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Abstract 

Background:  Dose fractionation of a coronavirus disease 2019 (COVID-19) vaccine could effectively accelerate global 
vaccine coverage, while supporting evidence of efficacy, immunogenicity, and safety are unavailable, especially with 
emerging variants.

Methods:  We systematically reviewed clinical trials that reported dose-finding results and estimated the dose-
response relationship of neutralizing antibodies (nAbs) of COVID-19 vaccines using a generalized additive model. We 
predicted the vaccine efficacy against both ancestral and variants, using previously reported correlates of protection 
and cross-reactivity. We also reviewed and compared seroconversion to nAbs, T cell responses, and safety profiles 
between fractional and standard dose groups.

Results:  We found that dose fractionation of mRNA and protein subunit vaccines could induce SARS-CoV-2-specific 
nAbs and T cells that confer a reasonable level of protection (i.e., vaccine efficacy > 50%) against ancestral strains and 
variants up to Omicron. Safety profiles of fractional doses were non-inferior to the standard dose.

Conclusions:  Dose fractionation of mRNA and protein subunit vaccines may be safe and effective, which would also 
vary depending on the characteristics of emerging variants and updated vaccine formulations.
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Background
Three years into the pandemic, coronavirus disease 
2019 (COVID-19) continues to threaten global health 
with emerging variants. While vaccinations are effec-
tive in preventing hospitalizations and deaths [1, 2], 
there has been unequal distribution of vaccinations 
across the globe. Despite that the current vaccine sup-
ply would cover most of the global population, a por-
tion of the supply were prioritized for the fourth or fifth 

dose in high-income countries, while only 15.7% of peo-
ple in lower-income countries had received at least one 
vaccine dose as of 16 May 2022 [3]. Dose fractionation 
of vaccines has been previously recommended to ease 
global supply shortage and accelerate vaccine cover-
age in low-income countries, where a larger proportion 
of the population could have access to vaccination while 
each individual would receive a lower vaccine dose [4, 5]. 
However, uncertainties and concerns about the vaccine 
efficacy using fractional doses against severe acute respir-
atory syndrome coronavirus 2 (SARS-CoV-2) ancestral 
strains and emerging variants of concern (VoCs) [6–8], 
and the potential differences between vaccine platforms, 
hindered the endorsement for dose fractionation of 
COVID-19 vaccines [9, 10]. Nevertheless, a half-dose of 
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the original Moderna vaccine has been recommended for 
the booster dose for adults who are not moderately and 
severely immunocompromised [11].

Here, we conducted a systematic review and meta-
analysis of phase I/II trials that reported dose-finding 
results of immunogenicity and safety profiles for COVID-
19 vaccines. As our primary outcome, we estimated the 
pooled dose-response relationship of neutralizing anti-
bodies (nAbs) against the ancestral strain. We then used 
the dose-response relationship to project the potential 
vaccine efficacy of fractional doses against infections 
of the ancestral strain and VoCs using a hypothesized 
relation between nAbs and protection [12, 13]. We also 
reviewed the differences in seroconversion of nAbs, 
T cell-mediated immune responses, and safety profile 
between fractional and standard dose (i.e., doses used for 
final products or phase III trials) groups, to further assess 
the differences in immunogenicity and safety after receiv-
ing fractional and standard doses.

Methods
Search strategy and study selection
We searched peer-reviewed publications on clinical tri-
als of SARS-CoV-2 vaccines in PubMed on 9 December 
2021. We searched with the following terms: (SARS-
CoV-2 OR COVID-19) AND (vaccine AND dose) AND 
(antibod* OR immun*) (detailed search terms in Addi-
tional file 1: Table S1 and Additional file 2) [6, 13–63]. 
We included dose-escalation studies that reported 
safety, neutralizing antibodies (nAbs, which were 
measured by plaque reduction neutralization test, 50% 
reduction, PRNT50 and/or surrogate virus neutraliza-
tion test, sVNT), and/or T cell-mediated immunity 
among healthy individuals received SRAS-CoV-2 vac-
cines (Additional file  1: Tables S2–S4). We excluded 
(1) studies that did not report immunological response 
or only reported binding antibody; (2) studies without 
dose-escalation; (3) studies on non-human hosts; (4) 
studies on participants with specific health conditions 
(e.g., cancer, organ transplantation) or pregnancy; (5) 
studies specifically designed for hybrid immunity (i.e., 
natural infection or heterogenous vaccinations); and 
(6) reviews or commentaries (Additional file 1: Fig. S1). 
We assessed the quality of included studies using the 
Cochrane Risk of Bias tool 2.0 for randomized trials 
[46] (Additional file 1: Fig. S2).

Data extraction and processing
Two reviewers (BY and XH) independently screened the 
titles and full texts of articles according to the inclusion and 
exclusion criteria. For each included study, we extracted 
relevant information of the vaccines and participants 
onto a standardized form, which includes vaccine name, 

manufacture, platform, dose fraction, vaccination and sam-
pling schedule, age group, and sizes of vaccinated subjects. 
Dose fraction (Fi, j) was defined, for each study (j), as the 
ratio of each examined dose group (di, j; i denotes the dose) 
and the standard dose (dref, j, defined as the dose selected 
for the approved vaccine product or phase III trials):

Differences in seroconversion of neutralizing antibodies 
after fractional and standard dose
We compared the proportion of seroconversion to nAbs 
against ancestral strains after receiving fractional doses 
compared with the standard dose group, where sero-
conversion was predefined by each study as at least four-
fold increase in nAbs and/or changing from negative 
to positive after vaccinations (details about definitions 
for positive threshold and seroconversion were shown 
in Additional file 1: Table S3). We chose to estimate the 
pooled risks ratio of seroconversion (RR, i.e., the ratio 
of proportion of seroconversion between fractional 
and standard dose groups) over the pooled proportion 
of seroconversion (i.e., the proportion of seropositive 
among all investigated participants in each dose group), 
to minimize the impacts of measurement variations 
between laboratories. Sample size and the number of 
seroconverted participants were extracted for each dose 
group, which were then used to estimate the pooled log 
RR of seroconversion between fractional and standard 
dose groups using random effects (RE) model, stratified 
by vaccine type. We fitted mixed effects meta-regressions 
to assess the effects of the vaccine platform and dose 
fractions on seroconversion, after accounting for age 
group and assay methods.

Dose‑response relationship of neutralizing antibodies
For each study j, we extracted the mean (μi, j) and stand-
ard deviations (σi, j) of nAbs titers in different dose groups 
i; if not reported, we estimated μi, j and σi, j from (1) indi-
vidual data points or (2) median, interquartile (IQR), and 
sample sizes [64]. We then standardized the vaccine-
induced nAbs level (zi, j) using the nAbs measured in con-
valescent sera (μc, j) for each study:

We summarized standardized nAbs among different 
dose groups (i.e., fractional, standard, and higher dose 
groups) at different time points (i.e., days after 1 or 2 
doses). To quantify the non-linear dose-response rela-
tionship of vaccination (log2Fi, j) and the standardized 

(1)Fi,j =
di,j

dref ,j

(2)zi,j =
µi,j

µc,j
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nAbs (zi, j), we fitted a generalized additive model (GAM; 
Additional file 1: Table S5) that accounted for the vaccine 
platform (V), vaccine schedule (i.e., total dosages D and 
days after full vaccination Ti, j), age group (A = children, 
adult, or elderly), and antigen used for neutralizing assay 
(M = live or pseudo virus):

s(.) denotes the thin plate spline term. With estimates 
from equation  3, we predicted the standardized nAbs 
(assuming measured by live virus and in adults; same for 
the following) against SARS-CoV-2 ancestral strain 14 
days after fully vaccinated (i.e., 1 dose for vector and 2 for 
the rest) with fractional doses (Fi, j) for different vaccine 
platforms. We validated our model predictions and raw 
data and performed ten-fold cross-validation (Additional 
file 1: Fig. S3 and Table S6).

Vaccine efficacy predicted from neutralizing antibodies
We applied the established correlation of protection 
(CoP) of standardized nAbs [12, 13] to predict the dose-
fractioning vaccine efficacy (Φi) against symptomatic 
infections of SARS-CoV-2 ancestral strain for different 
vaccine platforms (V):

We obtained the log-transformed 50% protective effi-
cacy (log10z50, E) and steepness parameter kE for both 
symptomatic and severe infection from the previous 
study [12]. zi, V is the standardized nAbs at 14 days after 
fully vaccinated of fractional doses (Fi, j) for each vac-
cine platform, which was estimated from equation  3 
with coefficients shown in Additional file 1: Table S5.

We used previously reported [6, 13] fold of reduction 
(δS; Additional file  1: Table  S7) in nAbs to estimate the 
level of standardized nAbs (δSzi, V) against the variant S, 
which was then applied to equation 4 to predict the vac-
cine efficacy of dose fractioning against infections of 
SARS-CoV-2 VoCs. To validate our predicted vaccine 
efficacy against VoCs, we compared the predicted vac-
cine efficacy against symptomatic infections after stand-
ard dose and observations (Additional file  1: Table  S8) 
reported previously by Pearson correlation. Standard 
doses were used for comparison since there were no 
empirical data regarding half-dose.

T cell responses
Since assays and measurements used for T cell-medi-
ated responses vary across studies, we reviewed if T 

(3)
log2zi,j =�0 + �T s

(

Ti,j

)

+ �F s
(

log2Fi,j
)

+ �VVj

+ �DDi,j + �AAi,j + �MMi,j

(4)�i,V ,E =
1

1+ e
−kE log10

zi,V
z50,E

cell responses elicited by dose-fractioning vaccines 
(1) would be higher than that at a pre-vaccination 
level and (2) would be lower than that elicited by the 
standard dose vaccine within the same study. Briefly, 
we extracted the mean ( xi,j,k ; log-transformed if origi-
nally measured in log-scale; same for SE), standard 
error (SE, σ̂xi,j,k ), and sample size (ni) of specific meas-
urement k for T cell responses for each dose group or 
reference group (i.e., pre-vaccination or post stand-
ard dose vaccination) i in study j. Specific measure-
ment (k) includes T cell types (i.e., CD4+ or CD8+) 
and/or cytokines for T helper type 1 (Th1, including 
interferon-γ (IFN- γ), tumor necrosis factor (TNF- α) 
and interleukin-2 (IL-2)) and T helper type 2 (Th2, 
including IL-4, IL-5, IL-13). If mean and SE were not 
reported, we estimated these metrics from individual 
original data points or median, IQR and sample sizes 
[64]. We determined the statistical significance of the 
difference in (log-)means (Δi, j, k) assuming it follows a 
normal distribution.

Safety
We compared the safety profiles after receiving frac-
tional dose compared with the standard dose group. We 
extracted the sample size and the number of adverse 
events (AEs, i.e., solicited local and/or systemic events, 
unsolicited events, and any AEs) for each dose group. 
Individual manifestations within each AE category were 
extracted and assessed. We estimated the pooled log 
RR of experiencing AEs between fractional and stand-
ard dose groups using the RE model and stratifying by 
specific AE and vaccine platform. We calculated the I2 
to measure the heterogeneity of the included estimates. 
We also repeated the above analysis for the higher 
dose group, which results can be found in our data 
repository.

Results
In total 1733 records were returned from PubMed search 
with 44 duplicates. After title and abstract screening, 
136 records were eligible for full-text screen (Additional 
file 1: Fig. S1). Thirty-eight studies were included in the 
analyses [15–17, 19, 21–26, 28–32, 36–38, 40–43, 45, 
48, 50–63], among which inactivated vaccines (29%, n = 
11) were studied the most, followed by protein subunit 

(5)�i,j,k = xi,j,k − xref ,j,k

(6)𝜎̂
Δi,j,k

=

√

√

√

√

𝜎̂xi,j,k
2

ni
+

𝜎̂xref ,j,k
2

nref
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(“subunit” hereafter; 26%, n = 10), mRNA (24%, n = 9), 
non-replicating viral vector (“vector” hereafter; 13%, n 
= 5) and others (Additional file 1: Fig. S1 and Table S2). 
We found overall low risks of bias of the included stud-
ies, except that seven adopted the non-randomized, and 
non-double-blinded design (Additional file  1: Fig. S2) 
[15, 28, 29, 37, 43, 48, 63].

Seroconversion of neutralizing antibodies after fractional 
doses
We estimated the pooled RR of the seroconversion 
against ancestral strains among individuals who com-
pleted fractional and standard dose from 14 studies of 
9 vaccines (Fig.  1). The probability of seroconversion to 
ancestral strains was 2.1% (95% confidence interval (CI) 
0.4% to 3.6%; I2= 52.0%, P-value < 0.01) lower among 
individuals with fractional doses compared to stand-
ard doses within the same trial. However, we found no 
association between dose fractionation (1.4%, 95% CI, 
− 20.4% to 29.3% per fold increase in dose) and serocon-
version proportions between lower and standard dose 
groups after accounting for vaccine platform, age group, 
and assay methods (i.e., live or pseudo virus) (Additional 
file 1: Table S9).

Dose‑relationship of neutralizing antibodies and predicted 
vaccine efficacy
Twenty-four studies reported nAbs against live (n = 20) 
and/or pseudo (n = 7) ancestral viruses from both post-
vaccination and convalescent sera (Additional file 1: Figs. 
S4–S6 and Table S3). We estimated that prime with one 
half-dose would elicit less than 10% of nAbs in convales-
cent sera, while prime-boost with two half-doses elicited 
higher nAbs than a single standard dose across all plat-
forms (Fig. 2A and Additional file 1: Fig. S3–S7).

We estimated that two half-dose mRNA vaccines 
would elicit 2.6 (95% CI, 2.1 to 3.3, measured on day 
14)-fold of the nAbs against the ancestral strain in con-
valescent sera (Fig.  2A), which is expected to prevent 
97% (95% CI, 95% to 97%) of symptomatic infections 
of the ancestral strains, respectively (Fig. 2B). Whereas 
two half-dose inactivated vaccines would elicit 0.28 
(95% IC 0.20 to 0.37)-fold of nAbs against the ances-
tral strains in convalescent sera, corresponding to 61% 
(95% CI, 51% to 70%) and 95% (95% CI, 92% to 96%) 
efficacy against symptomatic and severe infections of 
the ancestral strains, respectively. Overall, our predic-
tions suggested that the reduction in vaccine efficacy 
was smaller than dose fractionation across all vaccine 
platforms (Fig. 2C); half-doses may provide more than 
half of protection efficacy of standard doses.

Further incorporating the reported fold reduction 
in of vaccine-induced nAbs against VoCs (Additional 

file  1: Table  S7) [6, 13], we projected that two half-
dose mRNA vaccines would confer the highest effi-
cacy against symptomatic infections of VoCs (94%, 
95% CI, 92% to 95% against Alpha, 63%, 54% to 70% 
against Beta, 85%, 79% to 89% against Gamma, 83%, 
78% to 87% against Delta, and 32%, 26% to 40% against 
Omicron), followed by subunit, vector and inactivated 
vaccines (Fig. 3 and Additional file 1: Fig. S8). Our pre-
dicted efficacy against symptomatic infections of VoCs 
for standard dose highly correlated (Pearson correla-
tion 0.705, p-value < 0.01; Fig. S9) with empirical data 
[14, 18, 27, 33–35, 39, 44, 47, 49, 65], while we were 
not able to validate predictions for fractional doses 
due to lack of data. Results from ten-fold validations 
further supported our model fitting (Additional file 1: 
Table S6).

T cell responses after fractional doses
We first reviewed whether T cell-mediated immune 
responses elicited by dose fractioning vaccines would be 
higher than the pre-vaccination level. All 7 studies of 5 
vaccines reported a significant increase in SARS-CoV-2 
specific CD4+/CD8+ or CD4+ T helper type 1 (Th1) 
responses after vaccinated with fractional doses com-
pared to pre-vaccination (Fig. 4A), which were all biased 
to Th1 cells.

We then reviewed whether T cell responses would be 
lower than that elicited by the standard dose vaccine. 
Three vaccines (BNT162b1 [32, 43], MVC-COV1901 
[28], and Sf9 cells [36]) reported that dose fractionation 
elicited a similar level of CD4+ and/or CD8+ T cells 
compared to the standard dose (Fig.  4B). Quarter-dose 
of mRNA-1273 [15, 29] was reported to induce signifi-
cantly lower CD4+ Th1 cells compared to the stand-
ard dose, while half-dose of BBV152 were reported to 
induce significantly higher Th1 cytokines in one of two 
trials. We also compared the cellular responses between 
standard and higher dose groups and found no evidence 
for a dose-dependent relationship for 7 out of 9 vaccines 
(Additional file 1: Fig. S10).

Safety profiles after fractional doses
We reviewed the safety profile for 34 studies and found 
that, compared to the standard dose group, people in 
the fractional dose groups tended to experience adverse 
events at similar or lower frequency (Fig. S11–16). Par-
ticularly, the risk of experiencing solicited, and unso-
licited adverse events were 9.5% (95% CI, 3.9% to 14.8 
%) and 24.4% (3.9% to 41.1%) lower in individuals who 
received a factional dose of mRNA vaccines compared 
to standard doses (Fig. S14–15). One inactivated (BBIBP-
CorV in children [56]) and two subunit (NVX- CoV2373 
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and Livzon in adults [23, 45]) vaccines reported a higher 
risk of solicited systemic reactions in groups that received 
a lower dose than the standard dose.

Discussion
We reported the pooled dose-response relationship of 
nAbs against the ancestral strains using estimates from 

Fig. 1  Pooled risk ratio (in log scale) of seroconversion between fractional and standard dose groups of COVID-19 vaccines. Number of 
seroconversion individuals and sample sizes were shown for the standard and nonstandard groups, respectively
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phase I/II studies. Our findings suggested that vaccine-
induced nAbs varied substantially across dose fractions, 
number of dosages, and vaccine platforms. For vaccine 
platforms (e.g., mRNA and subunit) which standard 
doses could elicit higher nAbs levels than convalescent 
sera, fractionation of prime-boost doses could induce 
robust nAbs against the ancestral strains and similar 
seroconversion proportion with standard doses. nAbs 
induced by fractional vaccines of mRNA and subunit 
were predicted to confer ≥ 65% efficacy against symp-
tomatic infections of SARS-CoV-2 variants, except 
for Beta and Omicron. Fractionation of vaccine doses 
seemed to be safe and induce robust Th1-biased T cell 

responses that were similar to standard doses except for 
mRNA-1273.

We found that dose fractionation of COVID-19 vac-
cines would induce, though lower than standard doses, 
detective nAbs against ancestral strains. Based on 
previously established CoP [12, 13, 66], these nAbs 
may confer reasonable protection (i.e., > 50%) against 
symptomatic infections of ancestral strains, but not 
the subsequent VoCs, especially Omicron. Previous 
modeling study suggested that dose fractionation could 
be a cost-effective strategy in low-income countries, 
if vaccination could confer at least 50% of protection 
against symptomatic infections of variants with low 

Fig. 2  Dose-response relationship of neutralizing antibodies (nAbs) and vaccine efficacy (VE) against ancestral strains induced by COVID-19 
vaccines. A 2-dose schedule was assumed for RNA, protein subunit, and inactivated vaccines, while 1-dose schedule was assumed for 
non-replicating viral vectors (as suggested by the included trials). A Dose-response relationship of nAbs against ancestral strains. nAbs were 
standardized as the ratio to the convalescent sera. Dashed horizontal line indicates the average level of nAbs against ancestral strains in 
convalescent sera. B Dose-response relationship of predicted vaccine efficacy against symptomatic infections of ancestral strains. C Association 
between reduction in vaccine efficacy and dose fractionation. Reductions in vaccine efficacy were measured as the ratio between vaccine efficacy 
against symptomatic infections of ancestral strains between fractional and standard dose groups
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or moderate transmissibility (i.e., basic reproduction 
number R0 < 5) [67]. Given these findings, our results 
of nAbs and vaccine efficacy predictions suggested that 
dose fractionation could have been a cost-effective strat-
egy to control the emergence of some early VoCs (e.g., 
Alpha and Delta), but not for the currently circulating 
Omicron given the significant immunity breakthrough 
[6, 7] and higher transmissibility [68]. With the devel-
opment of reformulated COVID-19 vaccines using the 
Omicron variant, fractionation of vaccines in the sub-
sequent booster dose allocation may still be effective yet 
further investigations are needed.

While there is no established correlate of protection 
against severe COVID, we found that fractional doses of 
most studied vaccines could induce detective and likely 
robust T cell responses, which may contribute to pro-
tection against severe outcomes given that SARS-CoV-2 
specific T cells could broadly cross-react to a range of 
VoCs (including Omicron) and were associated with 

better outcomes [69, 70]. Therefore, dose fractionation of 
COVID-19 vaccines might still be able to avert a consid-
erable number of hospitalizations and deaths, even with 
the emergence of new variants with higher rates of break-
through infections.

We were not able to assess the durability of the 
immune responses elicited by fractional doses of 
COVID-19 vaccines, as most trials reported limited 
follow-up that was typically just one month after vac-
cination. Therefore, our efficacy estimates may only be 
indicative for short-term protection. Waning SARS-
CoV-2 specific aAbs, T cells, and vaccine efficacy 
(against both ancestral and VoCs) may be expected, 
as suggested by evidence from individuals receiving 
standard doses after 6 months [7, 71–73]. For standard 
doses, both homogeneous and heterogenous boosters 
could substantially increase nAbs and vaccine efficacy 
against VoCs [8], while such data were lacking for frac-
tional doses.

Fig. 3  Predicted vaccine efficacy against SARS-CoV-2 variants of concern after fully vaccinated with half-dose vaccines. Vaccine efficacy against 
symptomatic infections after full vaccinations (i.e., one dose non-replicating viral vector and two doses for the rest) of half-dose is shown, with the 
complete dose-dependent effectiveness shown in Additional file 1: Fig. S8. A-E for Alpha, Beta, Gamma, Delta, and Omicron
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To minimize the impacts of measurement variations 
between laboratories, we compared the differences in 
seroconversion of nAbs and T cell responses within each 
trial and quantified the dose-relationship using nAbs that 
were standardized to convalescent sera. Calibration to 
recommended international standard may further reduce 
the between laboratory variations, which was, however, 
not reported by the included trials.

We did not look at the nAbs induced by individual vac-
cine manufacturers due to limited data, while we found 
consistent seroconversion proportion and dose-relation-
ship within platform (Additional file 1: Fig. S3–S7). Nev-
ertheless, disparities in nAbs levels and durability were 
reported for individual vaccines from the same platform 
(e.g., mRNA-1273 vs. BNT162b1 vaccines [9]). Of not, 
dose-response relationship may vary across vaccine plat-
forms, while we do not have sufficient data for further 
investigations.

Our results indicated that nAbs and the projected 
protections after two half-doses were higher than that 
after one standard dose. Therefore, two half-doses could 
make more efficient usage of the limited antigen (espe-
cially early in the pandemic) and potentially save more 

lives compared to one standard dose, despite for the 
higher logistical cost for vaccine administration [67].

We found that the safety of fractionation of vaccine 
doses seems to be non-inferior to that of the standard 
doses. However, our pooled safety estimates may be 
underpowered to detect rare safety events, as most of 
the included studies were phase I and II trials that were 
designed with small sample sizes.

Our study only focused on the immunogenicity and 
safety and the projected efficacy of dose fractionation 
of COVID-19 vaccines, and therefore findings should 
be interpreted within this scope. The projected VE 
under the smallest fractional doses (e.g., 10% to 30%) 
may suffer greater uncertainties from smaller sample 
sizes and edge effects of GAM estimations, despite that 
several studies reported similar or slightly lower sero-
conversion risk in these low dose groups. In addition, 
some of the vaccine effectiveness estimates we used to 
validate the projected vaccine efficacies of fractional 
doses were estimated in observational studies, which 
may also be subject to a number of biases. Therefore, 
endorsement of dose fractionation of vaccines by reg-
ulatory agencies would likely need stronger efficacy 

Fig. 4  Comparison of T cell responses against the ancestral strains elicited by dose fractioning of COVID-19 vaccines. The size of dots represents the 
total sample sizes of the standard and non-standard dose groups. A Compared to pre-vaccination. If the mean and 95% CI of the difference in mean 
T cell levels before and after the fractional doses were all greater than 0, we determined T cell responses were significantly higher between the 
groups. B Compared to people who received standard doses. If the mean and 95% CI of the difference in mean T cell levels between the fractional 
and standard dose groups were all greater or less than 0, we determined T cell responses were significantly higher or lower than that elicited by the 
standard dose
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data, and other considerations would include the evolv-
ing supply situation, logistics restrictions, and vaccine 
communications.

Conclusions
To summarize, fractionation of vaccine doses, especially 
mRNA and protein subunit vaccines, are safe and would 
induce antibody and T cell responses that likely confer a 
reasonable level of protection against severe infections 
of SARS-CoV-2 ancestral and VoCs up to Omicron. The 
use of vaccines with lower antigen content earlier in the 
pandemic might have been an efficient approach to save 
even more lives, while further clinical investigation of 
fractional booster doses would certainly be worthwhile.
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