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A Long Noncoding RNA Signature
That Predicts Pathological

Complete Remission Rate
Sensitively in Neoadjuvant
Treatment of Breast Cancer'

Abstract

BACKGROUND: Mounting evidence suggests that long noncoding RNAs (IncRNAs) are closely related to pathological
complete response (pCR) in neoadjuvant treatment of breast cancer. Here, we construct IncRNA associated models to
predict pCR rate. METHODS: LncRNA expression profiles of breast cancer patients treated with neoadjuvant
chemotherapy (NAC) were obtained from Gene Expression Omnibus by repurposing existing microarray data. The
prediction model was firstly built by analyzing the correlation between pCR and IncRNA expression in the discovery
dataset GSE 25066 (n = 488). Another three independent datasets, GSE20194 (n = 278), GSE20271 (n = 178), and
GSE22093 (n = 97), were integrated as the validation cohort to assess the prediction efficiency. RESULTS: A novel
IncRNA signature (LRS) consisting of 36 IncRNAs was identified. Based on this LRS, patients with NAC treatment were
divided into two groups: LRS-high group and LRS-low group, with positive correlation of pCR rate in the discovery
dataset. In the validation cohort, univariate and multivariate analyses both demonstrated that high LRS was associated
with higher pCR rate. Subgroup analysis confirmed that this model performed well in luminal B [odds ratio (OR) = 5.4;
95% confidence interval (Cl) = 2.7-10.8; P = 1.47e-06], HER2-enriched (OR = 2.5;95% CI = 1.1-5.7; P = .029), and
basal-like (OR = 5.5; 95% CI = 2.3-16.2; P = 5.32e-04) subtypes. Compared with other preexisting prediction
models, LRS demonstrated better performance with higher area under the curve. Functional annotation analysis
suggested that IncRNAs in this signature were mainly involved in cancer proliferation process. CONCLUSION: Our
findings indicated that our INcRNA signature was sensitive to predict pCR rate in the neoadjuvant treatment of breast
cancer, which deserves further evaluation.
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Introduction
Breast cancer, one of the most common cancers, is still a fatal malignant
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Neoadjuvant chemotherapy (NAC) has emerged as a new and effective
option for locally advanced breast cancer. By shrinking tumor size
before surgery, NAC is able to improve the feasibility of conventional
breast operation and conservative surgery in locally advanced breast
cancer patients [2]. In addition, numerous studies have shown that a
pathological complete response (pCR) after NAC is significantly
correlated with good further clinical outcome [3]. However, other data
also demonstrated that only less than 40% to 50% breast cancer patients
can achieve pCR after NAC [4]. Therefore, clinicians usually need to
make a decision as to whether NAC is necessary or not for breast cancer
patients by evaluating the pros and cons of chemotherapy before the
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Table 1. NAC Patients' Clinicopathological Characteristics Included in the Discovery and
Validation Cohort

Characteristics Discovery Validation
GSE25066
(n = 488) All Trials GSE20194 GSE20271 GSE22093
(n = 553) (n = 278) (n =178) (n=97)

Age

<50 268 287 133 100 54

>50 220 264 144 78 42

Unknown 0 2 1 0 1
ER

Negative 200 249 114 80 55

Positive 287 304 164 98 42

Unknown 1 0 0 0 0
HER2

Negative 466 463 219 151 97

Positive 5 85 59 26 0

Unknown 17 1 0 1 0
T

To-1 29 42 26 13 3

T2 245 274 147 76 51

T3 140 113 50 37 26

T4 74 121 53 51 17

Unknown 0 3 2 1 0
cN

NO 154 159 79 59 21

N1 231 212 125 71 16

N2 64 79 31 38 10

N3 39 54 42 9 3

Unknown 0 49 1 1 47
Grade

1-2 201 225 117 76 32

3 252 271 152 72 47

Unknown 35 57 9 30 18
pCR

Yes 99 110 56 26 28

No 389 443 222 152 69

T, clinical tumor stage; c/V, clinical nodal status.
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DLDA and forward filtering method selected IncRNA models with

operation according to patients' tumor stage, histologic grade, age,
estrogen receptor (ER), and human epidermal growth factor receptor 2
(HER2) status as these clinicopathological characteristics are associated
with the probability of pCR [5]. Meanwhile, utilizing different mRNA
signatures to predict pCR rate when making a decision is also attracting
researchers' attention. Over the past decades, breast cancer has been
classified into five different “intrinsic subtypes”, including luminal A,
luminal B, HER2 enriched, basal-like, and normal-like according to its
mRNA expression pattern [6]. To date, much data have exhibited that
different subtypes of breast cancer have distinct biological behaviors as
well as responses to NAC [7]. Specifically, basal-like tumors generally
achieve much higher pCR rate than luminal A [8]. Oncotype DX,
Gene70, and Gene Expression Grade Index (GGI) signature are
previously established mRNA signatures employed to predict breast
cancer patient survival [9-11]. It has also been shown that high
expression level of these mRNA signatures is associated with higher
probability of pCR [12].

As a matter of fact, at least 98% of the human genome is
transcribed into noncoding RNAs rather than protein-coding
mRNAs, implying that these novel moleculars also play a vital role
in biological processes and are potential biomarkers to powerfully
predict NAC response in breast cancer in addition to mRNA [13].
Long noncoding RNAs (IncRNAs) are generally non—protein-coding
transcripts longer than 200 nucleotides in length [14]. These long
RNAs function directly at RNA level rather than being translated into
functional proteins. Recent studies have revealed that IncRNAs are
involved in varieties of biological processes including tumorigenesis,
invasion, metastasis, and drug resistance of breast cancer at both
transcriptional and posttranscriptional levels [15-17]. What's more, a
growing number of IncRNAs are validated to be associated with
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Figure 1. The construction and optimization of the LRS model for pCR prediction. (A) The diagram of the construction and validation of the
IncRNA pCR prediction model. (B) The 44 IncRNAs significantly different between non-pCR and pCR cases in the discovery dataset were
employed for constructing the predictive DLDA model. The accuracy, sensitivity, specificity, PPVs, NPVs, and F1 score were calculated
with each number of IncRNAs. This LRS ranked the highest F1 score when comprising the first 36 IncRNAs.
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patients’ outcomes and pCR in NAC, thus providing a new option for
model construction to predict pCR of NAC besides mRNA signature
[18]. However, there is no IncRNA signature built based on a large
number of breast cancer patients treated with NAC up to now.

In this study, we aimed at identifying an IncRNA signature to fully
investigate the relationship between IncRNA expression pattern and
pCR rate in breast cancer patients with NAC treatment. By reannotating
previously published Affymetrix HG-U133A array profiles from Gene
Expression Omnibus (GEO), we established an IncRNA signature
comprising of 36 IncRNAs from NAC-treated patients. Then, the
prediction efficiency of this signature was further assessed in a validation
cohort with three independent datasets. Our final finding indicated that
this signature could be potentially utilized as a novel biomarker to
predict pCR rate in addition to traditional clinicopathological markers
and mRNA signature, which needs further evaluation.

Materials and Methods

Gene Expression Profiles of NAC-Treated Patients Obtained
from GEO

We searched for qualified gene expression datasets in regard to
breast cancer with NAC treatment in GEO database, which is
publically available. Only datasets that met the following criteria were
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selected: First, gene expression data were assayed using Affymetrix
HG-U133 A platform. Second, pCR in the study was defined as the
absence of invasive tumor in both breast and lymph nodes [19].
Third, nearly or more than 100 cases were included in the dataset.
Finally, 1041 NAC-treated breast cancer patients in total were
collected from GSE25066 [20], GSE20194 [21], GSE20271 [22],
and GSE22093 [23] datasets. GSE25066, which consists of 488
samples, was used as the discovery dataset for model construction,
while another 553 patients from GSE20194, GSE20271, and
GSE22093 were combined and used as the validation dataset.
Patients' characteristics of both discovery and validation datasets are

listed in Table 1.

Interrogate IncRNA Expression by Repurposing Microarray Probes

All raw data were normalized by Robust Multichip Average
algorithm [24]. ComBat was utilized to remove the potential batch
effects when combining batches of gene expression dataset [25].
LncRNA expression of the NAC-treated patients was obtained by
remapping the probes of the array to human genome (GRCh38/hg38)
using SeqMap [26] and then matching the probes to the IncRNA
chromosomal positions from GENCODE (release 24, GRCh38)
[27-29]. A total of 616 probes corresponding to 463 IncRNAs were
obtained in the end. LncRNA expression values of multiple probes that
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Figure 2. The IncRNA expression profile and pCR prediction were analyzed in the discovery and validation dataset. NAC patients were
classified into LRS-high (predicted pCR) and LRS-low (predicted non-pCR) groups. IncRNA expression profile and pCR distribution are
shown in (A) the discovery dataset and (B) the validation dataset. Then, patients' pCR statuses in different LRS groups were further

compared in (C) the discovery dataset and (D) the validation dataset.
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target the same IncRNA were averaged arithmetically. Figure 14
demonstrated the order of the analysis and model construction.

Diagonal Linear Discriminant Analysis Prediction Model
Construction

Of the aforementioned 463 IncRNAs, 44 IncRNAs in the
discovery dataset were found to be differentially expressed between
the non-pCR and pCR patients by Welch's # test. (2 < .001). These
44 IncRNAs were further used to construct the predictive model with
Diagonal Linear Discriminant Analysis (DLDA) [30]. According to a
previously described method, we employed the forward filtering
method to optimize the model [31]. In the end, the DLDA model of
36 IncRNAs ranked the highest F1 score in the discovery dataset and
was therefore defined as the IncRNA signature (LRS) for pCR
prediction of NAC.

Comparison of the Efficiency of LRS with Other Signatures
Pam50 intrinsic subtypes, Oncotype DX, Gene70, and GGI score
were obtained by using “genefu” package in R [32]. The receiver
operating characteristic (ROC) curves of LRS and other signatures
were plotted and compared by R package ROCR [33]. The area

under the curve (AUC) was calculated correspondingly.

Function Annotation of the IncRNA Signature

Integrative analysis of IncRNA-mRNA association was employed
to infer the potential function of the IncRNAs included in the LRS.
We calculated Pearson correlation between IncRNAs and mRNAs in
the discovery cohort to identify mRNAs that positively coexpressed
with IncRNAs in LRS (Pearson correlation coefficient > 0.4 and
ranked top 0.5%) [29,34]. Then these mRNAs were further
annotated by the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) using the functional annotation
clustering option (version 6.8) [35,36]. Clusters with enrichment
score higher than 3.0 and functional annotations with 7 value lower
than .001 were considered to be statistically significant. Finally,
Cytoscape with the Enrichment Map plugin was used to visualize the
significant enrichment results [37].

Statistical Analysis

The microarray datasets downloaded from GEO database were
analyzed by R software (version 3.3.1) and Bioconductor. The
clinicopathological parameters in the datasets were analyzed using
two-sided 7 test and Fisher's exact test with a P value < .05 as the
cutoff. The logistic regression model was employed to perform the
univariate and multivariate analyses.

Result

Establishment and Validation of the lncRNA Prediction Model
for pCR

By reannotating microarray probes in the discovery dataset, 616
probes that corresponded to 463 IncRNAs were identified in total. Of
the 463 IncRNAs we found, 44 IncRNAs differentially expressed
between non-pCR (7 = 389) and pCR (7 =99) patients with
P < .01, which were further used for model construction. Next,
through DLDA with model optimization by leaving one out
cross-validation and forward filtering method, we finally observed
that the DLDA model of 36 IncRNAs ranked the highest F1 score,
which divided patients into two groups: chemotherapy-sensitive
group (n = 202) with high LRS score and chemotherapy-insensitive
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group (7 = 286) with low LRS score (Figure 1B). The accuracy,
sensitivity, specificity, positive predictive values (PPVs), negative
predictive values (NPVs), and F1 score were 69.9%, 77.8%, 67.9%,
38.1%, 92.3%, and 51.2%, respectively. The heat map illustrated
that these two groups based on LRS score had distinct IncRNA
expression patterns (Figure 24). More importantly, the high-LRS
score group was more likely to achieve a higher pCR rate when
compared with the other one (Figure 2C, P =4.733¢-16).
Multivariate analysis showed that only tumor grade (P = .04922),
LRS score (P =.00373), and intrinsic subtype (P = .02463) were
independent factors for pCR in the discovery set (Table 2).

To further evaluate the prediction efficiency of pCR with the LRS,
we collected a total of 553 breast cancer patients with NAC treatment
by integrating three independent datasets (GSE20194, GSE20271,
and GSE22093) as the validation cohort. As expected, the results
gained by using validation dataset (Figure 2, B and D) shared similar
findings with those of the discovery dataset, with distinct IncRNA
expression patterns and higher pCR rate in the high—-LRS score group
(P = 6.026e-16). The accuracy, sensitivity, specificity, PPV, NPV,
and F1 score for validation dataset were 68.2%, 77.3%, 65.9%,
36.0%, 92.1%, and 49.1%, respectively. Multivariate analysis
demonstrated that only ER status (P = 3.79¢-05), HER2 status

Table 2. Univariate and Multivariate Analysis for Parameters Associated with pCR in the Discovery
Dataset

Characteristics n  pCR  Univariate Analysis Multivariate Analysis
OR  95% CI P OR 95%CI P
Age
<50 268 60 1
>50 220 39 0.75 0.47-1.17 204
Unknown
ER
Negative 200 69 1
Positive 287 30 0.22 0.14-0.35 6.20e-10 0.70 0.38-1.28 .25115
Unknown 1
HER2
Negative 466 93 1
Positive 5 2 2.67 0.35-16.36  .285
Unknown 17 4
T
To-2 274 58 1
T3-4 214 41 0.88 0.56-1.38 584
Unknown 0
cN
Negative 154 28 1
Positive 334 71 1.21 0.75-2.00 433
Unknown
Grade
1-2 201 13 1
3 252 77 6.36 3.53-12.36  5.73e-09 2.07 1.02-4.40 .04922
Unknown 35
IncRNA score
Low score 286 22 1
High score 202 77 7.39 4.47-12.68 4.4le-14 2.74 1.40-5.51 .00373
Intrinsic subtype
Luminal A 124 2 1
Others 364 97  25.78 7.99-157.88 6.76e-06 691 1.50-50.6 .02463
Oncotype DX
Low & mediumscore 80 2 1
High score 408 97 12.16 3.74-74.79 5.73e-04 1.41 0.33-9.76 .67782
Gene70
Low score 82 3 1
High score 406 96 8.15 2.96-33.77 4.63e-04 0.92 0.25-4.49 .91205
GGI
Low score 195 13 1
High score 293 86 5.82 3.25-11.24 2.15¢-08 0.94 0.41-2.23 .88345
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(P =.01147), and LRS score (P = 2.97e-05) were independent
factors for predicting pCR in the validation dataset (Table 3).

Relationship between Clinicopathological Features and LRS Model
We uncovered that high LRS score was significantly associated with
ER negativity (P < 2.2e-16), T3 and T4 tumors’ size (P < .017),
lymph node positivity (P < .026), grade 3 tumor (P < 2.2¢-16), and
non-luminal A subtype (P <.026) in discovery dataset. In the
validation set, high-LRS score patients were more likely to be ER
negative (P < 2.2e-16), HER2 positive (P = .047), grade 3
(P < 2.2¢-16), and non—luminal A subtype (P < 2.2¢-16). (Table 4).

Evaluation of the Prediction of LRS in Different Intrinsic Subtypes

By using PAMS50 subtypes classification, 259 cases of luminal A,
298 cases of luminal B, 135 cases of HER2-enriched, 311 cases of
basal-like, and 38 cases of normal-like subtype were identified in the
whole 1041 NAC-treated patients. The normal-like subtype was
excluded in the subgroup analysis because of its small sample size. In
luminal A subtype, which is less likely to undergo NAC, LRS failed to
predict pCR rate. However, in luminal B, HER2-enriched, and
basal-like subtypes, high LRS score was significantly associated with a
higher chance to achieve pCR (Figure 34).

Table 3. Univariate and Multivariate Analysis for Predicting Parameters Associated with pCR in the
Validation Dataset

Translational Oncology Vol. 10, No. 6, 2017

Table 4. Association between Clinicopathological Parameters and LRS in the Discovery and

Validation Dataset

Characteristics

Discovery Set

Validation Set

LRS Low LRSHigh P

LRS Low LRSHigh P

n 286 202 317 236
Age
<50 154 114 168 119
>50 132 88 .6356 148 116 .6165
Unknown 0 0 1 1
ER
Negative 43 157 85 164
Positive 242 45 <2.2e-16 232 72 <2.2e-16
Unknown 1 0 0 0
HER2
Negative 275 191 277 190
Positive 1 4 1651 40 45 0474
Unknown 10 7 0 1
T
To-2 174 100 186 130
T3-4 112 102 .01673 128 106 3749
Unknown 0 0 3 0
cN
Negative 102 52 104 55
Positive 184 150 02615 202 143 1717
Unknown 0 0 10 39
Grade
1-2 174 27 176 49
3 97 155 <2.2e-16 101 170 <2.2e-16
Unknown 15 20 40 17
Intrinsic subtype
Luminal A 135 2 117 5
Others 151 200 <2.2e-16 200 231 <2.2e-16
Oncotype DX
Low & medium score 79 1 77 4
High score 207 201 4.211e-15 240 232 2.647e-13
Gene70
Low score 81 1 96 5
High score 205 201 1.527e-15 221 231 <2.2e-16
GGI
Low score 180 15 188 38
High score 106 187 <2.2e-16 129 198 <2.2e-16
pCR status
pCR 22 77 25 85
Non-pCR 264 125 <2.2e-16 292 151 <2.2e-16

Characteristics n  pCR  Univariate Analysis Multivariate Analysis
OR  95% CI P OR 95%CI P
Age
<50 287 58 1
>50 264 52 097 0.64-1.47 .881
Unknown 2 0
ER
Negative 249 83 1 1
Positive 304 27 0.19 0.12-0.31 1.51e-11 0.28 0.15-0.50 3.79e-05
Unknown 0 0
HER2
Negative 463 81 1 1
Positive 85 29 2.00 1.25-3.26 4.33e-3 2.18 1.19-4.00 .01147
Unknown 1 0
T
T0-2 316 66 1
T3-4 234 44 0.88 0.57-1.34 .546
Unknown 3 0
cN
Negative 159 21 1
Positive 345 66 1.56 0.93-2.71 101
Unknown 49 23
Grade
1-2 225 18 1 1
3 271 80 4.84 2.86-8.60 1.67¢-08 1.58 0.82-3.11 .17662
Unknown 57 12
IncRNA score
Low score 317 25 1 1
High score 236 85 6.57 4.10-10.89 3.6e-14 4.17 2.18-8.36 2.97e-05
Intrinsic Subtype
Luminal A 122 5 1 1
Others 431 105 7.54 3.31-21.73 1.74e-05 0.99 0.28-3.96  .98660
Oncotype DX
Low & medium score 81 3 1 1
High score 472 107  7.62 2.77-31.51 6.87¢-04 1.07 0.27-5.42 .92960
Gene70
Low score 101 5 1 1
High score 452 105 5.81 2.54-16.80 1.93e-04 0.86 0.27-3.04 .80190
GGI
Low score 226 21 1 1
High score 327 89 3.65 2.23-6.22 6.74e-07 1.35 0.65-2.89 .43185

In detail, for luminal B subtype, LRS-high patients achieved a higher
pCR rate compared with LRS-low patients [32.9% vs 8.3%; odds ratio
(OR) = 5.4; 95% confidence interval (CI) = 2.7-10.8; P = 1.47e-06].
That is quite similar for HER2-enriched and basal-like subtypes, with
35.1% versus 18%; OR =2.5; 95% CI = 1.1-5.7; P =.029 and
40.6% versus 11.1%; OR = 5.5; 95% CI = 2.3-16.2; P = 5.32¢-04,

respectively.

Comparison of LRS Predictive Power with Other Preexisting
Signatures

We then compared the predictive capability of LRS with other
preexiting signatures by ROC curves (Figure 3, B and C). The AUC
value of LRS was approximately 0.8, indicating that it can effectively
distinguish pCR patients from non-pCR patients. Compared with
other preexisting predictive signatures, our LRS performed better
with higher AUC values in both discovery and validation datasets
when used to predict pCR response of patients undergoing NAC.

Combination of LRS with Other Different pCR Predictors

In order to inspect the clinical significance of LRS, we then
integrated LRS with age, ER status, HER2 status, tumor size, lymph
node metastasis status, tumor grade, Gene21 index, Gene70 index,
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LRS -Low LRS - High
Intrinsic subtype  non-pCR pCR  non-pCR pCR
Luminal A 245 (97 2%) 7(28%) 7 (100%) 0(0%)
Luminal B 209(91.7%) 19(8.3%) 47(67.1%) 23(32.9%)
HER2-enriched 50 (82%) 11(18%)  48(649%) 26(351%)
Basal-like 40(889%) 5(11.1%) 158(59.4%) 108 (40.6%)
B Discover dataset
= J IJ_H" =7
A

Incna 6spon Scors(AUC-0.79)
Ormutrpe DX (AUC=0.74)
f S

GGIAUC=0T4)

08

RNA Signature That Predicts Remission Rate  Wang et al. 993
OR 95%CI P value
8226620007 0-1612755e+41 0993
54 27108 147e-06 —a—
25 1157 0029 ——
55 23162 53204 _—
o w o w w an
C Validation dataset
E : H '_d
.f}‘ﬁ
g S Y
% /_;f Incma respond score(ALIG=0.76)
F i J O X AUC=0 71
I3
7 ——  GenerU(AUC=U.1Z)
s1 4
J’ GGI (AUC=0 69)
|
o

02 04 08

False positive rate

Figure 3. The evaluation of the predictive power of LRS in the subgroup analysis and comparison of ROCs with other different prediction
models. As determined by Pamb0, luminal A, luminal B, HER2-enriched, and basal-like subtypes of breast cancer were subjected to
subgroup analysis to evaluate the predictive power of LRS in all NAC patients (A). Then, ROCs of the LRS, Oncotype DX, Gene70, and GGl
were compared in (B) the discovery and (C) validation datasets. The AUC was also calculated for each curve.

and GGI which divided patients into four groups respectively. Breast
cancer patients with high LRS score and younger age (<50 years old),
negative ER status, positive HER2 status, smaller tumor size (<5 cm),
positive lymph node, tumor of grade 3, Gene21 index high, Gene70
index high, and GGI high were significantly more likely to achieve pCR
after NAC (Figure 4), which implied that LRS could be potendally
utilized to improve pCR prediction in combination with clinicopatho-
logical biomarkers and preexisting predictive models in clinical practice.

Identification of Biological Processes Related to the IncRNA
Signature

We conducted Gene Ontology (GO) enrichment analysis to
determine the biological processes associating with LRS [38]. To this
end, we firstly employed Pearson correlation to identify the most
correlated mRNAs with each of our IncRNAs (correlation effecient >
0.4 and ranked top 0.5%). Then, using functional annotation clustering
option from DAVID (https://david.ncifcrf.gov/, version 6.8), we
collected annotation clusters with enrichment score > 3.0 and P value
less than .001 (supplementary file). Finally, Cytoscape was employed to
visualize the significantly enriched clusters based on similar functions
(Figure 5, A), and statistically significant GO processes were also plotted
by P value (Figure 5, B). Surprisingly, cancer-related functional clusters
such as DNA replication, cell cycle, cell-cell adhesion, and microtubule
metabolism were clearly identified, indicating that the LRS signature
might mainly be related to cancer proliferation process.

Discussion
During the past decades, lots of effort have been devoted by clinicians
to develop tools for the prediction of the response to NAC in order

that the candidate patients could undergo the most suitable therapy.
Since the response to NAC is related to patients' clinicopathological
features/characteristics, a pCR prediction nomogram has been built
based on clinical stage, ER status, histologic grade, and number of
preoperative chemotherapy cycles [39]. Moreover, some researchers
also utilize Oncotype DX and Gene70 score (Mamaprint score),
which are the most widely accepted mRNA signatures, for prediction
of response to NAC for luminal subtype breast cancer. Until now, a
number of models have been utilized to predict breast cancer survival
and/or pCR in NAC.

In this study, we identified a 36-IncRNA signature to predict pCR
with high specificity by using IncRNA remapping approach in 488
breast cancer patients treated with NAC. Furthermore, LRS signature
was demonstrated to be an independent factor that highly related to the
pCR of NAC-treated patients by univariate and multivariate analysis in
both discovery and validation sets. It has also been shown that the
combination of LRS with other pCR predictors significantly improves
the prediction of pCR in NAC. This LRS was the first IncRNA
signature built on a large scale of NAC-treated patients. It could be
potentially utilized as a prediction tool with high specificity to assess the
possibilities of pCR for patients who undergo NAC, in addition to
traditional clinicopathological biomarkers and mRNA signatures.

Oncotype DX score and Gene70 score have been originally built to
predict patients' prognosis, while GGI has been developed for better
assessing histologic grade firstly. Although these mRNA signatures
can also predict the pCR rate despite their original goal, they were not
specifically developed for patients treated with NAC. Until now,
there is still no gene signature specifically designed for pCR prediction
to NAC. It is noteworthy that our LRS was the first gene model
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Figure 4. The results of the analysis combining LRS and other different pCR predictors performed for the whole group of patients. In order to inspect the clinical significance of LRS,
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Figure 5. Enrichment analysis of the mRNAs positively correlated with IncRNAs in LRS. mRNAs that positively correlated with IncRNAs
in LRS were analyzed by DAVID functional annotation tool. And results were organized by functional enrichment map in Cytoscape (A).
Each node represents a functional term annotated by the DAVID tool. The size of the node represents the number of genes in the terms.
(B) Then, the significant GO terms in the functional annotation were illustrated with barplot according to their P value.

developed for pCR rate prediction to NAC patients specifically. With
this end of LRS, clinicians could select the most suitable candidates
for NAC to better realize individualized therapy.

Luminal B, HER2-enriched, and basal-like are the three major
subtypes of breast cancers that are more likely to go through NAC. In
these three subgroups, LRS distinguished non-pCR from pCR patients
significantly, although it did not work well for HER2-enriched
subgroup which might be mainly due to its distinct biological behaviors.
More importantly, it should be noted that all patients in our datasets
treated with NAC regiments did not receive trastuzumab. HER2,
which drives breast cancer progression, invasion, and metastasis, was
reported to have an unneglectable influence on NAC in varieties of ways
[40—42]. Without the treatment of trastuzumab, lower pCR rate might
be induced by HER2, which led to the relatively inaccuracy of our
signature in the HER2-enriched subtype. Meanwhile, we also included
luminal A subtype in the subgroup analysis, which usually does not
undergo NAC. LRS was not able to predict NAC responses effectively
in luminal A subtype, which is also a common issue for many other
predictive models with unknown reasons [43].

In both discovery and validation datasets, patients with high LRS
score were more likely to be ER negative and grade 3. Previous studies
suggested that ER-negative breast cancer especially triple-negative
breast cancer is generally more aggressive or grows faster than
ER-positive [44]. On the other hand, grade 3 tumors typically also
have a higher proliferation rate than lower grades [45]. What's more,
gene enrichment analysis demonstrated that these 36 IncRNAs were
mainly associated with tumor proliferation. Therefore, we hypoth-
esize that patients with high LRS score were more sensitive to NAC
because of the high proliferation rate of their tumors. Chemother-
apeutic agents are usually cytotoxic by means of interfering with cell
division [46]. Cancer cells are more susceptible to these agents
because they have a higher proliferation rate than normal cells. In
other words, high cell proliferation rate leads to a high sensitivity of

chemotherapy [47]. Patients with high LRS score were more likely to
be with high proliferation tumors, which caused their being more
sensitive to NAC.

It must be acknowledged that there are some limitations in this
study. First, IncRNAs in our signature came from the reannotation of
probes in microarray platform. LncRNAs that could not be identified
by repurposing microarray data could be omitted and thus might
affect the sensitivity and specificity of the analysis results. Second,
only a handful of IncRNAs identified in this study have been
functionally characterized before. Experimental studies on these
IncRNAs are desperately needed to provide important information to
understand their functional roles. What's more, further validation of
the signature in clinical trials will be a better option to finally turn it
into clinical practice.

In conclusion, our study suggests an important role of the IncRNA
signature in predicting pCR rate of NAC in addition to traditional
clinicopathological markers and mRNA signature, which might
deserve further evaluation. What's more, these findings also imply a
therapeutic strategy through targeting these IncRNAs to improve
patients’ clinical outcomes in the future.

Supplementary data to this article can be found online at hteps://
doi.org/10.1016/j.tranon.2017.09.005.
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