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Regulating the transition of cells such as T lymphocytes from quiescence (G0) into an activated,
proliferating state involves initiation of cellular programs resulting in entry into the cell cycle
(proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We
show the first proteomic analysis of protein interaction networks activated during entry into the first
cell cycle from G0. We also provide proof of principle that blastogenesis and proliferation programs
are separable in primary human Tcells. We employed a proteomic profiling method to identify large-
scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes
during the transition from G0 into the first cell cycle and mapped them to form functionally
annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved
in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and
hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle
without growing in size, or increase in size without entering the cell cycle.
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Introduction

Quiescence (G0) is an actively maintained state (Liu, 2005) and
quiescent cells, such as non-activated peripheral blood Tcells
do not contain many of the proteins necessary for cell
proliferation (Thomas et al, 1998; Lea et al, 2003; reviewed
in Thomas, 2004; Coller, 2007). For this reason, Tcells entering
the cell cycle for the first time take 32–40 h to enter S-phase as
compared with the 25.6 h it takes actively cycling cells to
complete one entire cell cycle (Lea et al, 2003). Presentation of
antigen to a memory T cell by an antigen-presenting cell
triggers signal transduction through the T-cell receptor (CD3)
and co-stimulatory molecules such as CD28, which results in
T-cell activation and clonal expansion (Acuto and Michel,
2003). Programs are thus initiated (van Leeuwen and
Samelson, 1999; van Oers, 1999) that lead to T-cell prolifera-
tion, increase in cell size (blastogenesis) and the induction of
effector molecules (activation), which include cytokines and
cell surface receptors (Mosmann et al, 1986; Jain et al, 1995).
We previously identified a G0-G1 commitment point (CP) in
primary human T cells that controls entry into the cell cycle

from quiescence (Lea et al, 2003), which provided proof of
principle that entry into the cell cycle and cellular growth cycle
can be uncoupled from early expression of T-cell effector
(activation) functions, such as production of IL-2, g-IFN and
cell surface CD69, CD44 and CD62L.

In order to expand upon this work, we sought to identify
cellular pathways and regulatory proteins that are activated or
repressed in primary human Tcells as they enter the cell cycle
for the first time. We focused our analyses on changes in
proteins associated with chromatin and the nuclear matrix
(C/NM), as these nuclear structures are likely to be involved in
the direct regulation of a number of important processes. The
nuclear matrix (reviewed in Nickerson, 2001) binds proteins
that can form spatially distinct macromolecular complexes
involved in transcription (Misteli, 2004; Zink et al, 2004), RNA
splicing and transport, as well as DNA replication (Anachkova
et al, 2005). However, dynamic changes in the composition of
the C/NM-bound proteome during cell-cycle entry have not
been characterized.

In the current study, we utilized a label-free mass spectro-
metry-based approach to identify C/NM-associated proteins,
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as well as unbound proteins that are regulated in primary
human Tcells as they enter the cell cycle. We report for the first
time on the protein interaction networks that are regulated
during this cell-cycle transition and identify both known and
novel aspects of T-cell activation during cell-cycle entry. We
show also that entry into the cell cycle and growth cycle can be
separated in primary human Tcells: the SF3B splicing factor is
needed for entry into the cell cycle but not the growth cycle,
whereas eIF6, which is involved in 60S ribosome biogenesis,
regulates entry into the growth cycle but not the cell cycle. Our
data provide proof of principle that entry into the cell cycle and
growth cycle are separable and that human Tcells can enter the
cell cycle at a restricted size.

Results

Identification of chromatin/nuclear matrix-bound
proteins in G0 and G1

To identify proteins that change during entry into the cell cycle,
we used human non-activated, quiescent (G0) Tcells from the
peripheral blood of four normal donors, which have normal
cellular mechanisms. We isolated near 100% non-activated,
quiescent cells and cells 40 h post-stimulation with PMA/io-
nomycin, when 20.3%±3.46 (mean±s.e.m., n¼8) had
entered S-phase (Supplementary Figure S1A), o1% had
divided once (Lea et al, 2003) and were activated (Supple-
mentary Figure S1B). We use a well-established method
throughout to measure protein content by FITC staining as a
proxy for entry into the growth cycle (Darzynkiewicz et al,
1982), which has been used for many published cell-cycle
studies, including our own (Thomas et al, 1991, 1998; Lea et al,
2003; Orr et al, 2010). This approach correlates well with
forward-scatter (FSC) analyses of cell size (Supplementary
Figure S1C). Typically, quiescent and stimulated cells were
kept in culture for the same periods and the results below do
not simply reflect hours in culture.

Cell fractions enriched for C/NM-bound proteins as well as
unbound (free) proteins were isolated from the quiescent and
stimulated T cells by CSK extraction, as described previously
(Lea et al, 2003; Orr et al, 2010; modified from Krude et al,
1996). The extracts were trypsinized and proteins were
identified by LC-MS/MS (Washburn et al, 2001). Initial
MudPIT experiments identified 611 proteins, of which 250
increased in C/NM binding in G1 (see Supplementary Results;
Supplementary Table S1). To expand upon the initial mass
spectrometry and validation studies, we conducted a second
round of proteomic analyses, this time utilizing an LTQ-
Orbitrap mass spectrometer (Thermo Scientific) to increase
coverage and improve quantification. Samples of C/NM-
bound and -unbound proteins from four biological replicates
of T cells in G0 and 40 h þPMA/iomomycin were analyzed,
yielding a total of 2894 proteins identified with high
confidence (o1% FDR), of which 1724 were observed in the
C/NM-bound and 2653 in the unbound fractions (Supplemen-
tary Table S2). There was an overlap of 595 of the 611 proteins
(97.4%) identified in the initial experiments, although some
discrepancies were identified due to a detergent removal step
in the Orbitrap protocol (Supplementary Results). A majority
of proteins identified in the C/NM-bound fraction (86%) were

also observed in the unbound fraction either due to the
extraction conditions, or because bound and unbound cellular
pools exist (illustrated in Figure 1). Indeed, known C/NM
proteins such as histones and lamins were observed in the
unbound fraction. This is expected for histones as they are
synthesized, assembled into complexes and post-translation-
ally modified in the cytoplasm before being transported to the
nucleus (Campos et al, 2010). It is possible that other nuclear
complexes are also assembled by a similar mechanism. As
expected, the C/NM fraction was strongly enriched for nuclear
proteins. GO-term analysis found that 52.4% of bound
proteins were nuclear and/or nucleolar, while 9.1% were
mitochondrial and only 10.8% were primarily cytosolic. The
latter is an overestimate as there are many proteins annotated
as ‘cytosolic,’ which have nuclear forms as well. In all, 3.4% of
proteins in the C/NM fraction were ribosomal. Ribosome
assembly occurs in the nucleolus so it is possible that it is the
nucleolar form of these proteins that is being detected or those
in transit through the nucleus.

Relative abundances of all proteins during cell-cycle entry
were calculated using the APEX method of label-free protein
quantification (Lu et al, 2007; Braisted et al, 2008; Vogel and
Marcotte, 2008) (C/NM-bound and -unbound proteins;
Supplementary Tables S3 and S4), with statistically significant
changes in protein abundance assessed by a Z-score cutoff
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Figure 1 Summary of C/NM-bound and -free fraction proteomic analysis. (A) A
total of 2894 proteins were identified at high confidence (o1% FDR) from the
combined C/NM-bound and -free fractions, with 1483 proteins (51.2%) identified
in both fractions. (B) In all, 772 proteins showed a significant increase in
abundance in cells stimulated with PMA/ionomycin as compared with cells in G0

for the C/NM-bound and -free fractions combined, with an overlap of 49 proteins
(6.3%). (C) A total of 630 proteins showed a significant decrease in abundance in
stimulated cells, with an overlap of 49 proteins (7.8%).
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of ±1.96, corresponding to a P-value o0.05. There was a
significant increase in the abundance of 307 proteins in the C/
NM-bound fraction during cell-cycle entry, while 514 increased
in the unbound fraction. In all, 211 bound proteins decreased
during cell-cycle entry, along with 468 in the unbound. The
overlap between the proteins that increase or decrease in C/
NM-bound and free samples is shown as Venn diagrams
(Figure 1).

Changes in protein abundance for the C/NM-bound and
-unbound fractions can occur either by an overall increase or
decrease in protein abundance, or by changes in protein
localization. The proteomic data do not allow us to easily
distinguish between these two possibilities; however, additional

data did allow us to investigate this further. Gene expression
array analyses showed that there was an increase in mRNA
encoding 44% of the C/NM-bound proteins, which increased
during cell-cycle entry (Supplementary Table S5). We validated a
subset of changes in C/NM-bound and free proteins identified by
our initial mass spectrometry studies by western blotting
(Figure 2). These include examples of proteins such as Topo1,
RUNX3 and Mcm7, which exhibit changes in overall abundance,
while others, such as STAT3 and NF-kB p50, are already present
in G0 but become C/NM bound as T cells enter the cell cycle.
These data suggest that regulation of both protein abundance
and localization play a role in changes to C/NM-bound and -free
protein levels as cells enter the cell cycle from G0.

PMA/ionomycin:
A C

D

B

0

Total cell lysates

0

M C
h

r

C
h

r

F
re

e

F
re

e

MBound in G1
a

a

b

b

b
a/b

c

c

c

Bound in G0

Controls

2 8 16 24 40
h 40 h

Topoisomerase I

Histones

Mcm2

Mcm7

PARP-1

NF-�B p50

LSP-1

Prohibitin

Hp1- �

Phospho-
pRb(S807/811)
pRb

MAP kinase 

Cdk6

RUNX3

STAT3

MeCP2

cdk6

Histones

C
h

r

C
h

r

C
h

r

C
h

r

C
h

r

C
h

r

C
h

r

F
re

e

F
re

e

F
re

e

F
re

e

F
re

e

F
re

e

F
re

e

0 4 6 16 32 h242PMA/
ionomycin:

PMA/
ionomycin:

PMA/
iono:

0 02

0 2

8 16 40 h 40 h

Total cell
lysates C

h
r

C
h

r

F
re

e

F
re

e

08 16 40 h 40 h

Total cell
lysates C

h
r

C
h

r

F
re

e

F
re

e

SF3B1

SF3B2

Apobec 3C

ALY/THOC4

UAP56

S6 (short exp.)

S6 (long exp.)

Pp1-�

Phospho-
pRb(S807/811)
pRb

cdk6

MAP kinase 

Histones

SAFB1

p68/DDX5

hnRNP-K

p54nrb

BAF53

Phospho
pRbs807/811

cdk6

MAP kinase

pRb

Histones

Figure 2 Validation of proteins identified by mass spectrometry. A subset of proteins identified by the mass spectrometry screen to be C/NM bound in G0 or in cells
stimulated with PMA/ionomycin were analyzed by western blotting. The samples analyzed were (A, C, D), total cell lysates of T cells during the G0 or G1 transition
(0–40 h þ PMA/ionomycin); chromatin/nuclear matrix-bound (Chr) and unbound (free) proteins in G0 or post-stimulation (0 and 40 h þ PMA/ionomycin); (B), chromatin/
nuclear matrix-bound (Chr) and free samples taken at each of the time points indicated. The patterns of expression and binding for proteins as indicated in (A) are as
follows: (a) proteins, such as Topo I, RUNX3 and Mcm7 are present at a low/undetectable level in G0 and are induced and bind C/NM post-stimulation; (b) proteins such
as STAT3 and NF-kB p50 are present at similar levels in G0 after stimulation but only bind chromatin in stimulated cells; (c) proteins such as Prohibitin and PARP-1 are
present and bind C/NM in G0 but the levels of binding increase when cells are stimulated with PMA/ionomycin. LSP-1 is an example of a protein C/NM bound in G0 but is
reduced in stimulated cells. Controls for cell-cycle progression and C/NM-bound versus -unbound proteins and sample loading (Histones stained with Coomassie
Blue and p42/p44 MAPK (ERK1/2)) are shown. Representative of n43 independent experiments for each protein. For each protein analyzed by western blotting,
the fold-change of the C/NM binding between cells in G0 and 40 h post-stimulation with PMA/ionomycin, determined by mass spectrometry, is shown in Supplementary
Table S8A. Source data is available for this figure in the Supplementary Information.
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Dynamic changes of protein interaction networks
during the G0-G1 transition

Proteins that increase in binding to C/NM during cell-cycle
entry were assigned to cellular functions by ontology predic-
tions (http://www.geneontology.org) and reading primary
papers. In all, 19.6% are involved in the processing of mRNA
(RNA splicing (7.8%), transport (1%), decay (2.3%), RNA-
binding proteins (3.6%) and RNA helicases (4.9%)), 19.2% in
ribosome biogenesis and 12.4% in transcription (Figure 3A).
However, these simple classifications hide more complex
functional properties of the proteins identified, which can be
involved in more than one functional process (see Supple-
mentary Discussion).

We wished to visualize the relationships between the
proteins that we identified and to establish a dynamic protein
interaction network of changes that occur during cell-cycle
entry. We mapped the sets of proteins exhibiting significant
change in abundance onto the HumanNet functional gene
network (Lee et al, 2011a, b) and visualized the resulting maps
with Cytoscape (http://www.cytoscape.org), using the yFiles
organic layout tool (Figure 3B; Supplementary Figure S2B;
networks for both sets of data reported above are also available
as .cys Files 1 and 2, which can be viewed in Cytoscape. See
also high-resolution PDFs of each in Supplementary Figure
S2C and D). The most significant subnetworks that became
bound to C/NM during cell-cycle entry include proteins
involved in (1) ribosome biogenesis, nucleolar proteins,
RNA helicases and RNA splicing; (2) ribosome biogenesis;
and (3) nuclear pore complex and splicing proteins (Figure 3B;
Supplementary Table S3). These data are consistent with an
upregulation of gene expression and protein translation that
occurs as quiescent cells enter the cell cycle and proliferate.
More detailed discussion of individual proteins identified by
our analyses and their cellular functions can be found in
Supplementary Discussion. Subnetworks involved in a
number of cellular processes induced during cell-cycle entry,
such as solute carriers, DNA damage proteins, nuclear pore
complex and others, were also predicted using HumanNet
(Lee et al, 2011a, b) from seed-sets of proteins identified by the
mass spectrometry screen (see Supplementary Results and
discussion; Supplementary Figure S4A–E; Supplementary
Table S6A–G).

Xin1/Xirp1 is present in the nuclei of human T cells
and becomes induced and bound to C/NM during
cell-cycle entry

The protein that was induced most in both the C/NM-bound
and -free fractions in our mass spectrometry analyses is an
actin-binding protein called Xirp1/Xin1 (Pacholsky et al,
2004), implicated in the differentiation of cardiac muscle cells
and cardiomyocytes (van der Ven et al, 2006; Claeys et al,
2009; Otten et al, 2010). However, Xirp1 has not previously
been reported to be expressed in T cells. To confirm the
findings of the mass spectrometry analyses, we used western
blotting to analyze the expression of Xirp1 in C/NM and free
fractions of Tcells entering the cell cycle (Figure 4A). Samples
of C/NM-bound and -free fractions from Tcells stimulated for
72 h were also crosslinked with formaldehyde and analyzed by

western blotting (Figure 5C). These data show that a protein
that is detectable with an anti-Xirp1 antibody is induced
during cell-cycle entry and becomes bound to C/NM. The
induction of this protein was prevented by transfecting
the cells with siRNA against Xirp1 (Figure 4A), indicating that
it is indeed Xirp1. eIF6 protein expression was also knocked
down in these experiments using siRNA against eIF6 and this
serves as an additional control for Xirp1 knockdown.
Immunocytochemistry was performed on T cells transfected
with either a control siRNA or siRNA against Xirp1 then
stimulated for 40 h with PMA/ionomycin. The control siRNA-
transfected cells show a distinct pattern of Xirp1 staining,
which appears to be localized to the nucleus (Figure 4B).
This pattern is not present in cells transfected with siRNA
against Xirp1, indicating that the staining is due to expression
of Xirp1 in the nuclei of human Tcells. The nuclear localization
of Xirp1 was confirmed using confocal microscopy
(Figure 4C).

Other actin-binding proteins were also detected in the C/NM
fraction, including hnRNP proteins (Percipalle et al, 2002,
2009), BAF proteins (Zhao et al, 1998; Olave et al, 2002),
p54NRB (Ferrai et al, 2009) and Lamin A/C (Simon et al, 2010).
These proteins, along with HELLS/Lsh (SMARCA6:SWI/SNF2-
related matrix-associated actin-dependent regulator of chro-
matin) (Lee et al, 2000), were also analyzed by western
blotting (Figure 5). Our data suggest that actin-binding
proteins may be active in the nucleus and other laboratories
have shown a role for these proteins in chromatin remodeling,
transcription and RNA processing (see Percipalle et al, 2009;
Zheng et al, 2009).

Functional analyses of splicing and ribosome
biogenesis during the G0-G1 transition

The most significantly upregulated cellular processes for
proteins that become bound to C/NM during cell-cycle entry
are ribosome biogenesis and RNA processing (RNA splicing,
transport, editing, decay and RNA-binding proteins). Proteins
involved in these two processes, respectively, account for 19.2
and 19.6% of proteins that increase in binding to C/NM as cells
enter the cell cycle, and MCODE analyses of the protein
interaction map show that the most significant subnetworks
are enriched for proteins involved in these functions (see
Figure 3B and Supplementary Table S3). We therefore
investigated the importance of these processes for transition
from quiescence into the cell cycle by inhibiting the induction
of two key proteins identified in our mass spectrometry screen.
The proteins we chose to target were the splicing factor SF3B2
and eIF6, which is involved in ribosome biogenesis. SF3B2
was identified as becoming bound to C/NM in our initial mass
spectrometry experiments and verified by western blotting
(Figure 2C). Although none of the SF3B splicing factors
identified in subsequent mass spectrometry screens reached
the fold-change cutoff of 1.5, we decided to target SF3B2 as it is
known to be involved early in 30-splice site recognition and
reducing the expression of this protein would be expected to
have profound effects on splicing activity. eIF6 was chosen as
it is involved in 60S ribosome biogenesis and because it was
very highly upregulated during cell-cycle entry.
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SF3B2 is required for entry into the cell cycle but
not the growth cycle

SF3B2 is a component of the SF3B splicing factor and is
required for the functioning of both the major (U2-type) and

the minor (U12-type) spliceosomes (Will et al, 1999). Since
many genes are induced as cells enter the cell cycle for the first
time (Diehn et al, 2002), depleting SF3B2 would be expected to
prevent the expression of these genes and materially affect
programs that are stimulated during the G0-G1 transition.
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Western blotting analyses showed that SF3B2 is poorly
expressed in G0, but is induced and becomes C/NM bound
following PMA/ionomycin stimulation (Figure 2C). To study
the requirement for SF3B2 during cell-cycle entry, the
induction of the protein was blocked with siRNA. A pool of
four individual siRNA duplexes reduced SF3B2 expression to
o5% of normal levels, as estimated by western blotting for
SF3B2 (Figure 6A). Inhibition of the induction of SF3B2 caused
a marked reduction in the percentage of cells that entered S-
phase (17.2±1.6% with control siRNAversus 7.0±1.7% with
SF3B2 siRNA, mean±s.e.m., n¼15, P-value 3.4�10�6;
Figure 6D). The percentage of SF3B2-depleted cells in S-phase
5 days post-stimulation had still not reached the level of cells
transfected with control siRNA, indicating that quantifying the
effects of depleting SF3B2 at an earlier time point (day 3) is
valid. The effects on cell-cycle progression were also observed
with three of the four individual siRNA duplexes (Figure 6E),
so it is unlikely that the results are due to off-target effects.

Inhibition of SF3B4 expression also led to a decrease in the
percentage of cells in S-phase (14.8±1.5% with control siRNA
versus 7±1% with SF3B4 siRNA, mean±s.e.m., P-value
8.5�10�5; Figure 6D). SF3B2 and SF3B4 are both components
of the SF3B splicing complex (Golas et al, 2003) and are both
required for splicing activity. Therefore, these data are
consistent with a requirement for SF3B-dependent splicing
for T cells to enter S-phase. This could be due either to cell-
cycle inhibition in late G1, which prevents cells progressing
from G1 into S-phase, or to inhibition of the cell cycle earlier
during the G0 to G1 transition but no effect on the growth cycle.

Analyses of the expression of proteins that regulate the cell
cycle showed that depletion of SF3B2 prevented the induction
of cyclin D3, which normally occurs early in G1 once T cells
have passed the G0-G1 CP (Lea et al, 2003) (Figure 6A).
SF3B2 inhibition also prevented the phosphorylation of pRb
on S807/811, which is dependent on cdk4/6-cyclin D and
normally occurs within 16 h of PMA/ionomycin stimulation
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Figure 4 Analysis of XIRP1 expression and localization in primary human T cells. (A) The expression of XIRP1 in quiescent T cells and T cells stimulated for 16 and
45 h via CD3/CD28 was determined by western blotting (and see Figure 5B and C). Duplicate sets of transfections of quiescent T cells were carried out with siRNA
against XIRP1, or non-targeting siRNA or siRNA against eIF6 as controls, prior to stimulation for the times shown. All samples were run on the same blot. (B) The
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(Figure 6A and see Lea et al, 2003). The inhibition of pRb
phosphorylation and the lack of cyclin D3 expression are
consistent with inhibition of the transition from quiescence
into the cell cycle (Lea et al, 2003). E2F-1 is normally induced
later in G1 and activation of this transcription factor is
necessary for the induction of many genes encoding proteins
required for cell-cycle progression, for example, Mcm7 (Orr
et al, 2010), Cdc6, Cdc2 (Cdk1) and cyclin A2 (DeGregori et al,
1995). The induction of E2F-1 and its downstream targets
CCNA2 (cyclin A2) and CDC6 were not detected in SF3B2-
depleted cells after 72 h of PMA/ionomycin stimulation
(Figure 6A). These data show that SF3B-depleted cells are
prevented from entering the cell cycle, but are still capable of
an increase in size, consistent with entry into the growth cycle
(Zetterberg, 1996).

In order to enter the growth cycle, a cell must increase
protein synthesis, which is largely mediated through the
mammalian target of Rapamycin (mTOR) (see Supplementary
Figure S5 for normal kinetics of induction in Tcells). mTOR is a
direct downstream target of protein kinase B (PKB) and is
phosphorylated on S2448 in response to growth factor stimuli
(Nave et al, 1999). Inhibition of SF3B2 induction with siRNA
did not significantly reduce the amount of detectable
phosphorylation of mTORS2448 and had little effect on the
phosphorylation status of 4EBP1 (Figure 6B). Cells in G0 are
normally prevented from initiating 50 cap-dependent protein
synthesis by the presence of a hypophosphorylated form of
4EBP1, so the presence of a phosphorylated form of 4EBP1T37/46

in SF3B2-depleted cells that have been stimulated with PMA
and ionomycin is evidence that these cells have entered the
growth cycle. No change was detected in the amount of
phosphorylated eIF4ES209 when SF3B2 was depleted
(Figure 6B). Depletion of SF3B4 also had the same effects
(Figure 6C), suggesting that the effects observed are due to an
inactivation of the SF3B splicing complex rather than to the
depletion of SF3B2 or SF3B4 specifically. The increase in size
in SF3B2/4-depleted cells was identified by flow cytometry

analyses of protein content (Figure 6D), and the western blot
analyses are confirmatory evidence that proteins involved in
regulating cell growth, for example, 4EBP1 and eIF4E are
phosphorylated in SF3B2/4-depleted cells. Taken together,
these data show that SF3B is required for entry into the cell
cycle, but not for entry into the growth cycle. Furthermore,
these data show that entry into the cell cycle and growth cycle
are separable in primary T cells.

Reducing eIF6 affects the growth cycle but not the
cell cycle

There is a significant increase in the rate of protein synthesis
during the G0-G1 transition accompanied by a four-fold
increase in ribosome number (Ahern and Kay, 1971). A three-
to four-fold increase in protein content occurs as cells progress
from G0 to M-phase for the first time (Supplementary Figure
S1A) and proliferating cells must double in size during
progression through the cell cycle to maintain cell size with
each division. The eIF6 protein is required for 60S ribosomal
subunit biogenesis. eIF6 is not expressed or expressed at a low
level in quiescent T cells and becomes expressed in mid-G1

(16 h post-stimulation; Figure 4A). Inhibition of eIF6 induction
in G1 would be expected to reduce the number of ribosomes,
protein synthesis and growth cycle entry. To investigate this
requirement for the increase in cell size during cell-cycle entry,
quiescent T cells were transfected with siRNA against eIF6.
Pools of eIF6 protein exist in cells that turn over slowly and
might be sufficient to maintain 60S ribosomal subunit
biogenesis (Gandin et al, 2008). Therefore, the siRNA-
transfected cells were cultured for 3 days without stimulus to
reduce the background levels of eIF6 and then stimulated with
anti-CD3/CD28 beads. Samples were taken for western
blotting and cell-cycle analysis at day 2 and day 3 following
CD3/CD28 stimulation. Transfection with siRNA against eIF6
caused a reduction in eIF6 expression too5% of normal levels
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as estimated by western blotting (Figure 7A). In contrast to
results found when SF3B2 expression was inhibited, inhibition
of eIF6 did not lead to a significant reduction in the percentage
of cells entering the cell cycle (cells in S and G2/M-phase:

19.1±3.9% with control siRNA versus 18±3.1% with eIF6
siRNA, mean±s.e.m., P-value¼0.39; Figure 7B). However,
cells that were depleted of eIF6 had lower protein content
(indicates cell size) than cells transfected with control siRNA
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Figure 6 Consequences of reducing SF3B2 expression. (A) Normal quiescent human T cells were transfected with a pool of four siRNA duplexes against SF3B2 with
non-targeting siRNA as control. After stimulation with PMA/ionomycin for 72 h, the expression of SF3B2, phospho-pRbs807/811, cyclin A2, cyclin D3, E2F-1 and Cdc6
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for this figure in the Supplementary Information.
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(FITC staining, vertical axis; Figure 7B). In particular, the mean
fluorescence intensity of FITC staining (used as a measure of
protein content) of cells that had entered S and G2/M-phases
was significantly reduced when eIF6 was depleted
(484.42±3.36 with eIF6 siRNA versus 626.43±22.7 with
control siRNA, mean±s.e.m., P-value¼0.008, n¼3;
Figure 7B). It is interesting to note that the variability in the
protein content of cells, as indicated by the range of FITC
staining (see Figure 7B; y axis) in S and G2/M was much
reduced when eIF6 was depleted (range: 454±33 with eIF6
siRNA versus 638.5±12 with control siRNA, mean±s.e.m.,
n¼3). Thus, we show not only that reducing an important
intracellular protein affects the average size of T cells in
SþG2/M, but the range of cell size is decreased by depleting
eIF6. The molecular mechanisms in T cells controlling the
range of protein content remain to be investigated.

The reduction in cell size observed in eIF6-depleted cells
suggests an inhibition of protein synthesis. There was a
significant decrease in the amount of eIF4ES209 and 4EBP1T37/46

in eIF6-depleted cells, along with a reduction in mTORs2448

(Figure 7A). This strongly suggests an inhibition of 50 cap-
dependent protein synthesis, which would explain the
observed reduction in cell size and protein content. The
expression of proteins involved in cell-cycle entry was also
studied by western blotting. Mcm7 was induced normally in
both control and eIF6-depleted cells (Figure 7A), indicating
that depletion of eIF6 did not affect the ability of cells to enter

S-phase, as shown by cell-cycle analyses (Figure 7B). However,
phosphorylation of pRb on S807/811 was detected at lower levels
and cyclin A2 was not detected in cells that had been depleted
of eIF6 (Figure 7A). These data show that cells depleted of eIF6
are able to express and activate some proteins required for
entry into the cell cycle, but have a reduction in the activation
of proteins that are required for the initiation of protein
synthesis. Thus, cells which are smaller and with lower protein
content than normal are nevertheless capable of entering the
cell cycle, showing that there is not an obligate coupling of cell-
cycle progression with cell size, which human T cells achieve
under normal conditions.

Discussion

The data presented here show that identifying proteins that
bind to C/NM as cells enter the cell cycle can be used to
determine changes in protein interaction networks that occur
during the re-programming of a cell from a quiescent to an
actively cycling, activated state. These networks include
chromatin remodeling, transcription, RNA processing, ribo-
some biogenesis, DNA replication and structural elements,
such as nuclear actin-binding proteins and components of the
nuclear matrix. Proteins in these networks identified in our
study as well as specific predicted subnetworks are discussed
in detail in Supplementary Discussion.

In addition to identifying protein interaction networks, we
carried out siRNA experiments, which show that it is possible
to decouple cellular programs (the cell cycle and the growth
cycle) that are normally tightly regulated. This builds on a
previous study carried out in our laboratory, which showed
that T cells could undergo functional activation without
entering the cell cycle (Lea et al, 2003).

Inhibition of the induction of SF3B prevents entry
into the cell cycle but not the growth cycle

Reducing the expression of SF3B2 or SF3B4 to o5% of normal
levels prevented T cells entering the cell cycle. This was
expected as many genes are induced de novo during entry into
G1 (Diehn et al, 2002 and data presented here), including a
number required for cell-cycle entry. However, it would be
expected that other processes, such as entry into the growth
cycle, would also be affected by a reduction in splicing activity.
Rather, the data presented here show that cells depleted of
either SF3B2 or SF3B4 do still increase in size and protein
content, indicating that these cells are still capable of entering
the growth cycle. This suggests that the pre-spliced mRNAs
encoding proteins necessary for growth are already present
during G0. This is borne out by an analysis of mRNA
expression in quiescent T cells (Supplementary Table S7).
These data show that the top 100 most highly expressed
mRNAs in G0 include those encoding proteins involved in
translation (including mRNA encoding 7 initiation factor
subunits), ribosome proteins and cytoskeletal proteins. There-
fore, mRNAs are already present in G0 and do not need to be
transcribed. Furthermore, we demonstrate that at least 45
translation initiation and elongation factors are already
present in quiescent cells (listed in Supplementary Table S7).
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Our mRNA expression and mass spectrometry data there-
fore support the hypothesis that mRNAs encoding translation
initiation and elongation factors, involved in control of the
growth cycle are already present in quiescent cells and are thus
probably unaffected by a reduction in splicing activity.
A number of translation factors, such as eIF4E, are further
induced during the G0-G1 transition by mitogenic stimula-
tion (Supplementary Table S2; Supplementary Figure S5;
Rosenwald et al, 1993), but the mRNA expression data suggest
that quiescent Tcells are primed to enter the growth cycle, but
splicing of de novo transcripts that are induced in G1, such as
MCM7 (Orr et al, 2010), is required for cells to enter the
cell cycle.

Depletion of eIF6 allows entry into the cell cycle at
reduced cell size

We showed here that Tcells in which eIF6 has been reduced are
able to enter the cell cycle, but they do so at a restricted size.
Studies of yeast demonstrated that eIF6 is involved in the
biosynthesis of the large (60S) ribosomal subunit (Fatica and
Tollervey, 2002; Horsey et al, 2004; Volta et al, 2005). In higher
eukaryotes, reducing eIF6 expression in mouse fibroblasts to
about 20% of normal using siRNA did not affect ribosome
biogenesis as a pool of nucleolar eIF6 remained (Gandin et al,
2008). Cells depleted of eIF6 by siRNA treatment have
sufficient ribosomes to translate the proteins necessary for
survival and core metabolic processes, but are not capable of
responding normally to a mitogenic stimulus. However, a
homozygous EIF6 knockout is embryonic lethal and it was
concluded that eIF6 is necessary for ribosome biogenesis.

Under normal, non-limiting conditions, increase in cell size
and protein content keeps in step with progression through the
cell-cycle phases so that cellular homeostasis is maintained
with each cell division. However, work on Schwann cells
showed that the homeostatic cell size can be changed over
several cell divisions by limiting the availability of extra-
cellular factors (Conlon and Raff, 2003). Cell divisions that do
not result in cell growth occur during Xenopus and Drosophila
embryonic development, although the mechanisms in Droso-
phila and mammalian cells that regulate cell growth and
proliferation are different (Montagne et al, 1999; Miron et al,
2001; Conlon and Raff, 2003; Ohanna et al, 2005; Dowling et al,
2010). The data presented here show that if endogenous levels
of eIF6 in human quiescent T cells are reduced and the
induction of eIF6 that normally occurs in response to CD3/
CD28 stimulation is inhibited, the cells enter the cell cycle as
normal but at a reduced size. This indicates that T cells are
capable of progressing through the cell cycle when protein
content and cell size is restricted, even in the presence of non-
limiting conditions of extracellular stimuli, showing that
progression through the cell cycle is coincident with but not
completely dependent on cell size. The role of eIF6 is to
prevent the premature association of the 60S and 40S subunits
(Valenzuela et al, 1982), leading to the accumulation of
inactive 80S particles (Gandin et al, 2008), which would
sequester 40S subunits. So, reducing eIF6 will reduce the
availability of 40S ribosome subunits to initiate translation.
Our data show that the mTOR/eIF4E/4EBP1 pathway is also

affected by reducing eIF6, although the mechanisms remain to
be determined. The role of mTORC1 in mediating proliferation
but not cellular growth by affecting the selection of mRNA
translated was shown recently (Dowling et al, 2010).

The roles of initiation factors are complex and there are no a
priori rules as to the effects that a particular factor may have on
cell growth and proliferation. For example, eIF4B depletion in
cancer cells attenuates proliferation (Shahbazian et al,
2010a, b) but not cell size (Dowling et al, 2010). Reduction in
proliferation involves the selective translation of mRNA
encoding proteins, such as cyclin D3, ODC and VEGF. In
contrast, eIF4GI depletion impairs cell proliferation and cell
size in MCF10A breast epithelial cells, while depletion or
overexpression of other eIF4G family members does not
(Ramirez-Valle et al, 2008). Depletion of eIF4GI isoforms in
HeLa cells causes mitotic abnormalities, including multi-
nucleated cells (Coldwell and Morley, 2006). So, abrogation of
translation factors have different effects and it is not expected
that eIF6 would necessarily affect cell growth but not cell-cycle
progression. In addition, splenic pre-B cells in EIF6�/þ mice
have a small reduction in the percentage of S-phase cells and
an increase in G0/G1 cells in response to induction of Myc, but
this did not occur in pre-B cells in the bone marrow. However,
cell size was not measured (Miluzio et al, 2011). Therefore,
reducing the level of a eukaryotic initiation factor (haploin-
sufficiency in EIF6) decreases proliferation of pre-B cells but
only in the spleen and not the bone marrow.

The consequences of a defect in eIF6 function are illustrated
by Shwachman–Bodian–Diamond syndrome. Clinical features
include exocrine pancreatic insufficiency, defects in hemato-
poeisis and a predisposition toward leukemias, in particular
myelodysplastic syndrome (MDS) and acute myeloblastic
leukemia (AML) (Woods et al, 1981; Dror et al, 1998). There
are also effects on lymphocyte-mediated immunity, including
decreased B-cell proliferation, reduction in the number of T
cells in the peripheral blood and defects in the CD4/CD8 ratio
(Dror et al, 2001). This is an autosomal recessive disorder,
caused by mutations in the SBDS gene (Boocock et al, 2003),
and no abnormalities in EIF6 have been reported. The function
of the protein encoded by the SBDS gene was determined by
studies on its ortholog in yeast, Sdo1 (Menne et al, 2007).
Mutations in this gene lead to defects in 60S ribosome
biogenesis, with the nuclear retention of pre-60S ribosomes
that would normally be exported to the cytoplasm (Menne
et al, 2007). This effect was reversed by gain-of-function
mutants of Tif6, which is the yeast ortholog of human EIF6.
Two important papers on mammalian eIF6 were published
recently. The first describes the mechanism in Shwachman–
Bodian–Diamond syndrome involving SBDS, EFL1 and eIF6
in late cytoplasmic ribosomes, catalyzing translational activa-
tion (Finch et al, 2011). The second shows a role for eIF6
in response to growth factors and its requirement for
lymphomagenesis (Miluzio et al, 2011).

We have shown here that a high-throughput mass spectro-
metry approach can be used to identify regulatory mechanisms
involved in the re-programming of T cells during the G0-G1

transition. We have also shown that cell-cycle entry can be
dissociated from entry into the growth cycle by inhibiting
the induction of the splicing factors SF3B2/SF3B4 or the
ribosome biogenesis factor, eIF6. There are a number of other
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C/NM-bound protein interaction subnetworks that we identify
in our study, for example, solute carriers, nuclear pore
complex proteins and others (Supplementary Results and
discussion). Such subnetworks are likely to have important
roles in re-programming quiescent Tcells to enter the cell and
growth cycles and to become activated. A combination of
stringent bioinformatic predictions of binding partners of
proteins in these subnetworks as well as wet-lab confirmation
and analyses of the roles of such subnetworks in the G0-G1

transition will no doubt shed further light on the integration of
cellular programs necessary for peripheral T-cell expansion
and functional activation.

Materials and methods

T-cell isolation and stimulation

Normal, non-activated, quiescent human T cells were isolated by
negative selection (Dynal, Invitrogen) from single-donor buffy coats
(Lea et al, 2003) and assays to analyze T-cell activation and cell-cycle
progression were as described in Lea et al (2003).

Isolation and trypsinization of chromatin/nuclear
matrix proteins

Non-activated or stimulated T cells from four individual donors
(biological replicates) (usually 3�107 cells) were pelletted and
resuspended in 20ml/106 cells ice-cold CSK buffer (10 mM PIPES pH
6.8, 100 mM NaCl, 300 mM sucrose, 1 mM MgCl2, 1 mM EDTA, 0.1%
(v/v) Triton X-100, 0.1 mM ATP, protease and phosphatase inhibitors
(Complete, Roche)) as described (Lea et al, 2003). The insoluble pellet,
containing chromatin/nuclear matrix-bound proteins (Krude et al,
1996), was centrifuged at 1000 g and washed 3� with 50ml PBS. The
CSK-soluble proteins (‘free’ fraction) were precipitated by adding four
volumes of �201C acetone. Both ‘free’ and ‘chromatin’ pellets were
resuspended in 10 mM Tris–HCl pH 7.8, 10 mM KCl, 1.5 mM MgCl2.
Residual Triton X-100 was removed with the OrgoSol DetergentOUT
Detergent removal kit (G-Biosciences). Following detergent removal
and resuspension, proteins were denatured by addition of trifluor-
oethanol (TFE) to 50% (v/v). Proteins were reduced (15 mM DTT at
561C for 45 min) and alkylated (55 mM iodoacetamide at 251C for
30 min). Samples were diluted 10-fold with digestion buffer (50 mM
Tris–HCl pH 7.8, 2 mM CaCl2) to decrease the TFE concentration to 5%
(v/v). Each sample was treated with 2mg Proteomics Grade trypsin
(Sigma) and incubated at 371C for 4 h. Trypsin activity was halted by
the addition of 1% formic acid, and sample volume was reduced to
B20 ml by SpeedVac centrifugation. Samples were resuspended to
150ml with Buffer C (95% H2O, 5% acetonitrile (ACN), 0.1% formic
acid). To remove undesirable contaminants, digested samples were
cleaned up by reverse phase chromatography on Hypersep C18
Columns (Thermo) and filtered on Microcon 10 kDa Spin Tubes
(Centricon) prior to LC-MS/MS.

Mass spectrometry

LC/MS/MS analysis was carried out on an Eksigent nanoflow LC
system connected to an LTQ-Orbitrap XL (Thermo). Four injections
were carried out per sample. Tryptic peptide mixtures were separated
online by reverse phase chromatography on a Zorbax C18 reverse
phase column (Agilent) by 5–38% ACN gradient over the course of
230 min. Eluted peptides were directly injected by electrospray
ionization into an LTQ-Orbitrap XL hybrid mass spectrometer
(Thermo) equipped with a nano-spray ion source for analysis. Full
spectra (MS1) were collected at 100 000 resolution. Ion fragmentation
spectra (MS2) were collected in a data-dependent manner, with ions
required to carry þ 2 or greater charge for MS2 selection. The top 12
most intense qualifying peaks were selected per round, with peaks
selected twice within 30 s excluded from selection for 45 s. Spectra

were searched using the Sequest search algorithm against the non-
redundant Ensembl 57 Homo sapiens (NCBI36) protein-coding data
set. Search results were submitted to PeptideProphet (Keller et al,
2002) and ProteinProphet (Nesvizhskii et al, 2003) via TPP (Keller
et al, 2005) and filtered to 1% false positive rate using a target-decoy
method with a reverse-concatenated database.

Bioinformatic analysis

Generation of protein lists
For each biological replicate fraction, four separate LC-MS/MS
injections were performed and analyzed independently. Data sets
corresponding to the same biological replicate fraction were then
merged, with spectral counts summed within each set. All data sets
were aligned, and proteins observed in only one biological replicate
fraction were removed. Keratins were also removed from the data set.
To account for the occurrence of degenerate peptides assigned to
multiple proteins, the data set was curated to assign all peptides to a
single unique protein or protein group. Protein groups consisted of the
smallest set of proteins needed to account for non-unique peptide
identifications, whereby all group members shared equal evidence of
occurrence.

Protein quantification
Proteins were quantified by comparison of spectral counts, as
described in Lu et al (2007) and Vogel and Marcotte (2008). In
summary, frequencies of observation were calculated from spectral
counts for each protein in each biological replicate fraction, and
individual Z-scores were calculated by comparing frequencies at 0 and
40 h time points to determine the statistical significance of differences
in relative abundance (Lu et al, 2007; Vogel and Marcotte, 2008).
A z-score of ±1.96, corresponding to a P-value o0.05, was used as a
determinant of significance. Composite Z-scores for free and bound
fractions were then calculated from the individual Z-scores for each
biological replicate. Fold-change was estimated as a ratio of
frequencies of observation for each protein at 0 and 40 h time points.
For each protein, a pseudo-count of 1 was added to each spectral count
total prior to frequency calculations in order to adjust for proteins with
a zero-count.

Ontology annotations
Each protein was assigned a function by GO annotation (http://
www.geneontology.org) and the functional categories used for the pie-
chart shown in Figure 3A and Supplementary Figure S2 were curated
based on reading the primary literature for each protein (see
Supplementary Review of T-cell proteomics).

siRNA and transfection

Pools of SF3B2, SF3B4 and control siRNA (SmartPool, Dharmacon), or
each of four individual siRNA (siGenome, Dharmacon) or stabilized
siRNA (Stealth, Invitrogen) were transfected into quiescent primary
human T cells by electroporation (Nucleofection, Amaxa) (Orr et al,
2010). Sequences of the siRNA used are shown on the next page
(antisense sequences).

Cells transfected with siRNA were cultured overnight without
stimulus to recover, stimulated with PMA/ionomycin and samples
were typically taken 72 h later for further analyses. Samples were also
analyzed at other time points up to 128 h (5 days) later, as indicated in
the text. For eIF6, the siRNA-transfected cells were left in culture for 3
days to deplete low levels of endogenous protein present in quiescent
cells before stimulation. The level of SF3B2 or eIF6 protein expressed
after siRNA transfection was determined by western blotting using
2�105 cells per well and the signal obtained was compared with
incremental amounts of the sample transfected with control siRNA
(4�103–2�105 cells, that is, 2–100% of the SF3B2 siRNA-transfected
cells) that was run on the same blot.
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Western blotting

Western blotting was carried out with 4–12% (w/v) polyacrylamide
Bis-Tris gels (Invitrogen-Novex). Antibodies used were Apobec 3C
(C8-1, Professor Neuberger, MRC, Cambridge, UK); BAF53 (Dr Michael
Cole, Dartmouth College, USA); HnRNP-K (C-terminus, Professor
Bomsztyk, U Washington, USA); p68 (DDX5) (PAb204, Upstate; from
Professor Frances Fuller-Pace, Dundee, Scotland); Prohibitin (Ab-1,
Neomarkers; from Professor Eric Lam, Imperial College, London);
RUNX3 (Professor Paul Farrell, Imperial College, London); SAFB1 (Dr S
Osterreich, MD Anderson, Houston, TX, USA); Topoisomerase I (C21,
BD-Pharmingen; from Dr Andrew Porter, Imperial College, London);
MeCP2 (ab3752), HP1g (ab10480), Histone H3 (ab1791) SF3B4
(ab11803) (Abcam); cyclin A2 (BF683), NF-kB-p50 (K10-895.12.50),
PARP-1 (C2-10), pRb (PMG3245), STAT3 (Ab-84) (BD-Pharmingen);
p54nrb (611278), BAF190 (610390), Mcm2 (BM28) (BD Transduction
Laboratories); eIF6 (#3263; from Professor Alan Warren, University of
Cambridge); p44/42 MAP kinase; phospho-mTOR (S2448), phospho-
eIF4EBP1 (T37/46), phospho-eIF4E (S209), RPS6 (#2317) (Cell Signaling
Technology); GAPDH (MAB374), PP1-a (AB4082, Chemicon); phos-
pho-pRb(S807/811) (New England BioLabs, Hertfordshire, UK); Aly/
THOC4 (sc-32311), cdc2 (Cdk1) (17), Cdc6 (C19), cdk6 (C21), cyclin
D3 (C16), E2F-1 (C20), HELLS/Lsh (H-4, sc-46665), Lamin A/C (N-18;
sc-6215), SAM68 (C20), Xin1/Xirp1 (D8, T-20) (Santa Cruz Biotech-
nology, Inc., Santa Cruz, CA); hnRNP-A2/B1 (DP3B3), Mcm7 (DCS
141) (Sigma); LSP-1 (Ab-16) (Transduction Laboratories). In the
course of this study, western blot membranes were either routinely cut
into sections and each section probed with a different antibody or the
blots were re-probed sequentially with different antibodies, which
recognize proteins of different molecular weights (e.g., Mcm2 and
Mcm7). Sections of the films that showed the bands corresponding to
each antibody (determined by size comparison with molecular weight
markers) were selected in the scanner software (Epson Scan 3.04),
scanned individually as separate image files and saved as JPEGs. In
some cases, changes in brightness and/or contrast were applied
linearly equally across the entire image. These are available as Source
Data.

Immunofluorescence

Cytospin preparations of 40 000 T cells were made on poly-lysine-
coated microscope slides (Shandon Cytospin 4 (Thermo)). Slides were
fixed in 2% (w/v) paraformaldehyde for 30 min at room temperature,
washed three times with PBS and stored immersed in PBS at 41C. Cells
were permeabilized with 0.2% (v/v) Triton X-100 in PBS for 10 min at

room temperature, washed three times in PBS, blocked in PBS/10%
(w/v) BSA and washed three times with PBS. Slides were incubated
overnight with 1/100 Xirp1 antibody in blocking solution at 41C,
washed three times with PBS, incubated for 1 h in 1:200 TRITC-
conjugated donkey anti-goat secondary antibody (Jackson Labora-
tories) in blocking solution, then washed as above. Cells were
counterstained with a DNA stain (DAPI), rinsed in PBS, mounted
using Antifade and analyzed with an Olympus (Provis AX70,
Olympus) fluorescent microscope with DAPI/FITC/rhodamine triple
pass filters. Confocal microscopy and Z-stacks of 50 optical slices was
performed using a Leica DMIRE2 instrument (with thanks to Dr M-J
Bijlmakers, Immunology Department, KCL).

Gene expression analysis

Gene expression arrays (U133A, Affymetrix) were probed with RNA
isolated from at least four biological replicates of T cells in G0 and at
time points corresponding to cells during the G0-G1 transition (1–8 h),
mid/late G1 (24 and 32 h) and later in the first cell cycle (48 h). The
procedures were according to the manufacturer’s protocols (one-round
amplification; Affymetrix). Data were normalized using the VSN
algorithm (version 3.2.1) (Huber et al, 2002) implemented in
Bioconductor (Biobase/Affymetrix versions 1.16.2/1.16.0) (Gentleman
et al, 2004) and R version 2.6.1 (Dessau and Pipper, 2008). The probe
sets were mapped on the ENSEMBL (Hubbard et al, 2009), NCBI 36
assembly, allowing for one alignment error between the probe and
transcripts sequences. Probe sets containing probes matching
more than one gene, or which matches contained alignment errors,
were ignored for further analysis. The final expression values were
averaged over replicated time points, and over probe sets reporting the
same gene.

Protein interaction network analysis

A network consisting of human protein–protein interaction pairs
was generated using HumanNet (http://www.functionalnet.org/
humannet/) (Lee et al, 2011a, b). HumanNet is a probabilistic
functional gene network derived from the integration of large-scale
‘omics’ data sets across multiple species. Proteins showing significant
changes in abundance (1.96 XZ-score p�1.96, fold-change X2) in
the bound and unbound fractions were mapped onto the network and
visualized using Cytoscape (http://www.cytoscape.org).

Biological replicate experiments and statistical
analysis

Each experiment was carried out with cells isolated from at least three
independent donors (n¼X indicates X independent donors). Results
are expressed as mean±standard error of the mean for the n¼X
experiments. The significance of differences between conditions was
assessed by the Students ‘t’-test.

Archiving mass spectrometry and microarray data

All mass spectrometry data described in this paper are publically
available through PeptideAtlas (http://www.peptideatlas.org/PASS/
PASS00016). Microarray data have been deposited in GEO with the
accession number GSE32607.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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