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Perspective

Peripheral nerve injury is a common clinical problem 
because the dysfunction of distal limb seriously affects 
patients’ quality of life, and it results in a huge social and 
economic burden.[1] Repair of peripheral nerve injury is 
a very complex pathological process. Due to slow nerve 
regeneration, Wallerian degeneration of nerve stump, tissue 
adhesion, atrophy of muscles and motor end plates and 
other constraints, functional rehabilitation of the damaged 
nerve is always restricted. The ultimate goal of repairing 
peripheral nerve injuries is to restore the function of the 
distal target organs to their original level in both sensory and 
motor aspect. At present, the foreign as well as the domestic 
researches on peripheral nerve injury mainly focus on the 
methods of nerve repair, promotion of axonal growth, and the 
functional remodeling paralleled with anatomical restoration.

PerIPheral nerve rePaIr

The clinical administration of peripheral nerve injury is 
still the classic epineurium or perineurium neurorrhaphy 
that dates back to more than 100 years ago.[2] However, 
efficient anastomosis of homogeneous nerve fibers in 
bilateral neural stumps cannot be achieved merely through 
these two surgical methods. Because of the discontinuity 
of basement membrane after peripheral nerve injury, the 
regenerated axons cannot correctively implant into the target 
organs without guidance of the endoneurial tube. If the nerve 
dominating the skin originally regenerates to the muscle, or 
the nerve controlling the muscle initially regenerates to the 
skin, it is impossible to restore the nerve function. Although 
we try to promote the growth rate and the amount of axons, 
inefficient accurate docking between nerve and target organ 

leads to poor functional recovery or malfunction. So how 
to attain the precise regeneration between the peripheral 
nerve and target organs has become a difficult problem. 
The selective regeneration theory of peripheral nerve was 
generally considered as a turning point for the problem, 
first proposed by Forssman in 1898, when he found that the 
regenerated axon sprouts were capable of recognizing and 
moving toward their counterparts, as in sensory to sensory 
and motor to motor.[3,4] Jiang et al. make full use of the 
selective regeneration of peripheral nerve, proposing the 
“peripheral nerve repair with biodegradable conduit in small 
gap” based on animal experiments.[5] This innovative method 
ameliorates the traditional epi‑/peri‑neurium neurorrhaphy, 
and the efficacy has been verified in Sprague‑Dawley SD 
rats and rhesus monkeys in succession[6,7] before the recent 
conclusion of its multicenter clinical trial based on the human 
body. Peripheral nerve repair with biodegradable conduit in 
small gap can effectively promote the connection of different 
fibers between the distal stump and proximal stump, help 
restore the function of the distal target organ, and reduce 
the incidence of painful neuroma, the mechanism of which 
may involve the following factors: (1) It allows distal neural 
stump or target tissue to induce selective regeneration of the 
proximal stump; (2) it reduces the overflow of regenerated 
nerve fibers; (3) it helps maintain the local microenvironment 
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and promotes the function of neurotrophic factors; and (4) the 
regenerative chamber provides the possibility and feasibility 
of repairing larger nerves with smaller nerves. The appliance 
of biodegradable conduit in small gap peripheral nerve injury 
repair may be a promising technological substitution in the 
field of peripheral nerve repair. In addition, during lack of 
neural innervation to muscle after neurological damage, 
neuromuscular electrical stimulation plays an important role 
in the clinical application of treating peripheral nerve injury, 
and implantable stimulation will be the future.[8]

ProMote axon growth

The neuronal structure repair following peripheral nerve 
injury is still challenging. After peripheral nerve injury, 
neurons in the spinal cord and dorsal root ganglion can 
produce a series of changes in terms of biochemistry, gene 
expression, metabolism, morphology, resulting in possible 
necrosis or apoptosis, which varies by the type of injury, 
region of injury, age of patients, and type of involved 
neurons.[9] Molecules associated with tumor suppressor 
signaling networks play a key role in shifting the balance 
between growth and nongrowth during axon regeneration. 
In the molecular mechanism of tumor suppressor molecules 
in damaged neurons and their effects on specific stages of 
regeneration events, there may lie prosperous therapeutic 
interventions.[10] Studies have found that the inhibition of 
PTEN or Rb1 can promote the growth of DRG neurons 
after peripheral nerve injury.[11,12] Activation of p53 may 
be necessary to prevent Schwann cells from excessive 
proliferation and to induce their redifferentiation.[10] 
P21 knockout mice showed delayed functional recovery 
after compression injury of the sciatic nerve, associating 
with the excessive phosphorylation of nerve fibers 
that resulted in impaired motor conduction speed and 
delayed axonal outgrowth.[13] With the development of 
regenerative medicine, the nerve tissue engineering has 
developed so rapidly that the abundant biological and 
artificial nerve grafts can sometimes even replace the 
autologous nerve transplantation for large nerve defects. 
In general, nerve tissue engineering is based primarily on 
biomaterial scaffolds made of biodegradable biosynthetic 
materials and natural materials, incorporating a variety of 
biochemical components that can promote nerve growth. 
Natural biological materials mainly include two types: 
autologous nonneural tissue, allogeneic, or decellularized 
xenogeneic neural/nonneural tissues; natural polymers 
derived from extracellular matrix (ECM) (laminin, collagen, 
fibronectin, fibrin, and hyaluronic acid), polysaccharide 
(chitosan, sodium alginate, and agarose), and protein 
(silk fibroin, keratin).[14] In China, chitosan‑based conduit we 
developed has been approved for clinical trials[15] with the 
national invention patent. The artificial synthetic materials 
are mainly aliphatic polybasic esters such as PLGA, PGA, 
PLLA, PCL, and so on. To improve the effect of peripheral 
nerve repair, the supporting cells, ECM, growth factors, and 
small molecule compounds can be administered into the 

nerve conduits. The most commonly used supporting cells 
are Schwann cells, which can provide basement membrane 
tubes to guide peripheral nerve regeneration. Bone marrow 
mesenchymal stem cells (BMSCs), just like Schwann cells, 
are also adopted as support cells within a neural scaffold. 
ECM derived from BMSC, a compound of multiple ECMs, 
presents better enhance effect than single ECM in peripheral 
nerve repair.[16] Small molecules can promote the conversion 
of many stem cells into precursor neural cell by inducing 
cell reprogramming.

functIonal reModelIng

A variety of clinical studies and animal experiments 
shows that the neurons have functional remodeling after 
peripheral nerve repair. Under certain conditions, neurons 
can achieve new function by giving up their original function 
to coordinate.

Tendon transposition
It is hard to restore active extension of wrist, thumb, and digits 
after the radial nerve injury, which seriously affects patients’ 
life quality. Clinically, the restoration of active extension 
of wrist can be obtained by tendon transfer in those who 
cannot still retain wrist active extension with by multiple 
nerve repair measures, when the flexor carpi ulnaris that 
originally controls the flexion of the wrist joint rehabilitates 
the extension function of wrist.[17] In addition, the foot 
cannot achieve active extension after peroneal nerve injury, 
which could obtain function of active extension by tendon 
transposition of the posterior tibial muscle.[18] At early stage 
after tendon transposition, the impulse supposed to flex the 
wrist can reversely extend it. After a period of training, this 
reverse can be corrected, which illustrates central nervous 
system, originally dominated the flexor carpi ulnaris, may 
develop functional remodeling under specific conditions. 
Similarly, after a period of training, the ankle joint with 
injured common peroneal nerve restores active extension 
independently. The above two clinical cases indicate that the 
spinal cord and brain may experience functional remodeling, 
so as to realize the function transformation of two nerves 
which are mutually antagonistic in function.

Nerve transposition
Brachial plexus root avulsion could be clinically intervented 
using the contralateral healthy C7 nerve‑root as autologous 
graft. After operation, the effector dominated by C5‑C8 on 
the injured side changed to the contralateral side of the C7 
nerve. The location, quantity, and function of effector of 
contralateral C7 nerve changed dramatically, but the motor 
and sensory functions of the injured brachial plexus recovered 
in some way.[19] In addition, the proximal peroneal nerve 
was used to repair both the distal peroneal and tibial nerve. 
The researchers found that the amounts of double‑labeled 
motor neurons in peroneal domain of spinal cord decreased 
significantly to a level from 2 to 8 months after operation, 
accompanied with an obvious improvement in functional 
and morphological recovery of both tibialis anterior and 



Chinese Medical Journal ¦ December 20, 2017 ¦ Volume 130 ¦ Issue 242998

gastrocnemius. It shows that functional remodeling occurs in 
the anterior horn of the spinal cord.[20] Now, we are trying to 
study the functional remodeling of the cerebral cortex after 
peripheral nerve repair by two‑photon imaging to achieve a 
complete process of functional remodeling.

Amplifying and compensation of nerve
Our previous study showed asymmetric repair phenomenon, 
that is, the regenerated sprouts of the proximal stump 
projects into the distal one in a manner of one‑to‑many 
relationship, which allows the anastomosis of thin‑to‑thick 
ends. Moreover, mathematical relations have further been 
researched: an increasing ratio of distal stump axon numbers 
to proximal donor nerve axon numbers of 1.0, 1.83, 3.64, and 
7.97 yielded ratios of regenerative myelinated axon numbers 
to proximal donor axon numbers of 0.98, 1.51, 2.39, and 
2.89, respectively, estimating an approximate maximum 
value of 3.3 using the Hill function.[21,22] This phenomenon 
has also proved to exist in larger animal experiments,[7] 
where proximal regenerative axons can grow into distal 
endoneurial tubes by sprouting, indicating the reserved 
function of amplification and compensation.

In conclusions, although a lot of studies have been done on 
the peripheral nerve repair, the underlying mechanisms of 
functional remodeling after that will be the future focus.
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