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Abstract: Salmonella genus represents the most common foodborne pathogens causing morbidity,
mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents
and Salmonella-specific phages has been considered as an effective intervention strategy to reduce
Salmonella contamination. However, data from the United States, European countries, and low- and
middle-income countries indicate that Salmonella cases are still a commonly encountered cause of
bacterial foodborne diseases globally. The control programs have not been successful and even led to
the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system
is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella
has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of
immune response through their virulence factors. There has been a high interest in understanding
how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions
of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of
evidence from the emerging mainstream literature.
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1. Introduction

Salmonella is a flagellated rod-shaped Gram-negative facultative anaerobe which infects multiple
animal hosts including humans by contaminating a wide variety of foods [1–4]. Salmonella enterica
(S. enterica) is regarded as the most pathogenic species and includes > 2600 serovars characterized until
now [5]. With regard to human diseases, Salmonella is divided into two groups: Typhoidal serotypes
and thousands of non-typhoidal Salmonella serotypes (NTS). Typhoidal serovars causing typhoid fever
include Salmonella enterica serovar Typhi (S. Typhi), Paratyphi (S. Paratyphi), and Sendai (S. Sendai) [6,7].
The most common NTS are serovars Typhimurium (S. Typhimurium), Enteritidis (S. Enteritidis),
and Dublin (S. Dublin) [8]. Infection with NTS ordinarily results in gastroenteritis, diarrhea, and fever
(almost always present), with a low case fatality [9,10]. In addition to diarrheal disease, non-typhoidal
Salmonella infections can invade normally sterile sites, resulting in bacteremia, meningitis, and other
focal infections [11,12]. The invasive non-typhoidal Salmonella (iNTS) disease is usually characterized
by the presence of the nonspecific fever similar to malaria and other febrile illnesses, resulting in
clinically indistinguishable and higher case fatality than the non-invasive infections [11,13]. Different
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serotypes of Salmonella have different hosts, food sources, and pathogenesis, making their control
challenging and complicated serotypes [14,15].

S. Typhi, S. Paratyphi, and S. Sendai are all human restricted [16–18]. Following ingestion
and overcoming the resident microbiota, Salmonella initially colonizes the distal part of the small
intestine [19]. Typhoidal Salmonella (TS) possesses specific virulence factors including typhoid toxin and
virulence capsular polysaccharide (Vi antigen) that are involved in the development of symptoms and
immune evasion [20,21]. The bacteria invade the intestinal mucosa, potentially through microfold (M)
cells, and disseminate to the lymphatics and blood stream via phagocytes and ultimately spread to the
spleen and liver [22–24]. These pathogens are invasive but do not normally trigger a rapid inflammatory
response. Following recovery, some of the infected individuals are likely to become chronic carriers [25].
Typhoid infections are traditionally treated with ampicillin, chloramphenicol, and fluoroquinolones.
However, physicians began moving away from commonly prescribed antibiotics due to an increased
prevalence of multidrug-resistant (MDR) strains of S. Typhi. The transfer of antimicrobial resistance
(AMR) genes between bacteria is commonly facilitated by plasmid or transposon exchange [26].
The AMR genes are generally associated with an IncHI1 plasmid which harbors a composite transposon
that can carry multiple resistance genes [26,27].

Unlike TS, NTS has a broad host range. The infections caused by NTS are usually self-limiting and
do not proceed beyond the lamina propria, but some iNTS have evolved a number of virulence genes
which allow them to invade the intestinal mucosa and proliferate in phagocytes [28–32]. Both NTS
and TS rely on two Salmonella pathogenicity islands (SPI) encoded type III secretion systems (T3SS),
i.e., T3SS1 and T3SS2, which are essential for Salmonella invasion and dissemination [33]. Shortly
after invasion, bacteria spread to systemic sites and cause systemic infection [34]. Fluoroquinolones,
chloramphenicol, and oxytetracycline are commonly used to treat NTS infections. NTS develop the
drug resistance by plasmids or integrons for destroying the activity of antibacterial drugs [35,36]. Point
mutations within certain genes in S. Typhimurium have been identified as a potential cause of drug
resistance [37]. Thus, prevention efforts are needed to reduce an unnecessary antimicrobial use in
patient care settings and in food animals to help prevent the emergence of the resistance and infections
with resistant NTS.

Difficulty in treating Salmonella infections is gradually increasing, and it has now become necessary
to develop new treatment strategies. Vaccine development is a potential prospect for Salmonella control.
This is particularly relevant given that the few licensed vaccines so far have targeted S. Typhi in
people [38]. In essence, the ability to survive and replicate within the host phagocytes largely
determines whether Salmonella can disseminate from the colonization site (intestines) to establish
a systemic infection. Therefore, focused studies on how Salmonella escapes from host immunity
and survives longer periods in short-lived and mobile myeloid cells will add a great value to our
understanding of the host-pathogen interactions. In this review, by focusing on enticing findings of
past and present studies, we briefly describe the mechanisms used by Salmonella to escape the innate
and specific immunity to disseminate and establish infections.

2. Origin, Classification, and Diseases Caused by Salmonella

Since the first Kauffmann-White serotype scheme based on surface molecular antigen variation
was published in 1934, serotyping has become the most important tool for identifying and classifying
the Salmonella strains for more than 80 years [39,40]. Since 120 to 160 million years, Salmonella has
evolved into a complex group of phenotypically diverse serovars. More than 2600 serotypes have
been discovered since 1885 alone, resulting in antigenically distinct variants which are pathogenic
in more than 100 species including mammals, birds, reptiles, and insects [5,41]. Salmonella genus is
divided into two species, i.e., S. enterica and Salmonella bongori [42–44]. S. enterica is further classified
into seven subspecies, i.e., enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), indica (IV), houtenae
(VI), and several serovars previously assigned to the group IV (VII) based on biochemical and genomic
modifications [41]. These subspecies are further classified into more than 50 serotypes based on O
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(somatic) antigen, and into multiple serotypes based on H (flagella) antigens [45]. Intriguingly, strains
belonging to the subspecies I cause 99% of human cases of salmonellosis [46,47]. Meanwhile, S. enterica
subspecies II, IIIa, IIIb, IV, VI, and S. bongori are usually isolated from cold-blooded animal species and
environments but rarely from humans [41]. Recently, it has been proposed that high-throughput DNA
sequencing can open a gateway to Salmonella serotyping and can improve our understanding regarding
strains of public health relevance [48]. Whole-genome and metagenome sequence data permit the
continuation of traditional serovar nomenclature and enhance the ability to infer true phylogenetic
relationships between isolates [49].

The major clinical syndromes caused by Salmonella infection in humans are divided into typhoid
fever that is predominantly caused by S. Typhi, S. Paratyphi, and S. Sendai [6–8], and a range of
clinical syndromes including diarrheal disease caused by NTS. Typhoid is a human-restricted and
highly adapted invasive disease, while NTS has a wide range of vertebrate hosts and more severe and
invasive presentation in immunocompromised adults [50].

Typhoid fever remains a predominant enteric fever worldwide; meanwhile, an increasing incidence
of enteric fever caused by S. Paratyphi A is also reported [6,51]. A principle difference between S. Typhi
and other strains is the presence of Vi antigen. The Vi antigen is considered to be a virulence factor of
S. Typhi, which modulates the different pro-inflammatory signaling pathways and allows S. Typhi to
survive and replicate in the host cells, particularly the phagocytes [52]. S. Typhi uses these cells to
disseminate to systemic sites of the body, such as the liver, spleen, and bone marrow. It is estimated
that 5% of infected individuals will not be able to clear the infection within one year and enter a chronic
carrier state where bacteria mainly reside in hepatobiliary tract and gallbladder, and thus increase the
risk of cancer development [25,53,54].

NTS is an acute gastroenteritis typically acquired orally through contaminated water, fruits,
seafood, vegetables, and meat, especially poultry. Following ingestion through contaminated food or
water, its incubation period can vary from 4 to 72 h, and acute symptoms, such as fever, chills, nausea
and vomiting, abdominal cramps, and diarrhea can be observed [55,56]. Available data demonstrate
that there are estimated 1.3 billion cases of gastroenteritis caused by Salmonella, leading to approximately
three million deaths worldwide per year [57,58]. Due to the lack of clean water supplies and proper
sanitation, mortality caused by NTS gastroenteritis is mainly observed in the developing countries,
but it is also of a considerable importance in the developed countries [58,59]. There are hundreds of
NTS serovars that may cause invasive NTS human disease with a varying invasive virulence [60,61].
iNTS disease is caused mainly by S. Typhimurium, S. Enteritidis, and S. Dublin [8]. The iNTS disease
burden in Africa is especially caused due to urbanization with large populations living in crowded and
insanitary conditions with poor access to potable water [62–64]. iNTS is more common amongst people
with an impaired immunity, and typically represents a febrile systemic illness and lower respiratory
tract disease, commonly attributable to co-infections with HIV or malaria [50,60,65,66].

3. The Virulence-Related Genes of SPI

The specific regions encoding the virulence-related genes distributed in a cluster of
Salmonella chromosomes and plasmids are called SPI. To date, 23 SPIs have been identified and
characterized [33,67,68]. The five of these, i.e., SPIs-1–5 are common to all serotypes of Salmonella [69–74],
whereas SPIs-19–23 are absent in both S. Typhi and S. Typhimurium, and are only present in a few S.
enterica serovars including Dublin, Gallinarum, and Derby [67,68], and hence will not be discussed
here. From SPIs-1–18, only SPI-1, 4, 9, 14, and 18 encoded effectors play an important role in Salmonella
invasion into macrophages and epithelial cells. The virulence effectors secreted by SPI-2, 3, 5–8, 10–13,
and 16 are implicated in helping Salmonella withstand the acidic environment, accomplishing the
intracellular replication, and immune escape from the host. SPI-1 and SPI-2 contain a large number of
virulence genes associated with the intracellular pathogenesis and co-encode T3SS, a molecular syringe
which transfers the effectors from the bacteria into the host cell cytoplasm, and in turn, the effector
manipulates allowing for bacterial invasion and replication in the host cells [75–78]. To date, over
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40 SPI-1 and SPI-2 effectors have been identified in S. Typhimurium, S. Typhi, and S. Paratyphi A
(Table 1) [17]. All serovars seem to have a set of “core” effectors, suggesting that they are critical
for virulence in different hosts (PipA, PipB, PipB2, SifA, SipA, SipB, SipC, SipD, SopB, SopD, SpiC,
SptP, SseF, SseG, SseL, SteA, and SteD). These effectors play diverse roles during infection. In Table 1,
we have summarized the major effectors encoded by SPI-1 and SPI-2 in S. Typhimurium, S. Typhi,
and S. Paratyphi A, and their functions. Among these 41 effectors identified in S. Typhimurium,
16 are absent in S. Typhi and S. Paratyphi A (AvrA, GogA, GogB, GtgA, GtgE, SlrP, SopA, SopD2,
SpvB, SpvC, SpvD, SrfJ, SsaJ, SseJ, SseK2 and SsrA) [17]. Most of these effectors are from SPI-2,
indicating that the role of SPI-2 in typhoidal serovars deserves further investigation. This may be
related to the broad host range lifestyle of NTS and reflect the host restriction of TS. SopE2, SifB, SsaV,
SseB, and SspH2 have a special mention, as they are present in S. Typhi but absent in S. Paratyphi
A (Table 1) [17]. These dissimilarities in typhoidal strains may reflect differences between human
restricted lifestyle of S. Typhi and S. Paratyphi. SspH2 promotes the colonization of Salmonella in host
cells [79]. SopE2 is shown to contribute to generation of a replicative endosomal compartment in
enterocytes and facilitate enterocytes invasion in vivo [80]. SpvB interferes with host intracellular iron
metabolism via downregulation of nuclear factor erythroid-derived 2-related factor 2 (NRF2) [81]. SifB,
a member of Salmonella-induced filaments (SIFs), is necessary for SIF formation and maintaining the
integrity of Salmonella-containing vacuoles (SCVs) [82]. However, the potential function of SifB is still
unknown [83]. The details regarding effectors are shown in Table 1 and Figure 1.

Table 1. The functions of SPI-1/2 effectors in S. Typhimurium, S. Typhi, and S. Paratyphi A.

Effectors Pathogenicity Island Function (s) Key Reference (s)

AvrA SPI-1/SPI-2
Stabilizes the intestinal epithelial permeability and

tight junctions; cysteine protease; inhibits
NF-κB signaling

[84]

GogA SPI-2 Cleaves the subset of NF-κB subunits; inhibits
NF-κB signaling [85,86]

GogB SPI-2 Inhibits NF-κB signaling [85]
GtgA SPI-2 Inhibits NF-κB signaling [85]
GtgE SPI-1/SPI-2 Promotes replication inside murine macrophages [87]

PipA SPI-2 Cleaves the subset of NF-κB subunits; inhibits
NF-κB signaling [85]

PipB SPI-2 Targeted to SIFs [88]

PipB2 SPI-2 Resists extraction by high salt, high pH; implicated
in recruitment of kinesin-1 to SCV [89]

SifA SPI-2

Detoxifies lysosomes; subverts human NLRP3 and
NLRC4 inflammasome; required for SCV

membrane stability; SIF formation; contributes to
T3SS1-independent inflammation

[90]

SifB SPI-2 Targeted to SIFs [82,83]

SipA SPI-1
Enhances actin filament assembly; promotes

proliferation of cytosolic Salmonella; disrupts tight
junctions; SCV trafficking

[91]

SipB SPI-1
Cholesterol-binding translocon component;

triggers apoptosis via caspase-1 activation in
macrophages and DCs

[82]

SipC SPI-1
Translocon component: mediates effector molecule

translocation; promotes actin
polymerization and bundling

[92]

SipD SPI-1 Translocon component [93]
Slrp SPI-1/SPI-2 Inhibits the release of IL-1β [87]

SopA SPI-1 A HECT-like E3 ubiquitin ligase [94]
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Table 1. Cont.

Effectors Pathogenicity Island Function (s) Key Reference (s)

SopB SPI-1

Modulates SCV trafficking; phosphoinositide
phosphatase; involved in phagosomal closure;

enhances RhoG activation; disrupts tight junctions;
stimulates chloride secretion; prevents apoptosis

through activation of Akt

[95]

SopD SPI-1/SPI-2 SIF formation, prevents accumulation of Rab32 on
SCV and SIFs [87]

SopD2 SPI-2 Targeted to SIFs and late endosomes [96]

SopE SPI-1 Promotes colonization of Salmonella; induces
remodeling of actin [97]

SopE2 SPI-1 Guanine nucleotide exchange factor for Cdc42;
promotes pro-inflammatory signaling [80]

SpiC SPI-2 Interferes with vesicular trafficking in host cells to
prevent SCV-lysosome fusion [92]

SptP SPI-1

Rho GAP domain functions in downregulating
host membrane ruffling after entry; tyrosine

phosphatase domain acts on ACK; vimentin; and
presumably other substrates

[98]

SpvB SPI-2 Promotes macrophage apoptosis and
P-body disassembly [81,87]

SpvC SPI-1/SPI-2 Inhibits MAPK signaling [99]
SpvD SPI-1/SPI-2 Inhibits NF-κB signaling [87]
SrfJ SPI-2 Responses to intracellular conditions [100]

SsaJ SPI-2 Prevents the phagocyte NADPH oxidase from
trafficking toward SCVs [101]

Ssav SPI-2 Prevents the phagocyte NADPH oxidase from
trafficking toward SCVs [102]

SseB SPI-2 Prevents the phagocyte NADPH oxidase from
trafficking toward SCVs [102]

SseF SPI-2 Tethers SCV to the Golgi network; contributes to
Sif formation; replication of Salmonella in SCV [87,103]

SseG SPI-2 Tethers SCV to the Golgi network; contributes to
Sif formation; replication of Salmonella in SCV [87,103]

SseJ SPI-2 Acyl transferase; cholesterol esterification; SCV
membrane dynamics [87,104]

SseK1 SPI-2 Inhibits TNFα-stimulated NF-κB signaling [105]
SseK2 SPI-2 Related effectors that inhibits NF-κB signaling [105]

SseL SPI-2

Inhibits autophagic clearance of cytosolic
aggregates; induces late macrophage cell death;

inhibits directional migration of
macrophages and DCs

[106]

SspH2 SPI-2 An E3 ubiquitin ligase; activates NOD1 signaling [79,87]

SsrA SPI-2 Prevents the phagocyte NADPH oxidase from
trafficking toward SCVs [102]

SteA SPI-1/SPI-2 SIF formation, vacuolar membrane partitioning [107]
SteC SPI-2 Induces assembly of F-actin meshwork around SCV [108]
SteD SPI-2 Inhibits antigen presentation and T cell activation [17]

NF-κB: Nuclear factor kappa beta; SCV: Salmonella-containing vacuole; NLRP3: the NOD-like receptor family, pyrin
domain containing 3; NLRC4: NLR-family CARD-containing protein 4; SIF: Salmonella-induced filament; T3SS1:
type III secretion system 1; HECT: homologous to E6-AP carboxy terminus; GAP: GTPase-activating phosphatase;
ACK: a Cdc42-associated tyrosine kinase; NADPH: nicotinamide adenine dinucleotide phosphate; TNFα: tumour
necrosis factor alpha; DCs: dendritic cells; NOD1: nucleotide-binding oligomerisation domain 1.
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Figure 1. Role of Salmonella T3SS effectors in epithelial cells and macrophages. SopB, SopD, SopE,
and AvrA are essential for membrane invasion during Salmonella infections. SipA, SseJ, SopE2,
and SopB are required for biogenesis and correct localization of SCV. SifA and SopD2 contribute
to evasion of lysosomal degradation. SPI-7 effector TviA is mainly responsible for masking the
surface antigens, leading to the failure of PRRs to recognize them. Several effectors including SseL,
GtgA, GogA, PipA, SpvC, and SpvD inhibit the innate immune signaling, and subsequently diminish
the production of proinflammatory mediators and result in an inefficient clearance of phagocytized
bacteria. Salmonella can also prevent the interaction of NADPH oxidase subunit Cytb558 with SCV and
escape from the oxidative burst depends on T3SS. PAMP: Pathogen-associated molecular pattern; PRR:
Pattern recognition receptor; ROS: Reactive oxygen species; ROI: Reactive oxygen intermediates; SCV:
Salmonella-containing vacuole; SPI: Salmonella pathogenicity islands; NF-κB: Nuclear factor kappa beta;
MAPK: Mitogen-activated protein kinase.

SPI-1 is a DNA fragment of around 40 kb with stable genetic traits, and present in all Salmonella.
SPI-1 contains the inv, hil, org, spt, spa, sip, iag, iac, prg, sic, and other genes, encoding the regulator
and secretory effector proteins of T3SS1. It is worthwhile to mention that not all genes within SPI-1
are associated with the T3SS1, but it has now been demonstrated that at least 29 T3SS1 genes are
involved in different encoding functions. The regulators and effectors of T3SS1 are related to Salmonella
colonization and invasion into intestinal epithelial cells and lead to necrosis and inflammatory reactions
in macrophages [77,109]. Furthermore, these effectors are implicated in regulating the host cell
exocytosis, interfering with host signal transduction pathways, and allowing Salmonella localization,
survival and proliferation inside the vacuoles [95,110,111]. In addition, four genes, i.e., sit A, sit B, sit C,
and sit E, play an important role in full virulence [112].

SPI-2 contains more than 40 genes which constitute four operons. From these, ssa encodes
the T3SS2 [101], ssr encodes a secretion system regulator [113], and ssc encodes a molecular
chaperone [114,115]. SPI-2-related secretion system T3SS2 delivers more than 20 effectors through the
vacuole membrane into the host cytosol [100], playing an essential role during the second stage of
host invasion which controls the survival and replication of Salmonella in phagocytes and epithelial
cells [116]. At the same time, it allows Salmonella to escape the bactericidal effects of macrophages,
and plays an important regulatory role in the progression of systemic infection and intracellular
pathogenesis [74,116].
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SPI-3, involved in the survival of Salmonella in macrophages, is around 17 kb and contains 10
ORFs constituting six transcription units. The major virulence gene encoded by SPI-3, mgtCB, is a
high-affinity Mg2+ uptake system which is required for adaptation to nutritional limitations of the
intra-phagosomal habitat [117]. From these, SPI-3 has been implicated in mediating the survival of
Salmonella in macrophages and low Mg2+ environments [71].

SPI-4 is a 27 kb region that encodes a type 1 secretion system (T1SS), contributing to the adhesion
of Salmonella to epithelial cell surfaces [118,119]. The SPI-4-encoded T1SS consists of five proteins
(SiiABCDF) and secretes the giant adhesin SiiE, which is the largest protein in Salmonella, resulting in
membrane ruffle formation and uptake of Salmonella [120,121].

SPI-5 is approximately 7 kb and plays a vital role in enteropathogenicity [122]. It encodes
at least five genes, i.e., pipA, pipB, pipC, pipD, and sopB. The encoded proteins are related to the
intestinal mucosal fluid secretion and inflammatory responses, and are regulated by SPI-1 and SPI-2
T3SS [122,123]. Recent studies on Salmonella have identified additional pathogenicity islands, such as
SPI-6-23 [33,124–134]. S. Typhimurium and S. Typhi genomes contain six common SPIs (SPIs-6, 9, 11,
12, 13, and 16). SPI-7, 8, 10, 15, 17, 18 were considered to be present in S. Typhi genome, but absent in
S. Typhimurium. SPI-14 is specific to S. Typhimurium [33]. Identification of new islands has improved
our understanding regarding the members of Salmonella and their pathogenicity.

SPI-6 is approximately 59 kb and encodes a type 6 secretion system (T6SS) [135]. SPI-6 T6SS
contributes to intra-macrophage survival and successful establishment of S. enterica in host gut
during infection [136]. The transcriptional repression of the SPI-6 T6SS core component clpV
resulted in defective intra-macrophage survival, attenuated virulence, and diminished systemic
dissemination [137].

SPI-7 is the largest genomic island around 134 kb in length and encodes important virulence genes,
including the major Vi antigen and IVB operon in serovars Typhi, Paratyphi C and some strains of
serovar Dublin [130]. These genes benefit bacteria against phagocyte-mediated killing and modulating
the innate immune responses [138].

SPI-8 is approximately 6.8 kb region located adjacent to the pheV tRNA gene and encodes a
degenerate integrase, two bacteriocin pseudogenes, and intact genes encoding proteins conferring
resistance to these bacteriocins [133]. It has been speculated that proteins encoded in SPI-8 could
improve bacterial fitness of typhoid serovars in human gut, however, further focused studies are
required to support this caveat [133,134].

SPI-9 is about 16 kb island and encodes the type I system that helps in modulation of bacterial
adhesion to the epithelial cells similar to the SPI-4 [129]. SPI-10 is approximately 32.8 kb in length,
containing the sefB, sefC, sefR, and prpZ genes, which are implicated in the regulation of chaperone
protein on mycelia manipulators [125]. From these, prpZ has been implicated in promoting S. Typhi
survival in human macrophages [139,140].

SPI-11 includes pagC, pagD, and msgA, which reportedly have important roles related to the
survival of S. Typhi in macrophages [141,142]. RaoN, a small RNA encoded within SPI-11, has
been shown to be necessary for survival under in vitro stress conditions and contributes to the
growth of S. Typhimurium in macrophages [128]. SPI-12, located next to the proL tRNA gene, is
approximately 15 kb in S. Typhimurium and 6.3 kb in S. Typhi [33]. Regulation of genes within
SPI-12 is conducive to in vivo adaptability [127]. SPI-13 is a 19 kb gene cluster and contributes to
the virulence of Salmonella [143]. Recent studies have shown that SPI-13 mediated d-glucuronic acid
(DGA) and tyramine (TYR) metabolic pathways can afford nutritional fitness to Salmonella Enteritidis
(S. Enteritidis) [143].

SPI-14 is approximately 9 kb and specific to S. Typhimurium. LoiA, a novel virulence-regulating
protein encoded in SPI-14, has been shown to be induced under low oxygen conditions and can
enhance the ability of S. Typhimurium to invade host epithelial cells [144,145]. SPI-15, 16, and 17 were
identified by bioinformatics in 2006 [146]. Studies on these islands are still very limited. SPI-15 is
6.5 kb, inserted near glyU tRNA, and is only present in S. Typhi, and absent in S. Typhimurium [146].
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SPI-16 is found in S. Typhimurium and S. Typhi as a 4.5 kb fragment inserted next to argU tRNA. It is
required for intestinal persistence of S. Typhimurium in mice [147]. Comparatively, SPI-17 is 5.1 kb
long, and inserted in argW tRNA encoding six open reading frames (ORFs) [146]. SPI-18 harbors two
ORFs organized into an operon, hlyE and taiA genes, and both are implicated in virulence. TaiA is a
novel invasin involved in an increased phagocytosis of S. Typhi by macrophages [148]. HlyE presents
a complex regulation network which participates in different stages of infective process. It affects
the Ca2+ homeostasis in epithelial cells by induction of slow, intracellular Ca2+ oscillations to control
S. Typhi growth in cells [149].

4. Molecular Mechanisms of Salmonella Immune Escape

In healthy individuals, the host body can recognize and clear pathogens through the innate and
acquired immunity by a strong host immune response. However, invasive Salmonella can evade the
immune surveillance using the sophisticated strategies, and could replicate, survive, and cause the
persistent bacterial infections in hosts without even exhibiting the typical clinical symptoms [150].
For example, it has been reported that, in certain cases, patients with typhoid fever may carry bacteria in
their gallbladder for the rest of their lives [32]. In general, such infections do not show clinical symptoms,
but are a potential threat to the host. These asymptomatic carriers presumably act as reservoirs for a
diverse range of S. Typhi strains and may act as a breeding ground for new genotypes [25]. It has been
reported that S. Typhi chronic infection facilitates the gallbladder cancer development in humans [151].
S. Typhimurium involved in the persistent infections is also difficult to eliminate, and infected patients
often continue shedding these pathogens in the environment, resulting in disease transmission [25,32].

4.1. Escape of Innate Immune System

The innate immune system provides the first line of defense against invading microorganisms by
inducing a variety of inflammatory and antimicrobial responses. It is also particularly important in the
gastrointestinal tract, where Salmonella is first colonized, to resist against a large variety of pathogenic
microorganisms. However, it is not surprising that Salmonella has evolved strategies to overcome and
adapt to an inflammatory environment. Intestinal epithelial cells are a primary cellular barrier of
the gut and critical for nutrient uptake [152]. The epithelial cells form a continuous intact physical
epithelial barrier with interspersing tight junctions (TJs) between each cell. Salmonella may disrupt the
TJs structure through SPI-1-secreted effectors resulting in an increased permeability to luminal antigens,
degrading the mucosal barrier function [153]. Intestinal microflora play a crucial role in the host
defense, and oral probiotics have been shown to increase intestinal antimicrobial activity and paneth
cells, which are the main intestinal cells responsible for the production of immunoreactive antimicrobial
peptide (AMP) [154]. This peptide helps stabilize the intestinal barrier, while promoting the stability of
intestinal microbial flora. Musca domestica cecropin and JH-3 (an analog of hemoglobin peptide P3), as
the novel AMPs, were recently found to have an obvious inhibitive effect on S. Typhimurium [155,156].
However, the presence of host AMPs activates the PbgA which is required to maintain PhoPQ system
of S. Typhimurium, promoting remodeling of outer membrane and resistance to innate immune
AMPs [157]. The transcytosis of Salmonella across the gut epithelium by M cells is important for the
induction of efficient immune responses to mucosal antigens in the Peyer’s patches [158]. M cells
function as the antigen-sampling cells, selectively transporting Salmonella antigens and delivering the
latter to the underlying lymphoid tissues where protective immune responses are initiated [22,159].
Paradoxically, Salmonella exploit M cells as a route for the host invasion. Both S. Typhi [160] and
S. Typhimurium [161] selectively target and invade M cells through SPI-1.

During Salmonella invasion of the host cells, its surface pathogen-associated molecular patterns
(PAMPs) are recognized by the host cell pattern recognition receptors (PRRs) [152]. The PAMPs which
are significantly expressed by Salmonella include: Lipoprotein, curli amyloid fibrils, lipopolysaccharide
(LPS), flagellin, and CpG DNA, which are recognized by PRRs. In addition to identifying the PAMPs,
PRRs can also recognize the “danger-associated molecular patterns” (DAMPs). During an invasive
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Salmonella infection, innate immune responses are initiated by PAMPs and DAMPs, leading to the
activation and recruitment of neutrophils and macrophages.

Extensively studied PRRs include the Toll-like receptors (TLRs) and NOD-like receptors
(NLRs) [162–164]. TLRs recognize Salmonella on the cell surface and in endosomes, whereas NLRs
detect Salmonella components in the cytosol. In an early stage of Salmonella infection, recognition
of ligands by TLRs increases the bactericidal activity of local tissue macrophages, induces the
maturation and migration of dendritic cells, and initiates the production of inflammatory cytokines and
chemokines [165]. Curli amyloid fibrils are recognized by the TLR2/TLR1 heterodimer complex. It was
shown that inability to produce curli fibrils will markedly reduce the ability of HeLa cells to respond to
stimulation with intact S. Typhimurium [166]. Moreover, epithelial cells augment the barrier function
via recognizing S. Typhimurium curli fibers in the gut by activating TLR2/phosphatidylinositol 3-kinase
(PI3K) pathway [167]. In addition to curli fibrils, intact Salmonella contain triacyl lipoproteins that also
stimulate responses through the TLR2 receptor [166,168]. TLR4 directly recognizes LPS, one of the
main components of Salmonella’s outer membrane, promotes proinflammatory cytokine production,
and phagocytic cell recruitment [169]. It is known that LPS is not homogeneous [170]. Additionally,
studies have found that structural and chain length differences in LPS between serotypes of Salmonella
are sufficient to drive different host immune responses [171–173]. S. Typhimurium uses PbgA and
PmrA/Pmrb system to influence LPS assembly and drive variable host Type I IFN responses for their
survival in various ecological niches [157,173–175]. The flagellin and non-methylated CpG sequence
in Salmonella DNA are easily recognized by TLR5 [176] and TLR9 [177,178], respectively. Following
ligand binding, TLRs engage the signaling adaptors MyD88 and TRIF, which are recruited in the
C-terminal domain of TLRs. This recruitment initiates the downstream signaling and subsequently
induces the host cells to produce inflammatory factors (interleukin-8, interleukin-10, interferon-α,
and others), causing an infiltration of neutrophils to the site of infection and thereby producing an
inflammatory response [179]. However, it has been demonstrated that S. Typhi can prevent neutrophil
recruitment in the intestinal mucosa by masking its surface antigens with SPI-7 and interfering with
TLRs [138,180,181]. Moreover, a SPI-7-encoded regulatory protein TviA can reduce TLR5-mediated
inflammatory responses by controlling capsule expression and flagellar movement (Figure 1) [182,183].
These evidences indicate that the encoding genes locus SPI-7 in S. Typhi is a necessary factor for
escaping the host inflammatory reactions. Capsules in S. Typhimurium are wrapped around LPS,
which also prevents the inflammatory response induced by TLR4 recognition [181]. Even if TLRs
successfully identify the PAMPs, Salmonella SPI-2 encoded proteins, i.e., SseL, SpvD, PipA, GogA,
GtgA, SpvC, can inhibit the nuclear factor kappa beta (NF-κB), extracellular signal-regulated kinase
(Erk), and mitogen-activated protein kinase (MAPK) activation, thus suppressing the transcriptional
responses leading to inflammation (Figure 1) [85,106,184–186]. SseL acts as a deubiquitinase and
prevents the ubiquitination of IkB-α. It results in the inability of IκB-α to dissociate from NF-κB,
leaving NF-κB in an inactive state [106]. SpvD targets the NF-κB pathway by interfering with nuclear
translocation of p65 [184]. PipA, GogA, and GtgA redundantly target components of NF-κB signaling
pathway to inhibit transcriptional responses leading to inflammation [86]. SpvC removes phosphate
groups of Erk and p38 MAPKs by phosphothreonine lyase to interfere with the downstream signaling
pathways [185,186]. SseK suppresses TNF-α-induced, but not TLR-induced NF-κB, activation and cell
death during macrophage infection [105]. Moreover, the effector AvrA transcribed by SPI-1 is able to
stabilize the intestinal epithelial permeability and tight junctions of intestinal epithelial cells to mitigate
a destructive effect produced by other SPI-1 effectors (i.e., SopB, SopD, SopE, and SopE2) (Figure 1).
It was shown that disintegration of tight junctions in the intestinal epithelial cells could enhance the
intestinal inflammatory responses. Thus, Salmonella can also avoid the host inflammatory responses
through AvrA [84].

Moreover, Salmonella can trigger their own phagocytosis by macrophages [187–190] and become
encapsulated in SCV. The effector SipA, SseJ, SopE2, and SopB are required for biogenesis and correct
localization of SCV [80]. SipA provides functional continuity between forced bacterial entry and the



Microorganisms 2020, 8, 407 10 of 25

intracellular replicative niche by priming the SCV, and the localization of SseJ maintains the membrane
integrity and stability of SCV [91,104]. SopB is essential for efficient cytosolic proliferation of Salmonella
(Figure 1) [191]. Once Salmonella become established within SCV, they become hidden from many
extracellular detection mechanisms. SseF and SseG anchor SCV at the Golgi network and remain in
this region during first few rounds of bacterial replication, forming a clustered microcolony of vacuoles
(Figure 1) [192]. However, macrophages have evolved NLRs that can recognize the presence of PAMPs
in the cytosol [164]. Upon binding to the ligand, the NLRs initiate different signaling cascades. NOD1
and NOD2 interact with a common adaptor protein called receptor-interacting protein 2 (RIP2) to
mediate an efficient clearance of Salmonella from mucosal tissue [193,194]. Inflammasome assembly is
usually triggered by the cytosolic NLRs which sense dangerous signals. It consists of NLRs, the adaptor
proteins apoptosis-associated speck-like protein containing a CARD (ASC) and the effector molecules
caspase-1, resulting in caspase-dependent secretion of mature pro-inflammatory cytokines IL-1β, IL-18,
and pyroptotic cell death [195,196]. Mouse NLR apoptosis inhibitory protein (NAIP2) and human
NAIP can recognize the S. Typhimurium T3SS inner rod component PrgJ, and NAIP5 can recognize
S. Typhimurium flagellin D0 domain to induce NLR family CARD-domain containing protein 4
(NLRC4) phosphorylation and caspase-1 activation [197–199]. SCV lysis releases bacterium into the
macrophage cytosol, where it is detected by the noncanonical inflammasome and eventually induces
the pyroptotic death of the host cell [200,201]. However, SPI-2-mediated T3SS2 secrets effectors into
the cytoplasm, and these effectors protect against the harmful environmental factors by regulating the
vacuoles and intracellular biochemical reactions to facilitate the survival and replication of Salmonella
in SCV [82,83,86,87,89,92]. Studies have demonstrated that human macrophage death and IL-1β
production are elicited by S. Typhimurium SPI-1 but suppressed by SPI-2 [87,202]. SPI-2 supports the
SPI-1-driven active infection of human macrophages and intra-macrophage bacterial survival [202].

Another potential reason that Salmonella induces its own phagocytosis by macrophages may
be to avoid the phagocytic killing by neutrophils. This is also supported by the fact that Salmonella
has a limited ability to resist the neutrophil-mediated bactericidal effects. Lysosomes in phagocytic
cells contain a variety of hydrolases for combating bacteria. Evading lysozyme degradation is an
important strategy for the survival of intracellular bacteria. It has been reported that SCV can fuse
with lysosomes [203,204]. Interestingly, a Salmonella effector SifA, which is required to maintain the
SCV membrane, has the ability to reduce the lysosomal enzyme activity (Figure 1) [90]. In addition to
SifA, Salmonella also uses SopD2 to interfere with endosome-to-lysosome trafficking (Figure 1) [96].
Therefore, in order to efficiently kill pathogens in SCV, host cells are required to generate a stronger
bactericidal environment.

Oxidative bursting catalyzed by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
is induced by phagocytic cells to produce a large number of reactive oxygen intermediates (ROI),
such as O2

- and H2O2, which are converted into a strong oxidant hypochloric acid and rapidly kill
Salmonella [205]. However, Salmonella depends on SPI-2 effectors, i.e., SseB, SsrA, SsaJ, and Ssav for
preventing an interaction of NADPH oxidase subunit Cytb558 with SCV to avoid the oxidative burst
(Figure 2) [102,206]. In addition, Salmonella can resist the oxidative killing effect of ROI using catalase,
antioxidant proteins, and superoxide dismutase [207]. Reactive nitrogen intermediates (RNI) include
nitric oxide and its derivatives, such as nitrososulfur compounds, nitrogen peroxide, etc. Reactive
nitrogen intermediates can also kill Salmonella through various mechanisms, such as by causing DNA
damage, preventing SPI-2 transcription, and inhibiting the PhoP/PhoQ acid-tolerance regulation
reaction [208]. However, Salmonella also possesses the NO2- operating system and nitrate reductase for
protection against RNI damage [209].
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Figure 2. Mechanisms by which Salmonella escape host immune responses. SPI-2 effector SpiC prevents
DCs from presenting antigens to MHCs, and SifA blocks MHC II expression, resulting in an inadequate
activation of naive T cells. SPI-2 effector SteD with its chaperone SrcA is a key requirement for Salmonella
which suppress T cell activation by forcing an inappropriate ubiquitination of MHC II. SseB, SsrA, SsaJ,
Ssav are used for avoiding the oxidative burst. Salmonella also increases IL-10 and NO production
and induces the expression of iNOS to inhibit the proliferation of T cells. Furthermore, when SPI2
is activated, the expression of flagellin in the intracellular environment is inhibited, preventing the
NLRC4 from recognizing Salmonella. During the course of infection, Salmonella exploits the host type I
interferon response to eliminate the macrophages through RIP-dependent cell death and promotes
its own survival. TLR: Toll-like receptor; MyD88: Myeloid differentiation primary response gene 88;
TAK1: Transformed growth factor kinase 1; IκB-α: NF-κB inhibitor alpha; TCR: T cell receptor; MHC I:
Major histocompatibility complex class I; MHC II: Major histocompatibility complex class II; NLRC4:
NLR family CARD domain containing 4; CASP1: Caspase 1; IL-6: Interleukin 6; IL-8: Interleukin 8;
IL-10: Interleukin 10; TNF-α: Tumor necrosis factor a; iNOS: Inducible nitric oxide synthase; IFN:
Interferon; IFN-R: Interferon-a/b receptor; SOD: Superoxide dismutase; NADPH: Nicotinamide adenine
dinucleotide phosphate; NO: nitric oxide; RIP: receptor-interacting protein.

Eswarappa and colleagues have shown that most SCVs in macrophages contain only one bacterium.
Salmonella replicates in the SCV, and with an increasing bacterial number, one SCV divides into multiple
SCVs, which benefits the survival of the intracellular bacteria [210]. On the one hand, it becomes
much more difficult for the host cells to combat multiple SCVs compared to a single SCV, as this effort
also requires more bactericidal media. In addition, a bacterium occupying a single SCV reduces the
competition for nutrients and secretes effectors more efficiently into the cytoplasm [210]. Macrophages
provide a safe haven to Salmonella for its survival and proliferation. However, when nutrients in the host
cells are depleted, Salmonella is forced to induce the host cell death and search for new a host instead.
Salmonella mediates macrophage death through two mechanisms [211]. One of these mechanisms
involves the rapid induction of macrophage death. Salmonella expressing the SPI-1 T3SS rapidly trigger
caspase-1-dependent apoptosis of infected macrophages [94,212,213]. Murine bone marrow-derived
macrophages undergo lysis within 1 h of infection [214]. This rapid activation of programmed
macrophage cell death depends on SPI-1 encoded protein SipB, bacterial flagellin, and the T3SS1 export
machinery [211,215]. However, the other mechanism is SPI-1-independent, and characterized by a
delayed induction of apoptosis to kill infected macrophages as late as 18 h post-infection. A functional
T3SS2 and OmpR (ancestral regulator involved in the expression of ssrAB operon located in SPI-2) are
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required for the delayed induction of apoptosis, and allow Salmonella to spread intercellularly within
apoptotic bodies [211,216,217]. Furthermore, past studies have indicated that the rapid and delayed
activations of programmed macrophage cell death are independent of each other, since the mutations
in SPI-1 do not affect the delayed induction of apoptosis, and the mutations in SPI-2 do not affect rapid
induction of apoptosis [211]. The dead or dying macrophages containing Salmonella are engulfed by
other macrophages recruited at the site of infection, and these macrophages can again serve as a safe
haven for Salmonella to survive, while avoiding the extracellular host defenses [218]. Furthermore,
studies have revealed that there are subpopulations of vacuolar and cytosolic Salmonella [219]. Vacuolar
Salmonella are T3SS2-induced, whereas cytosolic Salmonella are induced by T3SS1 and flagellated [220].
The release of bacteria from SCV leads to their transcriptional reprogramming and a robust replication
in the cytosol that exceeds their replication rate in the SCV [220,221]. However, the permissiveness of
Salmonella survival and replication following vacuole lysis is dependent upon the cell type. For instance,
Salmonella eventually hyper-replicate in the cytosol of epithelial cells but not in the cytosol of fibroblasts
or macrophages [222]. Epithelial cells infected with Salmonella trigger an acute intracellular amino
acid starvation, resulting in the induction of xenophagy to protect the host cells from Salmonella, but
it is temporally restricted and not absolute [219,223]. Eventually, epithelial cell death via pyroptosis
results in cell lysis, proinflammatory cytokine release, and escape of the cytosolic bacteria into the
extracellular space, providing a potential mechanism of dissemination [219].

4.2. Escape of Adaptive Immune Responses

As the antigen presenting cells, macrophages and dendritic cells (DCs) can directly recognize
the PAMPs in bacteria and present the bacterial antigens to T cells, initiate the proliferation and
differentiation of naive T cells into the effector T cells, playing an important role in adaptive immune
response against the invading bacteria. Interference with these functions is likely to increase the
survival chances and invasion of bacteria in the hosts. Therefore, it seems that manipulating the
antigen presentation capability of antigen presenting cells is another important strategy of pathogens
for suppressing and escaping the host immune responses [224]. SseI has been shown to block the
migration of DCs to lymphocytes [225]. Moreover, the major histocompatibility complex (MHC) plays
an important role in combating the Salmonella during the later stages of infection [226,227]. It was
shown that in human cells harboring intracellular Salmonella, SPI-2-encoded SifA is responsible for
interfering with major histocompatibility complex class II (MHC II) cell surface expression and thereby
provides Salmonella with a specific mechanism to evade or delay the host adaptive immune response
(Figure 2) [228]. SPI-2-encoded SteD with its chaperone SrcA can force an inappropriate ubiquitination
of MHC II to suppress T cell activation (Figure 2) [229,230]. Tobar and colleagues have shown that
Salmonella prevents the degradation of lysosomes in DCs by SPI-2 effector SpiC, making it impossible
for DCs to bind and present antigens to MHC, thus preventing the differentiation of naive T cells [231]
(Figure 2). Once T cells are activated during infection, the majority of both CD4+ and CD8+ T cells have
acquired an activated phenotype and an unexpectedly large fraction of these T-cell populations secreted
IFN-γ to inhibit bacterial replication [232–235]. IL-12 has been identified as a major IFN-γ inducer.
Interestingly, persons lacking the IL-12 receptor are more susceptible to Salmonella infection [236,237].
TNF-α also controls S. Typhimurium replication levels in persistently infected hosts [234]. Despite
a profound activation of both CD4+ and CD8+ populations, expansion of either T-cell population
was marginal [238]. Only a moderate (two- to three-fold) expansion of these T-cell populations were
observed over several weeks of infection. Salmonella induces the expression of inducible nitric oxide
synthase (iNOS) by SPI-2 to inhibit the proliferation and differentiation of T cells [224]. Furthermore,
in mice models, S. Typhimurium infection resulted in immunosuppression by increasing IL-10 and
nitric oxide (NO) production with immunosuppressive activity [233,239–241] (Figure 2).

Both CD4+ and CD8+ T lymphocytes and the humoral immune responses are required to control
Salmonella infection [242–248]. It has been demonstrated that mice continuously infected with Salmonella
have higher antibody titers [232] including IgA, IgM, and IgG [232,249], indicating that B cells also
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play an important role in the host defense. This may represent a deliberate shift from Th1/Th17 to
Th2 responses [250]. Moreover, the adaptive immune responses also provide a positive feedback
to the innate immune system [251]. This feedback is mediated via cytokines synthesis, leading
to an increased number and activation of effector cells, and subsequently producing an increased
antimicrobial response.

5. Perspectives

In recent years, different disciplines, such as immunology, microbiology, and cell biology have
contributed greatly to our understanding of the interaction between Salmonella and the host. Several
studies have revealed complex interactions between microbial pathogens and higher organisms. Future
studies will hopefully expand our understanding of an interplay between immunity and bacteria in
different infected organs. At present, our understanding of the interaction of Salmonella with innate
and adaptive immunity evading the host defense strategies in humans is still incomplete. When the
effects of normal microbial colonization flora contained in the host and the diversity of environmental
conditions are analyzed, the complexity of the interaction between bacteria and host becomes far
greater than our current knowledge in this domain. Invasive diseases caused by Salmonella remain a
major factor accounting for the severe death and morbidity rates worldwide. Therefore, the ongoing
research focusing on the relationship between Salmonella and the host immunity has the desired
potential to explicate complex questions related to the Salmonella–host interactions and improve the
prevention and treatment strategies aimed at combating these infectious diseases in the near future.
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