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MicroRNAs (miRNA) are small regulatory, noncoding RNA molecules that are transcribed as primary miRNAs (pri-miRNA) from
eukaryotic genomes. At least in plants, their regulatory activity is mediated through base-pairing with protein-coding messenger
RNAs (mRNA) followed by mRNA degradation or translation repression. We describe novoMIR, a program for the identification
of miRNA genes in plant genomes. It uses a series of filter steps and a statistical model to discriminate a pre-miRNA from other
RNAs and does rely neither on prior knowledge of a miRNA target nor on comparative genomics. The sensitivity and specificity
of novoMIR for detection of premiRNAs from Arabidopsis thaliana is ∼0.83 and ∼0.99, respectively. Plant pre-miRNAs are more
heterogeneous with respect to size and structure than animal pre-miRNAs. Despite these difficulties, novoMIR is well suited to
perform searches for pre-miRNAs on a genomic scale. novoMIR is written in Perl and relies on two additional, free programs for
prediction of RNA secondary structure (RNALfold, RNAshapes).

1. Introduction

MicroRNAs (miRNAs) are genome-encoded single-stranded
RNA molecules of ∼22 nt in length, which play a significant
role in regulation of gene expression in eukaryotes. Many
details on biogenesis and interactions of miRNAs are known
(see recent reviews, e.g., [1, 2]). Briefly, miRNAs can be
encoded by miRNA genes, but also be generated from dif-
ferent RNA transcripts (e.g., from introns of protein-coding
genes). Plant and animal miRNAs differ to some extent
with respect to biogenesis and structural characteristics but
also in their mode of action. In plants, most if not all
miRNAs are transcribed from genes by RNA-dependent
RNA polymerase II (polII) into primary transcripts called
pri-miRNA; these transcripts fold into (possibly imperfect)
stem-loop structures. From the pri-miRNA Dicer-like (DCL)
enzymes process the stem-loop structure (pre-miRNA),
which is usually longer (∼130 nt; see below) than nonplant
pre-miRNA (∼86 nt), and finally a miRNA/miRNA∗ duplex.
In the cytoplasm, the miRNA is incorporated into the
RNA-induced silencing complex (RISC), and base-pairing of
the miRNA with complementary messenger RNA (mRNA)

regions leads to mRNA degradation or to inhibition of
mRNA translation. Most plant miRNAs base-pair with
their respective target mRNAs in the coding region with
perfect or near-perfect complementarity leading to cleavage
(and degradation) of the mRNAs; animal miRNAs usually
base-pair with 3′ untranslated regions through imperfect
complementarity leading to translation repression.

Finding of miRNA genes either needs costly experimen-
tal approaches—for example, genetics, which led to the
detection of the first animal miRNAs [3, 4], cloning and
sequencing of cDNA, or deep sequencing—or computational
prediction methods, which facilitate subsequent experi-
mental verification or falsification. The different properties
of miRNAs in plants and animals gave rise to different
computational approaches (for reviews see [5–7]). Most of
these tools, however, rely on the following features: the
miRNA resides in a stem-loop structure, which possess a
high thermodynamic stability and does not contain large
internal loops or asymmetric bulges at least in the region
of the mature miRNA [8]. In addition, many tools take
into account a phylogenetic conservation of the pre-miRNA
structure and miRNA sequence, which limits the chance to
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detect non-conserved, evolutionary new miRNA genes. For
example, Dezulian et al. [9] identify plant miRNA homologs
in a set of sequences, given a query miRNA, by a sequence
similarity search step and a set of structural filters; Pfeffer et
al. [10] identify DNA-viral pre-miRNAs, which show neither
detectable conservation to other viral pre-miRNAs nor to
host pre-miRNAs, by a search for stable stem-loops and
scoring of these according to free energy of folding, base
composition, and number of base pairs; Wang et al. [11] as
well as Jones-Rhoades and Bartel [12] search for putative
miRNA/miRNA∗ complexes in the intergenic regions of
Arabidopsis thaliana and filter these according to GC content,
mismatches in the stem, conservation in the rice genome,
and the characteristic stem-loop structure.

To our knowledge, the only tools for de novo prediction of
pre-miRNAs in plants are HHMMiR [13] and triplet-SVM
[14]. HHMMiR calculates first the mfe structure of sequence
regions (using RNAfold in a scanning window approach
with window length of less than 500 nt), extracts stem-loops
that possess at least 10 base pairs, a minimum length of 50 nt,
a loop of less than 20 nt and no multiloop(s), and finally
classifies via a hierarchical hidden Markov model (HHMM).
The sensitivity of HHMMiR is published to be 0.865 for
Oryza sativa (96 sequences taken from miRBase 5) and 0.973
for A. thaliana (75 sequences). triplet-SVM calculates by
RNAfold the mfe structure of sequences, rejects those with
junction(s), too few base pairs, and a high free energy (i.e.,
low structural stability), parses the remaining structures in
“triplets” (type of nucleotide plus paired or unpaired state of
the nucleotide and its two neighbors), and finally classifies
these features with a support vector machine (SVM). The
sensitivity of triplet-SVM is published to be 0.948 for
Oryza sativa and 0.92 for A. thaliana using the same
sequences from miRBase 5 as in the test with HHMMiR.

In the following, we describe our tool, called novoMIR,
to detect pre-miRNA and miRNA/miRNA∗ sequences in
a plant genome. For this purpose novoMIR uses a series
of filter steps, similar to those mentioned above, followed
by a statistical model to discriminate a pre-miRNA from
all other RNAs and by another statistical model to locate
the miRNA/miRNA∗ complex in a putative pre-miRNA.
Thresholds and statistical values are learned from sets of true
positive sequences (plant pre-miRNAs taken from miRBase;
[15]) and true non-miRNA sequences (tRNAs, 5 S rRNA,
5.8 S rRNA, mRNAs, etc.). For detection, novoMIR relies
neither on comparative genomics nor on prior knowledge of
a miRNA target; thus novoMIR allows for searches in single
plant genomes as well as in viral or viroid genomes.

2. Methods

2.1. Features of Plant Pre-miRNA. Sequences of plant pre-
miRNAs were obtained from different versions of miRBase
[15, 16]: version 10.0 contains 1,247 sequences; the recent
version 14 contains 2,030 sequences. The mean and median
length of plant sequences are about (150 ± 73) nt and
130 nt, respectively (see Figure S1 in Supplementary Material
available online at doi:10.4061/2010/495904 ); the shortest
pre-miRNA is 54 nt in length (miRBase ID: gma-MIR2107)

and the longest is 932 nt (cre-MIR916). The mean and
median length of nonplant sequences are about (88 ± 14) nt
and 86 nt, respectively; the shortest pre-miRNA is 44 nt
in length (hsa-mir-1973) and the longest is 215 nt (dme-
mir-997). That is, most plant pre-miRNAs are longer than
animal pre-miRNAs and their size range is more diverse. The
sequences of pre-miRNAs and mature miRNAs are slightly
enriched in U [17] and U plus G, respectively (see Figure
S2). The four nucleotides are not equally distributed at each
position along the miRNA sequences (see Figure S3): for
example, a U is the preferred 5′ nucleotide ( f1,U = 0.65), a G
on position 8 ( f8,G = 0.44), and a C on position 19 ( f19,C =
0.52). The minimum free energy ΔG0

37◦C of the secondary
structures of pre-miRNAs, as calculated by RNAfold [18]
using default parameters, is in a wide range due to the
different lengths L and G+C contents fGC of the sequences
(see Figure S4); normalization of ΔG0

37◦C to length and fGC

[17] results in ΔG0
37◦C/L = (−0.45 ± 0.12) kcal/mol/nt and

ΔG0
37◦C/L/ fGC = (−1.02 ± 0.26) kcal/mol/nt; the latter value

is significantly lower than that of other RNA according to
Zhang et al. [17].

2.2. Training Data. We used the 184 pre-miRNAs and
mature miRNAs of A. thaliana as listed in miRBase version
10 as the true-positive data set for establishing all thresh-
olds and parameters of novoMIR. Sequences containing
nucleotides other than A, C, G, U(T) were discarded. For
evaluation of sensitivity we used in addition the plant pre-
miRNAs and mature miRNAs from miRBase version 14 (190
from A. thaliana and 1,853 from other plants). The sensitivity
of novoMIR was nearly identical for both data sets (and also
with sequences from version 14 minus those from version 10;
see supplemental Table S1); thus we refrained from training
with different data sets.

2.3. Test Data. As the true-negative data set, we assembled
RNA sets from the following sources:

(i) 710 mRNA sequences randomly selected from A.
thaliana

(ii) 631 tRNA sequences from A. thaliana

(iii) 63 5.8 S rRNA sequences from Rfam version 7.0 [19]

(iv) 602 5 S rRNA sequences from Rfam version 7.0

(v) one randomly selected RNA sequence from each of
the 455 noncoding RNA families from Rfam version
7.0 (except miRNA families);

(vi) 2,760 shuffled pre-miRNA sequences (each of the
184 A. thaliana sequences from miRBase 10 was
shuffled 5 times using shuffle [20] preserving (a)
the mononucleotide content, (b) mono- and dinu-
cleotide content, and (c) mononucleotide content in
a window of 20 nt, resp.)

(vii) repetitive genomic elements from A. thaliana from
the RepeatMasker library [21] (in total 134,000 nt)

(viii) 8,000 pseudohairpin sequences from Homo sapiens
[22]
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(ix) 10,000 pseudohairpin sequences from A. thaliana;
these were selected using RNALfold from the TAIR
cDNA library [23] to have a minimum stem-loop
length of 50 nt in a base pair span of 400 nt

(x) 10 × 5, 000 sequences of a length between 80 and
800 nts randomly selected from the five chromo-
somes of A. thaliana.

2.4. Availability and Requirements. novoMIR is written in
Perl and was tested under Linux. It relies on RNAshapes
[24, 25] and RNALfold [26] (which is part of the Vienna
RNA package [18]) for secondary structure calculations.
RNALfold finds subsequences of a long RNA sequence that
fold into locally stable (i.e., thermodynamically favorable)
RNA secondary structures; the computational effort is
O(NL2) with length N of the long RNA sequence and
maximal base-pair separation L of the subsequences. For
an RNA sequence, RNAshapes computes shapes, which are
classes of similar secondary structures, and a representative
structure (“shrep”) of minimal free energy within each
shape.

3. Algorithm

In the following, we describe the workflow of novoMIR (see
supplemental Figure S5).

(1) A typical plant pre-miRNA consists of a relatively
short sequence (with median length ∼130 nt and
mean length ∼ 150 ± 73 nt) that is able to fold
into a stable stem-loop structure. Thus, we search in
the genomic sequence for subsequences with locally
stable secondary structure(s) via RNALfold. In case
the genomic sequence is longer than 1000 nt, we
subdivide it into 1000 nt fragments overlapping by
400 nt. We choose a maximal base pair separation L =
400 nt. This limit excludes only a few exceptionally
long pre-miRNAs; that is, only 8 of 1356 plant pre-
miRNA sequences in miRBase 10 and 14 of 2030 in
miRBase 14, respectively, are dismissed due to this
restriction for the sake of a fast first step. From the
output of RNALfold, the five subsequences with
best locally stable structures are treated further as
individual sequences.

(2) The original sequence (with length ≤1000 nt) or
a subsequence (with length ≤400 nt) selected by
RNALfold is discarded if the sequence has a base
composition not typical for pre-miRNAs; that is,
the sequence is only retained if the fraction of each
nucleotide is above 0.1. This filter rejects 9 and 21
plant pre-miRNA sequences from miRBase 10 and
14, respectively.

(3) RNAshapes is used to predict the thermodynam-
ically optimal secondary structure (minimum free
energy (mfe) structure with ΔG0

mfe) and the optimal
secondary structure of up to three shapes with ener-
gies less favorable than that of the mfe shape class by
0.1 kcal/mol. The shapes have to differ in their nesting

pattern for all loop types but positions of unpaired
regions are not of relevance (RNAshapes’s option
−t 3). In general, it is assumed that the mfe struc-
ture of pre-miRNAs is the conformation adequate
for further processing by Dicer. In our case, however,
we do not know the true 5′ and 3′ ends; thus, the
unrelated termini of the respective sequence, which
do not belong to the true pre-miRNA, might cause
the pre-miRNA structure to be thermodynamically
suboptimal. Moreover, the restriction by RNAshapes
to the shrep prediction avoids prediction (and further
processing) of the immense number of suboptimal
structures.

(4) Any sequence that is not able to fold into a structure
(as predicted in step (3)) with ΔG0

37◦C/L/ fGC ≤
−0.75 kcal/mol/nt is rejected.

(5) Next, each retained secondary structure is refor-
matted from the bracket-dot notation used by
RNAshapes into an alignment-like format [27] (for
an example see Figure 1), which eases handling
during the following steps: at each multiloop, the
structure is divided into the respective stem-loop
structures, which are separately processed further; 5′

and 3′ dangling ends are removed; a hairpin loop is
removed; and asymmetric loops are made symmetric
by introduction of gap symbols. Afterwards each
(sub)structure consists of the following states: base
pairs (match states M symbolized by +

+ ), loop “pairs”
(mismatched states N, −

− ), and insertion (I) and
deletion (D) states ( −| and |

− , resp.).

(6) A stem-loop shorter than 30 states in the alignment-
like format is deleted. For efficiency of this filter, see
Figure 2(a).

(7) Next, a window of length 25 states is moved (in steps
of (1) state) along the structure in the alignment-
like format, and the fraction of base-paired states
is determined for each window. A stem-loop is
deleted unless at least a mean fraction of 0.65 base-
paired states is present in five different windows,
which might overlap. For efficiency of this filter see
Figure 2(b).

(8) A stem-loop is deleted if it does not contain a helix
with at least 8 consecutive base pairs. For efficiency of
this filter see Figure 2(c).

(9) A stem-loop is deleted if the ratio of its sequence
length (as predicted by RNALfold) and the length
of the stem-loop in the alignment-like format is
above 6; that is, the structure contains too many
junctions and/or large, unstructured hairpin loops.
For efficiency of this filter see Figure 2(d).

(10) If a sequence (and structure) remains after the filter
steps, novoMIR decides on its possibility to be a
pre-miRNA using a paired Hidden-Markov model
identical to that described by Nam et al. [27]. Briefly,
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Figure 1: Example of a reformatted pre-miRNA structure and predicted localization of a miRNA/miRNA∗ complex in the pre-miRNA
structure. (a) Secondary structure of the pre-miRNA of ath-mir156a in standard representation. The mature miRNA is shown in larger italic
characters. (b) Section of the pre-miRNA in an alignment-like format. First and fourth line show the sequence except the sequence region
of the hairpin loop; lines 2 and 3 describe the state of the opposing nucleotides: a base pair is marked by “+”, nucleotides of an internal
loop by “−” in both lines, and nucleotides that are part of an asymmetrical internal or a bulge loop by “|”. In the fifth line a base pair is
marked by “M”, a non-pair by “N”, a deletion in the top strand by “D”, and an insertion in the top strand by “I”. (c) Positions predicted as
miRNA/miRNA∗ complexes are marked by “x” and their relative positions in the sequence.

the joint probability P(x,π) of an observed sequence
x and a state sequence π is

P(x,π) = T0π1

L∏

i=1

Eπi(xi)Tπi ,πi+1 , (1)

with transition probabilities Tkl = P(πi = l |
πi−1 = k) between the four states k, l ∈ {M, N, I, D},
emission probabilities Ek(b) = P(xi = b | πi = k)
of the different nucleotide and gap pairs b, window
size L = 21, and the probability of starting
in state k defined as T0π1 . In contrast to Nam
et al. [27], we use four hidden states (is miRNA,
is miRNA→is not miRNA,is not miRNA→
is miRNA, is not miRNA; see Figure S6). For the
decision that the sequence is a pre-miRNA or not,
the values for the j ∈ {is miRNA, is not miRNA}
states are normalized and summed up

Pj =
L∑

i=1

Eπi, j
(
xi, j
)
Tπi, j ,πi+1, j

∑4
j=1 Eπi, j

(
xi, j
)
Tπi, j ,πi+1, j

. (2)

The squared ratio

R1 =
(

Pis miRNA

Pis not miRNA

)2

, (3)

as well as the mean of the nine highest values of the
difference

R2 = max
l+20∑

k=l
Pis miRNA − Pis not miRNA, (4)

are compared to thresholds for the pre-miRNA
decision.

(11) In case of a positive decision in the previous step, the
values that lead to the six highest values of R2 are
predicted as positions of probable miRNA/miRNA∗

duplices (see Figure 1(c)).

4. Results and Discussion

Our program novoMIR uses a set of heuristic filters and a
statistical model to discriminate a miRNA precursor from
all other RNAs (see Figure S5). The data for this model are
collected based on a set of true positive sequences (miRNA
precursors from A. thaliana as in miRBase 10) and a set of
true non-miRNA sequences (for details, see Section 2.3 ).

4.1. Test on miRBase Version 14. All thresholds for the
filter steps and the probabilities for the Hidden-Markov
model were selected on the basis of “receiver operating
characteristic” (ROC) curves like those shown in Figure 2.
For these, the set of true positive A. thaliana pre-miRNA
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Figure 2: Efficiency of filtering steps and paired HMM. Receiver operating characteristic (ROC) curves for filters on (a) minimum
length of stem-loop region, (b) fraction of base pairs in a sliding window of 25 states, (c) number of consecutive base pairs, and
(d) ratio of sequence and stem-loop length. The area under the curve (AUC) is (a) 0.94, (b) 0.97, (c) 0.93, and (d) 0.87. The dots
(at max(sensitivity + specificity− 1)) denote the value pair of sensitivity and false positive rate that optimally discriminates between miRNA
and non-miRNA sequences. The data set consisted of all plant miRNA sequences from miRBase 10 and 455 non-miRNA sequences from
Rfam 7.

sequences was taken from miRBase version 10. Sensitivity
values for the enlarged set of pre-miRNAs from miRBase
version 14 (190 A. thaliana and 1,840 sequences from other
plants) are compared to those obtained from miRBase
version 10 (184 A. thaliana and 1,063 sequences from other
plants) in Table 1. The sensitivity values of novoMIR for A.
thaliana pre-miRNA sequences of both miRBase versions are
very close to each other (0.837 and 0.832, resp.). The values
for all plant pre-miRNA sequences are slightly lower (0.791
and 0.792, resp.), but show no clear trend that sequences
of miRBase 14 (not present in miRBase 10) are different
from those of miRBase 10 or that sequences from a certain
taxonomic group might be different from those of others (see
supplemental Table S1).

The sensitivity of novoMIR in predicting the position
of the miRNA/miRNA∗ complex is also high (0.73 for A.
thaliana and 0.82 for all plants; see Table 1). For this, a
position is counted as correctly predicted if it matches exactly

the annotated mature miRNA or overlaps by five or fewer
nucleotides.

4.2. Comparison with Other Tools. We tested HHMMiR [13]
and triplet-SVM [14] for sensitivity with the sequences
from miRBase 10 and 14 (see Table 1). Their sensitivity is
at maximum 0.15 and 0.45, respectively. The filtering steps
of both tools reject already many sequences (HHMMiR
more than 80% and triplet-SVM more than 22%). For the
sequences remaining after the filtering steps, the sensitivity
of the HHMM and SVM is at maximum 0.79 and 0.60,
respectively, which is also lower than that of novoMIR with
a sensitivity of at least 0.80 (using all filter steps).

4.3. Tests on Specificity. We assembled different data sets
to test the specificity of novoMIR. These data sets should
not contain any true (pre-)miRNA. For example, we used
well-annotated RNAs (mRNA, noncoding RNA) and sets of
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Table 1: Sensitivity of novoMIR, triplet-SVM [14], and HHMMiR [13] in pre-miRNA prediction for different versions of miRBase. The
row “14–10” shows values for sequences from miRBase 14 which are not present in miRBase 10.

Sensitivity1

miRBase novoMIR2 HHMMiR3 triplet-SVM3

version # sequences pre-miRNA miRNA/miRNA∗ pre-miRNA pre-miRNA

10 184 A. th. 0.84 0.73 0.15 0.75 0.45 0.60

14 190 A. th. 0.83 0.75 0.10 0.79 0.44 0.59

10 1247 plant 0.79 0.82 0.04 0.58 0.39 0.51

14 2030 plant 0.79 0.83 0.04 0.64 0.38 0.50

14–10 788 plant 0.80 — 0.04 0.73 0.38 0.48
1 Sensitivity is calculated as TP/(TP + FN).
2 Note that novoMIR’s thresholds and probabilities were learned only from A. thaliana sequences in miRBase version 10.
3 The left column gives sensitivity for all sequences; the right column gives sensitivity for those sequences left after the preprocessing step(s) of HHMMiR and
triplet-SVM, respectively.

“pseudohairpins” from H. sapiens and A. thaliana. Similarly,
the chance is negligible that the data set of 10 × 5, 000
sequences randomly selected from the A. thaliana genome
contains a true miRNA. The most difficult data set consisted
of A. thaliana mRNAs; with these novoMIR reached a
specificity of 0.975 (see Table 2). With all other data sets
specificity was from 0.98 up to 1.00.

4.4. A Search for Pre-miRNAs in the Genome of Arabidopsis
Thaliana. We wanted to test the program with a more
realistic scenario, given the satisfying sensitivity and speci-
ficity values of novoMIR with our test data (see Tables 1
and 2). We selected all intergenic and intronic regions of
the A. thaliana genome from “The Arabidopsis Information
Resource” (TAIR), removed all pre-miRNA sequences, and
searched within the remaining sequences for potential pre-
miRNAs via novoMIR. novoMIR classified 828 sequences
from the 30,413 intergenic sequences and 649 sequences
from the 148,558 intronic sequences, respectively, as poten-
tial pre-miRNAs.

Despite this pleasingly low numbers of hits, however,
an interpretation of this outcome is not easy. To get an
impression on the hits, we searched with these potential pre-
miRNA sequences with BLAST for any annotation and for
the miRNA-typical expression pattern in the “Arabidopsis
Small RNA Project Database” (ASRP) [28, 29]; such a typical
expression pattern of a pre-miRNA includes sequences for
the miRNA as well as for the miRNA∗ (for an example see
supplemental Figure S7). To our surprise, we detected that
some of the predicted candidates are already described as true
pre-miRNAs. An example of such a sequence, predicted by
novoMIR as a potential pre-miRNA, is located on A. thaliana
chromosome 3 in the region between genes At3G09280
and At3G09290. Its secondary structure and its support by
expressed small RNAs are shown in Figure 3 and Figure S8,
respectively. It is already known as pre-miR2111a [30, 31],
but not present in miRBase 14. The sequences of the mature
miR2111a and of miR2111a∗ predicted by novoMIR also
coincide with the sequences given in [30].

In the following, we mention shortly three further
candidate hits, for which we found some support by small-
RNA expression in the ASRP but no explicit annotation.
One novoMIR hit is located on chromosome 4 between

At4G22760 and At4G22770 close to the 3′ terminus of the
latter, but on the opposite strand; for further details, see
Figure 3 and Figure S9. The next hit (see Figure 3 and Figure
S10) is located in between At5G52689 and At5G52690. The
last mentioned hit is located in an intron of AT1G01650,
which encodes for an aspartic-type endopeptidase/peptidase;
the structure of this sequence is shown in Figure 3 and the
expression pattern of the genomic region in Figure S11.

Several candidate hits have no support by small RNAs
in the ASRP. It is known that many miRNAs are induced
by biotic and abiotic stress [36–38]. Thus, a lack of small
RNAs might either point to a false-positive prediction or
to a stress condition not analyzed for expression of small
RNAs. Further candidate hits are located in regions showing
expression patterns similar to those of repetitive elements.
A recently published review [39] discussed the possibility
that some miRNAs could be evolved from repetitive genomic
elements and/or duplication of genomic regions.

4.5. Viroids as Pre-miRNAs?

Viroids are plant-infectious, noncoding, unencapsidated, cir-
cular RNAs that are transcribed in a rolling-circle mechanism
either in nuclei (Pospiviroidae) or in chloroplasts (Avsunvi-
roidae) of infected plants. Viroids cause the production of
viroid-specific small RNAs (vsRNA) similar in size to small
interfering (siRNA) and miRNAs, but they do escape the
cytoplasmic silencing mechanism. A positive (or negative)
novoMIR prediction of viroids as potential pre-miRNAs
would point to the genesis of vsRNAs. For further details, see
recent reviews [40–43].

Potato spindle tuber viroid (PSTVd) is the type strain
of Pospiviroidae. Because of its high self-complementarity
the circular PSTVd RNA folds into a rod-like secondary
structure of high thermodynamic stability (see Figure 4).
This structure can be divided into five structural domains
on the basis of homology between different pospiviroids
[34]. Most sequence variants or strains of PSTVd differ
by mutations in the pathogenicity-modulating (P) domain
and/or variable (V) domain. Only a few nucleotide changes
in the P domain are sufficient to exhibit remarkably different
symptoms in infected tomato plants Solanum lycopersicon cv
Rutgers. If this P domain would be the source of miRNA-like
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Table 2: Specificity of novoMIR.

Data set # sequences Specificity5

A. thaliana mRNAs 710 0.975

noncoding RNAs1 1,296 1.000

noncoding RNAs2 455 0.982

shuffled A. thaliana pre-miRNAs 2,760 0.998

A. thaliana repetitive elements3 56 0.983

H. sapiens pseudohairpins 8,000 0.990

A. thaliana pseudohairpins 10,000 0.991

A. thaliana4 50,000 1.000
1 631 A. thaliana tRNAs, 63 5.8 S rRNAs, 602 5 S rRNAs
2 noncoding RNAs from Rfam
3 in total 134,000 nt
4 10× 5, 000 sequences of a length between 80 and 800 nt s randomly selected from the five chromosomes of A. thaliana
5 Specificity is calculated as TN/(TN + FP).
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vsRNAs, these could interfere somehow with the host’s me-
tabolism leading to symptom production.

For an RNA with PSTVd sequence from positions 263–
359/1–96, which is one of the structural elements present
during processing of (+)-strand replication intermediates
to circles [44], novoMIR predicted miRNA/miRNA∗ com-
plexes in the P domain of PSTVd; for an RNA from positions
103–255, which is also a structural elements during process-
ing, novoMIR predicted a further miRNA/miRNA∗ complex
in the TR domain, but only after lowering the normalized
energy threshold from the default value tΔG/L/ fGC = 0.75
to 0.69. Both regions are marked by italic characters in
Figure 4. novoMIR predicted identical positions for com-
plexes in a full-length, linear PSTVd (1–359). Especially the
prediction of vsRNAs derived from the P domain supports
an involvement of vsRNAs in symptom production via
vsRNA-induced (mis)regulation of plant-endogenous RNAs
like mRNAs coding for transcription factors. This hypothesis
is supported by deep-sequencing of PSTVd-derived vsRNAs
in PSTVd-infected tomato plants (Diermann, Matoušek,
Teune, Riesner and Steger, submitted) and sequencing of
vsRNAs produced in vitro by DCL processing of PSTVd
[45] which showed clusters of vsRNAs derived from the P
domain. In contrast, [45, 46] found only vsRNAs in PSTVd-
infected tomato plants that clustered in regions outside of
the P domain. This discrepancy is unresolved but might be
based for example on different purification procedures of the
vsRNAs.

5. Conclusion

Plant pre-miRNAs are more heterogeneous in size and
structure than animal pre-miRNAs but still show sufficient
characteristic features—such as relative thermodynamic sta-
bility of their structure, length of helices, and number and
size of loops—to be differentiated from other RNAs. Based
on several of these features, we developed a series of filter
steps and a statistical model that together are able to detect
pre-miRNAs with a sensitivity of about 0.8 and a specificity
of about 0.99. Thus, the program, which we call novoMIR,
is well suited to search on a genomic scale for new pre-
miRNAs that are not necessarily evolutionarily conserved.
As an example, we searched with novoMIR for pre-miRNAs
in nontranslated regions of the A. thaliana genome and
detected among the high-scoring sequences experimentally
verified pre-miRNAs, which were not annotated in the recent
version of miRBase. Additionally, novoMIR recognizes
viroids as pre-miRNAs, which supports the hypothesis that
viroid-specific small RNAs are generated in a miRNA-like
pathway.
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