 (22.2) 71.8 (12.3) 74.4 (10.1) 71.7 (11.8)
Dec 74.3 (14.1) 68.3 (16.1) 76.6 (11.7) 73.8 (12.7) 80.1 (12.7) 64.6 (20.3) 76.3 (12.3) 76.6 (11.1) 78.1 (9.9)

Total 68.4 (16.3) 59.8 (18.3) 70.3 (12.8) 71.6 (13.4) 68.3 (18.5) 54.1 (23.2) 72.7 (12.2) 74.5 (9.8) 71.5 (12.4)

N 2,249,597 260,647 296,187 529,893 155,558 220,850 273,826 164,316 348,320
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Figure 2. Daily time-lagged OR of MS visits with respect to the selected meteorological conditions.
T = ambient temperature (◦C); SD (T) = standard deviation of hourly ambient temperature (◦C);
RH = relative humidity (%).

After the univariate analyses, we constructed a multivariate logistic regression model,
which allowed for examination of the same associations while considering all variables
concomitantly (Table 5). Like in the univariate analyses, the four associations were signif-
icant for all 30-day lags when examined nationally. First, the association between a MS
clinic visit risk and the temperature varied in comparison to the univariate trends, namely
in that it showed an inverse association with MS clinic visits in the multivariate analysis
that adjusted for the RH and temperature–RH interactions. Specifically, this association
reached its peak effect on day lag 1, with a 0.7% decreased likelihood for a visit (OR = 0.993,
95% CI 0.990–0.997, p < 0.01). Similarly, the SD of the temperature still showed a positive
association with MS clinic visits, with a one SD increase in the hourly temperature being
associated with a 1.2% higher likelihood of a MS clinic visit on day lag 0 (OR = 1.012; 95%
CI 1.008–1.017; p < 0.01); this variable accounted for the strongest association with a clinic
visit risk among all the variables. Next, on the other hand, the RH retained its inverse
association, and it reached its peak effect on day lag 1 with a 0.2% decreased likelihood for
a visit (OR = 0.998, 95% CI 0.997–0.999, p < 0.01). Finally, the temperature–RH interactions
again showed a small positive association with MS clinic visits, with a simultaneous 10 ◦C
increase in the temperature and 10% increase in the RH on being associated with an 0.01%
higher likelihood for a clinic visit (OR = 1.000107; 95% CI 1.00006–1.000154; p < 0.01).
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Table 5. Region-specific associations between MS clinic/hospital visits by US veterans and daily lagged meteorological
conditions in the United States, 2010–2013 (odds ratio; 95% confidence intervals in parenthesis).

Variable Name
Time Lag (Day)

0 1 7 14 21 28

United States (US)

Ambient temperature (◦C)
0.994 *** 0.993 *** 0.995 *** 0.996 *** 0.996 ** 0.996 **

(0.991–0.998) (0.990–0.997) (0.991–0.998) (0.992–0.999) (0.993–0.999) (0.993–1.000)

Standard deviation of
temperature (◦C)

1.012 *** 1.008 *** 1.011 *** 1.005 *** 1.009 *** 1.008 ***

(1.008–1.017) (1.004–1.012) (1.007–1.015) (1.001–1.009) (1.005–1.012) (1.004–1.012)

Relative humidity (%)
0.999 *** 0.998 *** 0.998 *** 0.999 *** 0.999 *** 0.999 ***

(0.998–1.000) (0.997–0.999) (0.997–0.999) (0.998–0.999) (0.998–0.999) (0.998–0.999)

Temperature X relative humidity
1.000 *** 1.000 *** 1.000 *** 1.000 *** 1.000 *** 1.000 **

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.;
1 otherwise)

1.079 *** 1.083 *** 1.084 *** 1.086 *** 1.087 *** 1.087 ***

(1.056–1.102) (1.061–1.107) (1.061–1.107) (1.063–1.109) (1.064–1.110) (1.064–1.110)

Observations 1,059,723 1,059,391 1,058,304 1,057,287 1,055,302 1,059,006

Desert Southwest (DSW)

Ambient temperature (◦C)
1.003 0.999 0.999 0.989 0.981 *** 0.979 **

(0.993–1.012) (0.989–1.008) (0.983–1.014) (0.972–1.007) (0.967–0.994) (0.963–0.995)

Standard deviation of
temperature (◦C)

1.026 *** 1.012 1.006 0.998 1.001 0.998

(1.009–1.044) (0.997–1.026) (0.993–1.018) (0.986–1.011) (0.988–1.013) (0.985–1.011)

Relative humidity (%)
1 0.998 0.995 ** 0.995 ** 0.995 *** 0.995 **

(0.997–1.003) (0.995–1.001) (0.991–0.999) (0.991–0.999) (0.991–0.998) (0.991–0.999)

Temperature X relative humidity
1 1 1 1 1.000 *** 1.000 **

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.001)

Season (0 = Nov to Feb.;
1 otherwise)

1.01 1.021 1.019 1.051 1.072 * 1.081 **

(0.940–1.085) (0.951–1.097) (0.946–1.097) (0.975–1.133) (0.997–1.152) (1.007–1.161)

Observations 106,376 106,377 106,383 106,267 106,216 106,383

Lower Midwest (LMW)

Ambient temperature (◦C)
0.987 ** 0.983 *** 0.983 *** 0.979 *** 0.981 *** 0.982 ***

(0.976–0.997) (0.972–0.994) (0.971–0.994) (0.967–0.992) (0.970–0.992) (0.973–0.991)

Standard deviation of
temperature (◦C)

1.025 *** 1.020 *** 1.026 *** 1.014 ** 1.025 *** 1.026 ***

(1.012–1.038) (1.007–1.034) (1.015–1.038) (1.002–1.026) (1.013–1.036) (1.015–1.038)

Relative humidity (%)
0.997 *** 0.996 *** 0.995 *** 0.996 *** 0.996 *** 0.996 ***

(0.994–0.999) (0.993–0.998) (0.993–0.998) (0.994–0.999) (0.993–0.998) (0.994–0.998)

Temperature X relative humidity
1.000 *** 1.000 *** 1.000 *** 1.000 *** 1.000 *** 1.000 ***

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.;
1 otherwise)

1.101 *** 1.114 *** 1.115 *** 1.131 *** 1.121 *** 1.137 ***

(1.038–1.168) (1.050–1.181) (1.051–1.182) (1.067–1.199) (1.060–1.185) (1.073–1.204)

Observations 108,199 108,199 108,173 108,196 108,191 108,172
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Table 5. Cont.

Variable Name
Time Lag (Day)

0 1 7 14 21 28

Northeast (NE)

Ambient temperature (◦C)
0.986 *** 0.989 ** 0.996 0.994 ** 0.997 0.997

(0.977–0.994) (0.980–0.998) (0.991–1.001) (0.988–1.000) (0.991–1.003) (0.991–1.004)

Standard deviation of
temperature (◦C)

1.014 *** 1.008 * 1.014 *** 1.009 ** 1.017 *** 1.014 ***

(1.005–1.024) (0.999–1.017) (1.006–1.023) (1.000–1.018) (1.009–1.026) (1.005–1.023)

Relative humidity (%)
0.998 *** 0.998 ** 0.999 * 0.998 ** 0.999 * 0.998 ***

(0.996–0.999) (0.997–1.000) (0.997–1.000) (0.997–1.000) (0.997–1.000) (0.996–0.999)

Temperature X relative humidity
1.000 *** 1.000 ** 1 1.000 ** 1 1

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.;
1 otherwise)

1.125 *** 1.131 *** 1.122 *** 1.119 *** 1.114 *** 1.107 ***

(1.079–1.174) (1.085–1.180) (1.075–1.171) (1.072–1.169) (1.068–1.163) (1.061–1.155)

Observations 239,452 239,111 239,376 239,482 239,495 239,494

Pacific Northwest (PNW)

Ambient temperature (◦C)
1 0.999 1.004 0.999 1 0.991

(0.986–1.014) (0.987–1.011) (0.992–1.016) (0.983–1.014) (0.984–1.016) (0.976–1.007)

Standard deviation of
temperature (◦C)

0.999 1.004 0.992 0.99 0.989* 0.997

(0.981–1.018) (0.988–1.020) (0.980–1.005) (0.977–1.003) (0.976–1.002) (0.984–1.010)

Relative humidity (%)
1 1 1.001 0.998 1 0.999

(0.997–1.003) (0.998–1.003) (0.999–1.004) (0.995–1.001) (0.997–1.003) (0.996–1.002)

Temperature X relative humidity
1 1 1 1 1 1

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.;
1 otherwise)

1.048 1.043 1.03 1.051 1.066 1.055

(0.960–1.143) (0.956–1.137) (0.944–1.123) (0.967–1.142) (0.975–1.165) (0.966–1.152)

Observations 88,886 88,886 88,874 88,886 88,885 88,451

Pacific Southwest (PSW)

Ambient temperature (◦C)
0.995 0.992 ** 0.994 * 0.999 0.990 ** 0.999

(0.986–1.004) (0.984–1.000) (0.988–1.000) (0.991–1.007) (0.981–1.000) (0.987–1.011)

Standard deviation of
temperature (◦C)

1.015 * 1.015 * 1.013 * 1.002 1.006 0.999

(0.999–1.031) (0.999–1.031) (0.999–1.027) (0.988–1.016) (0.992–1.020) (0.985–1.013)

Relative humidity (%)
0.999 0.997 * 0.998 0.999 0.996 ** 0.998

(0.996–1.002) (0.995–1.000) (0.996–1.001) (0.997–1.002) (0.993–0.999) (0.995–1.002)

Temperature X relative humidity
1 1.000 *** 1.000 * 1 1 1

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.;
1 otherwise)

1.096 *** 1.088 ** 1.102 *** 1.096 *** 1.122 *** 1.113 ***

(1.024–1.173) (1.018–1.163) (1.031–1.179) (1.023–1.175) (1.047–1.203) (1.038–1.194)

Observations 105,012 105,029 103,864 105,061 105,061 104,490
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Table 5. Cont.

Variable Name
Time Lag (Day)

0 1 7 14 21 28

Southeast (SE)

Ambient temperature (◦C) 0.973 *** 0.982 *** 0.994 1.001 0.998 1

(0.959–0.987) (0.969–0.995) (0.984–1.004) (0.993–1.008) (0.990–1.005) (0.992–1.007)

Standard deviation of
temperature (◦C)

1.012 * 1.002 1.004 1.007 1.005 1.009

(0.998–1.026) (0.989–1.015) (0.992–1.017) (0.994–1.019) (0.993–1.017) (0.997–1.021)

Relative humidity (%) 0.994 *** 0.995 *** 0.997 ** 1 0.999 1

(0.990–0.997) (0.991–0.998) (0.994–1.000) (0.997–1.002) (0.997–1.001) (0.997–1.002)

Temperature X relative humidity 1.000 *** 1.000 *** 1.000 ** 1 1 1

(1.000–1.001) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.; 1
otherwise)

1.034 1.036 1.015 1.017 1.025 1.031

(0.970–1.103) (0.972–1.104) (0.953–1.081) (0.953–1.086) (0.963–1.090) (0.969–1.096)

Observations 113,682 113,709 113,705 111,316 113,704 113,736

Subtropical (ST)

Ambient temperature (◦C) 1.017 1.008 1.001 0.99 1.012 1.002

(0.988–1.047) (0.983–1.034) (0.980–1.022) (0.970–1.010) (0.996–1.028) (0.986–1.019)

Standard deviation of
temperature (◦C)

1 0.996 1.008 1.008 1.008 1.015

(0.981–1.019) (0.979–1.013) (0.992–1.025) (0.991–1.026) (0.989–1.027) (0.996–1.034)

Relative humidity (%) 1.005 1.003 1.002 0.999 1.004 * 1.002

(0.996–1.013) (0.996–1.010) (0.996–1.007) (0.994–1.004) (0.999–1.009) (0.998–1.005)

Temperature X relative humidity 1 1 1 1 1 1

(0.999–1.000) (0.999–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.; 1
otherwise)

1.044 1.044 1.049 1.036 1.037 1.041

(0.958–1.137) (0.961–1.135) (0.970–1.134) (0.959–1.120) (0.964–1.116) (0.965–1.122)

Observations 110,254 110,233 110,075 110,244 110,248 110,232

Upper Midwest (UMW)

Ambient temperature (◦C) 0.988 ** 0.985 ** 0.985 ** 0.993 1 1.006

(0.976–1.000) (0.973–0.997) (0.972–0.998) (0.981–1.005) (0.989–1.012) (0.995–1.017)

Standard deviation of
temperature (◦C)

1.017 *** 1.013 ** 1.023 *** 1.011 * 1.018 *** 1.012 **

(1.004–1.029) (1.000–1.025) (1.011–1.035) (1.000–1.023) (1.006–1.030) (1.001–1.024)

Relative humidity (%) 0.997 ** 0.997 ** 0.997 ** 0.998 0.999 0.999

(0.995–1.000) (0.994–0.999) (0.995–1.000) (0.996–1.001) (0.997–1.001) (0.997–1.001)

Temperature X relative humidity 1.000 ** 1.000 ** 1.000 ** 1 1 1

(1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000) (1.000–1.000)

Season (0 = Nov to Feb.; 1
otherwise)

1.083 ** 1.098 *** 1.095 *** 1.094 *** 1.076 ** 1.089 ***

(1.019–1.152) (1.033–1.167) (1.030–1.163) (1.031–1.162) (1.012–1.144) (1.025–1.156)

Observations 187,862 187,847 187,854 187,835 183,502 188,048

Robust 95% confidence interval in parentheses; *** p < 0.01, ** p < 0.05, and * p < 0.1.
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3.4. Region-Specific Associations

The region-specific associations were also examined, first via univariate analyses
(Figure 3 and Table S1 in the SOM). The time-lagged ambient temperature showed the
strongest association with MS clinic visits in the LMW and was significant for all the 30-day
lags (day lag 0: OR = 1.006; 95% CI = 1.004–1.008; p < 0.01), followed by the PNW (day
lag 0: OR = 1.005; 95% CI = 1.000–1.009; p < 0.05), DSW (day lag 0: OR = 1.004; 95% = CI
1.001–1.007; p < 0.01), and NE (day lag 0: OR = 1.004; 95% CI = 1.002–1.006; p < 0.01) zones.
In comparison, the same association in the UMW was significant for all 30 days (day lag
22: OR = 1.005; 95% CI = 1.002–1.007; p < 0.01), and the PSW (day lag 4: OR = 1.004; 95%
CI = 1.001–1.006; p < 0.01) region was closer to that of the national trend. The strongest
association for the SD of the temperature was observed in the LMW and significant for all
30-day lags (day lag 0: OR = 1.038; 95% CI = 1.026–1.049; p < 0.01), followed by the UMW
(day lag 7: OR = 1.030, 95% CI = 1.018–1.042, p < 0.01) and NE (day lag 6: OR = 1.032; 95%
CI = 1.023–1.041; p < 0.01). For the RH, the strongest significant association was seen in
the SE zone (day lags 13, 24, 25: OR = 1.001; 95% CI = 1.000–1.002, p < 0.05). Interestingly,
there were more regional variations in the association between the SD of the temperature
and MS clinic visit risk compared to the other variables. Finally, for the temperature–RH
interactions, the strongest association was seen in the PNW (day lag 0: OR = 1.000; 95%
CI = 1.000–1.000, p < 0.01). Of note, none of the four meteorological conditions showed
significant associations with a clinic visit risk in the ST region on any of the 30-day lags,
diverging from the nationally observed trend.

Like with the initial univariate analyses, the regional variations in association between
the four meteorological variables and MS clinic visit risk were also seen with multivariate
modeling (Table 5). Like with the univariate analyses, all the variables were significant
throughout the 30-day lag period nationally. First, the association between the ambient
temperature and MS clinic visit risk varied across regions–while many zones showed
associations comparable to that of the national level, other zones were more variable. The
weakest associations were observed in the SE (day lag 0: OR = 0.973, 95% CI = 0.959–0.987;
p < 0.01), followed by the DSW (day lag 30: OR = 0.979, 95% CI = 0.963–0.995, p < 0.01) and
LMW zones (day lag 14: OR = 0.979, 95% CI 0.967–0.992, p < 0.01). Interestingly, in the LMW,
UMW, NE, and DSW regions, the SD of the temperature showed a stronger association
with MS clinic visits than the national trend on several days. For example, associations
stronger than the national level were observed in the LMW on the 0-, 7-, 21- and 28-day lags
(OR = 1.025, 1.02, 1.026, 1.025, and 1.026, respectively; p < 0.01). A similar strength of this
association was seen in the DSW (day lag 0: OR = 1.026; 95% CI = 1.009–1.044; p < 0.01),
but interestingly, this association became insignificant for the rest of the time lags.

A similar trend was observed in the NE, but its peak was weaker than that in the
LMW (day lag 21: OR = 1.017, 95% CI = 1.009–1.026, p < 0.01). Next, for the association
between the RH and clinic visit risk, the strongest association was observed in the ST
zone (day lag: OR = 1.004, 95% CI = 0.999–1.009, p < 0.05) and the weakest in the SE
(day lag 0: OR = 0.994, 95% CI = 0.990–0.997, p < 0.01). Finally, the association between
the temperature–RH interactions and MS clinic visits was significant for all lags in the
LMW only. It was significant for the 0-, 1-, and 7-day lags in SE, PSW, and NE regions.
This association was also significant in the DSW region on the 21- and 28-day lags. These
associations between the temperature–RH interactions and MS visits were weakly positive
at similar magnitudes. The seasonality was also associated with MS visits in the NE
(OR = 1.125; 95% CI 1.079–1.174; p < 0.01), LMW (OR = 1.10; 95% CI 1.038–1.168); p < 0.001),
PSW (OR = 1.096; 95% CI 1.024–1.173; p < 0.01), and UMW (OR = 1.08; 95% CI 1.019–1.152;
p < 0.01) regions. In the NE, MS visits were 12.5% more likely to occur in the spring,
summer, and fall compared to the winter (November–February).
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Figure 3. Associations between the time-lagged selected meteorological conditions and MS clinic visit by US veterans,
2010–2013.

4. Discussion

The findings from our analyses suggest significant associations between temperature,
temperature variation (SD of temperature), RH, and temperature-RH interaction with MS
visit risk. Across the US, the association between MS clinic visits and ambient temperature
was positive in the univariate analysis, but it became inverse when its interaction with RH
and other meteorological conditions were introduced in the multivariate analysis. This
suggests that while temperature alone is a risk factor of MS clinic visit, its interaction
with RH, a proxy of heat index, is a stronger risk factor of MS clinic visit than exposure
to ambient temperature along. The magnitude of these associations varied significantly
when examined across domestic climate regions, although regardless of stratification,
the association between SD of temperature and MS visit risk accounted for the highest
magnitude single-day increase in risk at both the national (1.2% increased likelihood)
and regional (2.6% increased likelihood, DSW region) levels. While the findings on the
association between ambient temperature and MS have are consistent with a majority of
studies that report a positive relationships between temperature and MS [7,8,14,22].

Unlikely other meteorological conditions, our research suggests that RH is a protective
factor and reduces the risk of MS clinic visit. This finding is consistent with some of the studies
and inconsistent with others. For examples, a Brazilian study found a positive correlation
between RH and male MS admissions (r = 0.29, p < 0.01), while the correlation in females was
insignificant (r = 0.04, p > 0.05) [23]. Further confusing the literature, an Iranian [17] and an
Italian [24] study reported insignificant relationships between RH and MS. Likewise, another
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retrospective Irish study (1981–1985) of 87 patients with MS found that while frequency of
exacerbations was not related to RH (r = 0.11, p > 0.05), the average duration of an exacerbation
was inversely linked to RH (r = −0.55, p < 0.05), similar to our findings [14].

Finally, our study is among the first to report that exposure to temperature variation
(SD of temperature) positively associated with MS risk. In our analyses, temperature
variation was the strongest predictor of visit risk among all variables, both at the national
and regional level. While only a handful of studies have examined the link between
temperature variation and MS, similar trends have been reported in these studies. However,
comparisons are difficult to make given that ours is the first study to examine this via SD of
temperature; in prior studies, diurnal temperature range (DTR), a measure of temperature
change as a range (e.g., difference between the maximum and minimum daily values),
was instead used as a metric of temperature variation. For example, a Canadian study of
51 patients with known MS from 1950–1953 reported that DTR was positively correlated
with for MS exacerbation risk (r = 0.16, p = 0.03), suggesting that an increased DTR led to a
higher likelihood for symptom occurrence [25]. Furthermore, a Korean study of 1265 MS
emergency department visits from 2008-2014 found that increased DTR was significantly
associated with increased risk for MS clinic visit (8.81% change in OR per 1 ◦C increase in the
DTR; 95% CI 3.46%–14.44%; p < 0.05) [26]. Providing further credence to this relationship,
the Irish study above reported that as daily maximum temperature (r = 0.85, p < 0.001) or
minimum temperature (r = 0.78, p < 0.01) reached more extreme levels, duration of MS
exacerbations increased, also suggesting that temperature range relates to risk for MS [14].
There is biologic plausibility that temperature variation is associated with MS risk, with the
most cited underlying mechanism being dysfunctional thermoregulation (demonstrable
loss of thermoregulation, such as sweating mechanics) in patients with MS, as a result of
demyelinating brain lesions encompassing temperature regulatory areas of the brain [1,27].

Less commonly noted is activation of mast cells starting within the respiratory tract
due to exposure to sudden temperature change leading to worsened neurological symp-
toms [28], a process similar to that which underlies asthma exacerbations as a result of
sudden temperature change [29–32].

Biologic plausibility also exists for the variability in regional relationships found in our
study. First, population-level differences exist—health demographics vary across regions,
and may factor into heat sensitivity. For example, certain patient populations have been
identified to be more sensitive to heat-related injury (e.g., elderly, females, and patients
with decreased mobility or dementia, patients on medications that affect thermoregu-
lation (e.g., diuretics or anticholinergics), and patients with disorders that compromise
thermoregulation (e.g., obesity, hypertension, pulmonary disease, diabetes)) [33,34]. Also,
individual-level differences may also explain these differences, such as individual climate
adaptability to one’s surrounding environment [35]. A Japanese study found that men who
lived in hot subtropical zone and moved to colder temperate zones showed superior signs
of heat adaptation than those who lived in the temperate region alone (e.g., less skinfold
thickness (e.g., upper arm—5.3 ± 2.3 vs. 7.7 ± 3.2mm, p < 0.001) and more effective sweat-
ing with less salt wasting (0.022 ± 0.004 vs. 0.029 ± 0.008 mEq/l, p < 0.05)) [36]. In a similar
study, Thai individuals who experience consistently hot and humid climate year-round
showed identical differences when compared to Japanese adults who experience variable
seasonality as the year goes by [35]. In our study, SD of temperature increased MS visit
risk most strongly within the LMW, UMW, NE, and DSW regions, and this may be because
subjects from these regions are less tolerant to variable temperature due to a combination
of the above explanations (co-morbidities, age, lack of climate adaptability due to less local
seasonality). These findings may also explain why some studies on MS that incorporated
seasonal analyses reported that the highest frequency of symptom flares occurred during
the warmest and coldest months of the year [37], while other studies found that seasonality
was not related to symptoms and that severity or frequency of symptoms occurred at a
comparable level year-round [38,39]. While climate adaptability can only be improved
upon with more time spent in a given area, an Italian study noted that climate susceptibil-
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ity (‘meteorosensitivity’) can be improved upon with specific behavioral changes. Thus,
the latent effects of ambient meteorological conditions on risk for MS may be partially
modifiable [40]. In our study, SD of temperature increased MS visit risk most strongly
within the LMW, UMW, NE, and DSW regions. This may be because subjects from these
regions are less tolerant to variable temperature due to a combination of individual factors
(e.g., presence of co-morbidities, age, ethnicity/race/genetic factors, population health
disparities [e.g., care access, health literacy, illness perception] as well as environmental
factors (lack of climate adaptability due to less local seasonality) [41].

As with all studies, our findings must be considered in light of its limitations. First, we
used ICD-9 codes to assess MS visits, which are susceptible to subjective errors—the accuracy
of the diagnosis of MS cannot be ensured given the potential for variable clinical expertise.
Second, we were unable to discern if patients were presenting to clinic for an exacerbation or
for a routine scheduled visit–as such, we can only focus on associations with environmental
factors at the overall disease level. Third, all MS cases were treated in the same way, as we
did not have access data on the severity, measured by disability scale, and duration of the
disease. Since we did not have access to treatment and prescription data, we could not assess
whether MS treatment mediates the role of meteorological conditions in MS. Fourth, A major
strength of our study was the availability of a large dataset from which to examine risk for
MS. However, the use of VA data greatly limits generalizability given these data represent
mostly elderly white males. Issues with generalizability include our study population being
predominantly male (while MS tends to affect females disproportionately), as well as the
presence of underlying comorbidities (substance abuse, psychiatric disorders, etc.), both
of which may have affected our findings. Fortunately, despite demographic differences,
our findings were comparable to those of prior studies, with similar associations between
select meteorological variables and risk for MS. This suggests that despite demographic
differences, similar risk factors are found across varied populations. Besides this, reliance on
VA health data required that we used ICD-9 codes to assess MS visits, which are susceptible
to subjective errors—the accuracy of the diagnosis of MS cannot be ensured given the
potential for variable clinical expertise. Fifth, our environmental data reflected outdoor
conditions, while most individuals spend a majority of their time indoors. Finally, using
ZIP-codes to stratify patients into regions may be flawed, as some subjects may have been
diagnosed at a clinic away from their residence. Despite these limitations, our results identify
temperature variation, among other factors, as a strongly associated factor of MS visit risk.
The variance in these associations across regions can be explained by the multifaceted
nature of the link between environmental sensitivity and MS, some of these pathways being
modifiable and thus representing targets for therapeutic improvement in symptomology
(Figure 4). These findings may become more relevant given increases in daily temperature
variation and heatwave intensity and frequency with global warming. In the meantime,
these epidemiological associations can be incorporated into practice, especially for exposure
avoidance and/or mitigation in susceptible patients.
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5. Conclusions

Ambient meteorological conditions are associated with MS symptoms. Our analyses
suggest that a sudden increase in ambient temperature and a simultaneous increase in both
temperature and relative humidity elevate the risk of MS clinic visits, a proxy measure of
adverse MS symptoms. These associations between MS clinic visits and meteorological con-
ditions varied across climate regions, suggesting variations in adaptation to region-specific
climatic conditions. Increasing frequency and intensity of extreme weathers patterns, such
as heatwaves, drought and hurricanes, are likely to increase the burden of MS disease in
the absence of adaptive management strategies. The findings of this research can guide
region-specific strategies to manage MS and associated comorbidities, such as providing
timely data on heat advisory and sudden changes in local weather patterns to MS patients
as well as healthcare providers.
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