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Low doses of bioherbicide favour 
prion aggregation and propagation 
in vivo
Pierre-André Lafon1, Thibaut Imberdis   1,5, Yunyun Wang1,2, Joan Torrent1, Mike Robitzer3, 
Elisabeth Huetter1, Maria-Teresa Alvarez-Martinez4, Nathalie Chevallier1, Laurent Givalois1, 
Catherine Desrumaux1, Jianfeng Liu2 & Véronique Perrier   1

Public concerns over the use of synthetic pesticides are growing since many studies have shown their 
impact on human health. A new environmental movement in occidental countries promoting an organic 
agriculture favours the rebirth of botanical pesticides. These products confer an effective alternative 
to chemical pesticides such as glyphosate. Among the biopesticides, the α-terthienyls found in the 
roots of Tagetes species, are powerful broad-spectrum pesticides. We found that an α-terthienyl 
analogue with herbicidal properties, called A6, triggers resistant SDS oligomers of the pathogenic prion 
protein PrPSc (rSDS-PrPSc) in cells. Our main question is to determine if we can induce those rSDS-PrPSc 
oligomers in vitro and in vivo, and their impact on prion aggregation and propagation. Using wild-type 
mice challenged with prions, we showed that A6 accelerates or slows down prion disease depending on 
the concentration used. At 5 mg/kg, A6 is worsening the pathology with a faster accumulation of PrPSc, 
reminiscent to soluble toxic rSDS-PrPSc oligomers. In contrast, at 10 and 20 mg/kg of A6, prion disease 
occurred later, with less PrPSc deposits and with rSDS-PrPSc oligomers in the brain reminiscent to non-
toxic aggregates. Our results are bringing new openings regarding the impact of biopesticides in prion 
and prion-like diseases.

With the increase of life expectancy in the developed countries, the prevalence of age-related disorders continues 
to rise. The neurodegenerative disease epidemic raises major concerns, among them, the absence of efficient 
treatments to cure these disorders and the prohibited costs for societies. Thus, reinforcing the prevention and a 
better identification of the exogenous environmental risk factors involved in these pathologies could also be a way 
to slow down the epidemic and limit the economic burden for occidental countries1.

Retrospectively, the 20th century was marked by the tremendous development of heavy and fine petrochem-
ical industries that led to an annual production of 500 million tons of chemical derivatives, among them 140 
million tons of fertilizers and about 5 million tons of pesticides2,3. Fertilizers and pesticides were extensively used 
to develop industrial farming and agro-industry leading to their release into all environmental media (water, 
soil, air). In consequence, numerous pesticide residues were introduced into the food chain raising many con-
cerns regarding their impact on human health1,3,4. The role of pesticides in the occurrence of neurodegenerative 
diseases is pointed-out since residues of pesticides were detected in human tissues and biological fluids, even 
decades after their use was prohibited, such as the organochlorine pesticide, dichlorodiphenyltrichloroethane 
(DDT)1. Recently, it was demonstrated that dichlorodiphenyldichloroethylene (DDE) levels, a metabolite of the 
DDT banned in 1972, were almost 4 fold-higher in the serum of Alzheimer’s disease (AD) patients with ApoE ε4 
allele, than in control subjects5. Another category of pesticides, paraquat and rotenone, were suppressed from 
the European market in 2007 and 20086,7, respectively. These compounds were incriminated since several epide-
miological studies in humans showed an increased incidence of Parkinson’s disease (PD) in agricultural workers 

1MMDN, University Montpellier, EPHE, INSERM, U1198- EiAlz team, PSL Research University, Montpellier, F-34095, 
France. 2Cellular Signaling Laboratory, College of Life Science and Technology, Huazhong University of Science and 
Technology, Wuhan, Hubei, China. 3Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, Matériaux 
Avancés pour la Catalyse et la Santé, Montpellier, France. 4Etablissement Confiné d’Expérimentation A3/L3, 
CECEMA, US009 Biocampus, UMS 3426, Université Montpellier, Montpellier, F-34095, France. 5Present address: 
Ann Romney Center for Neurologic Diseases, Brigham and Women’s hospital, Harvard Medical School, Boston, MA, 
USA. Pierre-André Lafon and Thibaut Imberdis contributed equally to this work. Correspondence and requests for 
materials should be addressed to V.P. (email: veronique.perrier@umontpellier.fr)

Received: 8 February 2018

Accepted: 1 May 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-0818-2617
http://orcid.org/0000-0002-6570-7504
mailto:veronique.perrier@umontpellier.fr


www.nature.com/scientificreports/

2Scientific REPOrTs |  (2018) 8:8023  | DOI:10.1038/s41598-018-25966-9

who were exposed to high doses of these pesticides, as well as population living in contaminated rural environ-
ment8,9. Experimental studies aiming to mimic this contamination showed that the administration of rotenone 
is able to trigger a Parkinsonian’s syndrome in rodent animal models10. Regarding prion diseases such as Bovine 
Spongiform Encephalopathy (BSE), the role of phosmet, an anti-parasitis used to decontaminate cows before 
their slaughtering, was suspected to have a role in the mad-cow disease epidemic11. Experiments in cell culture 
showed that the normal prion protein, PrPC, was more expressed at the cell surface in the presence of phosmet. 
Thus, it was suggested that PrPC was more prone to interact with the prion misfolded isoform PrPSc and initiate 
the transconformation process12.

It has been shown that neurological disorders as diverse as AD, PD and Creutzfeldt-Jacob disease (CJD) share 
a common pathogenic mechanism involving the aggregation and deposition of misfolded proteins in the central 
nervous system. Although the type of aggregated proteins is disease-specific (Aβ peptides, α-synuclein or PrPSc), 
they all share a “prion-like” mechanism of cell-to-cell propagation13. These aggregation pathways involve toxic 
oligomeric species leading to fibril formation and amyloid deposition14. Our hypothesis is that pesticides could 
modify the balance between the different species (native proteins, misfolded proteins, oligomers and fibrils) by 
shifting the equilibrium towards misfolded proteins, oligomers and/or aggregates. We previously showed, in a 
drug screening assay on prion-infected cells, that a compound, called A6 is a strong inducer of SDS-resistant 
oligomers of the pathogenic form of the prion protein PrPSc (rSDS-PrPSc)15,16. Moreover, this compound was 
previously described for its herbicidal activity17 and is structurally related to the family of α-terthienyls (α-Ter), 
natural molecules synthesized by plants such as marigolds and Asteraceae18. These plants were traditionally used 
by gardeners as ≪home made≫ preparations for pest control18–20. α-Ter and plant-derived insecticides are now 
the matter of a new expanding market because of the environmental movement in favour of organic agriculture 
that allows some botanical pest control. In addition, in January 2015, the French National Assembly voted a law 
(0’Phyto)21 that prohibits the use of chemical pesticides in public and private gardens starting 2017. So we can 
expect a raise in the use of biopesticides whose effects on human health are largely unknown.

Since α-Ter biopesticide analogue A6 can trigger rSDS-PrPSc oligomers, our main question was to determine 
if we could induce in vivo those rSDS-PrPSc oligomers and what could be their impact on prion aggregation 
and propagation. Can this compound worsen or not the pathology? Indeed, many oligomeric species have been 
described in the literature: soluble oligomers were described as the most neurotoxic species in neurodegenerative 
diseases (AD, PD, prions)22,23, whereas some oligomeric species, described as amorphous aggregates, are not able 
to replicate and propagate prion diseases24–26. Using wild-type mice challenged with prions, we showed that A6 
can accelerate or slow-down prion disease depending on the concentration used. At 5 mg/kg, the prion pathology 
occurred earlier in mice and is associated with a faster accumulation of PrPSc deposits in brain tissue sections 
compared to control group. By contrast, at 10 and 20 mg/kg, prion disease occurred later in treated mice and 
is associated with a slower accumulation of PrPSc deposits in brain tissue sections compared to control groups. 
In vitro experiments performed on prion-infected brain homogenates to understand the mechanism of action 
showed that above a threshold of 1 mM, A6 induces a strong precipitation of PrPSc, with appearance of insoluble 
rSDS-PrPSc oligomers in the pellets. However, at 0.25 mM of A6, rSDS-PrPSc oligomers were detected in the 
supernatant suggesting that at lower concentrations, A6 rather promotes soluble toxic species. Our results showed 
that the α-Ter biopesticide analogue A6 has opposite effects in a wild-type murine model of prion diseases. In 
vitro and in vivo exposures to low doses of A6 are likely more prone to induce soluble toxic species leading to 
shorter survival life in the exposed animals. These results are bringing new openings regarding the potential 
impact of biopesticides in prion and prion-like diseases.

Results
The biopesticide analogue A6 interacts with PrP fibrils.  Previously, we identified from a cellular drug 
screening on prion-infected cells a family of thienyl pyrimidine compounds allowing us to detect proteinase K 
(PK) rSDS-PrPSc oligomers by immunoblotting15. Because A6 is an analogue of the compound α-Ter, and was 
also described for its herbicidal properties, our aim was to determine if α-Ter also exhibit an oligomer-induc-
ing activity on prion-infected cells. In a fast comparison assay, we have incubated prion-infected cellular lysates 
with various compounds for 1 hour. Then after PK digestion, samples were analysed on immunoblot. The results 
showed that P30, one of the lead compounds identified is able to induce a strong signal of PK rSDS-PrPSc oli-
gomers, as well as A6 and MR100, although in a lesser extend due to their ability to precipitate prions in the tubes. 
However, α-Ter is not able to induce PK rSDS-PrPSc oligomers from cellular lysates, nor has the ability to precipi-
tate prions (Fig. 1a). Thus we decided to focus our study only on A6 compound and further explore the impact of 
rSDS-PrPSc oligomers on prion propagation.

In vitro interaction studies such as Surface Plasmon Resonance Studies (SPR or Biacore) to calculate binding 
affinities between A6 and PrP, were difficult to perform due to A6 insolubility in aqueous buffer15,26. However, 
since α-Ter, the plant molecule from which A6 is derived was originally isolated on its blue-fluorescent proper-
ties27, we thus examined if A6 compound could exhibit the same property. The aim was to perform interaction 
studies based on A6 intrinsic fluorescence. A broad peak of absorption from 320 nm to 500 nm was found upon 
spectral analyses as previously described28. After excitation at 372 nm, we observed a fluorescent signal with 
a maximal emission at 460 nm, which is nearly identical to the one of α-Ter (λex = 361 nm and λem = 428 nm) 
(Fig. 1b,c). Taking advantage of these physical properties, we performed interaction studies by following the 
fluorescence of A6 in presence or in absence of recombinant mouse PrP23–230 proteins, either soluble, folded 
in α-helices (α-MoPrP) or MoPrP fibrils (Fig. 1b). We observed a minor modification of fluorescence intensity 
after 2 hours of incubation of A6 with α-MoPrP, compared to the spectrum of A6 alone. By contrast, in presence 
of PrP fibrils, the maximal fluorescence signal at 460 nm is doubled compared to the control A6 alone. The fluo-
rescence of A6 is strongly enhanced in the presence of PrP fibrils illustrating the binding of A6 with PrP fibrils but 
not with α-MoPrP (Fig. 1b). These results are consistent with our previous studies showing the specificity of P30 
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compound, one of the thienyl pyrimidine family members, towards PrPSc and not PrPC 15,16. We also performed 
fluorescence binding experiments using another model of fibrils, Hamster S- or R-fibrils produced by different 
agitation modes (shaking or rotated), and displaying distinctive morphologies (R-fibrils are curved, S-fibrils are 
straight) linked to different folding patterns of cross-β-structures (Fig. 1c)29,30. Our aim was to see whether A6 
could preferentially bind to hamster S- or R- fibrils. Using the fluorescent property of A6 as a tracer, we showed 
that the compound interacts with both types of fibrils although the intensity of the fluorescence is higher for 
R-fibrils (about 5 fold) than S-fibrils (about 2 fold) by comparison to the A6 spectrum alone (Fig. 1c).

Treatment of prion-inoculated mice with 5 mg/kg of A6 decreased their survival time with a 
faster accumulation of PrPSc in their brains.  Because A6 interacts with recombinant PrP fibrils and 
has the ability to form PK rSDS-PrPSc oligomers in prion-infected cells, our objective was to determine if we 
could form those oligomers in vivo and if they could have an impact on prion propagation and animals’ survival. 
Groups of animals were inoculated with 22L prion strain into the striatum through stereotaxic surgery to have 
precision in the injection site and in the volume injected. Indeed, it has been showed that the median survival 
time of mice challenged with prions varies with the brain inoculation site31. Mice were then treated with 5 mg/
kg of A6 or with an equivalent volume of the solvent alone (50 μL of pure DMSO) by intra-peritoneal (i.p.) route 
(Fig. 2a). The treatment started one week after mice infection, twice a week for 5 weeks. All the prion-infected 
animals developed the disease and were sacrificed at the terminal stage, while PBS-inoculated mice remained 
healthy during the whole experiment, whatever the treatment was, DMSO or A6 (Fig. 2a). As shown in Fig. 2b, 
the median survival time ± IQR (interquartile range) of prion-infected mice treated with 5 mg/kg of A6 is 
significantly shorter than the control group having received 50 μL of pure DMSO, 167 ± 19 and 182 ± 5 days 
post-injection (dpi), respectively (Fig. 2a,b). Statistical significant difference between curves was performed 
using Log-rank (Mantel-Cox) test based on median survival time (p-value = 0.0067 **, n = 18), represented in a 
box-and-whiskers graph expressed as median values with 10 and 90 percentile interval (Supplementary Fig. S1a). 
When the first mouse in the A6-treated group needed to be euthanized (147 dpi), we also sacrificed animals in 

Figure 1.  A6 promotes PK rSDS-PrPSc oligomers and interacts with PrP fibrils. (a) Comparison of several 
compounds for their ability to induce PK rSDS-PrPSc oligomers. Prion-infected N2a58/22L cellular lysates 
were incubated with 0.5 mM of P30, A6, MR100, α-Ter and A51 for 1 h. Samples were then PK digested at 37 °C 
for 1 h. Immunoblot was probed with SAF mix antibodies (mixture of three monoclonal anti-PrP antibodies: 
SAF60, SAF69 and SAF70) for prion detection. Molecular weight markers are indicated on the left side of the 
immunoblot. The cropped blot is used in this figure and the full-length blot is presented in Supplementary 
Figure S6. Chemical structures of A6 and α-Ter, 2 compounds described for their herbicidal properties. (b) 
Fluorescence interaction studies between A6 compound and PrP. Purified full-length recombinant mouse PrP 
(MoPrP23-230) protein, at 4.4 μM, either soluble or fibrillar, were incubated with 50 μM of A6 compound in 
1% DMSO, 50 mM MES pH 6, during 2 h at 25 °C. Emission spectra were recorded between 400 and 550 nm 
by exciting at λex = 372 nm: 50 μM of A6 (black), 50 μM of A6 + α-soluble MoPrP23-230 (red) and 50 μM 
of A6 + fibrils of MoPrP23-230 (green). (c) Interaction studies of A6 compound with hamster PrP fibrils. 
Hamster-S or -R fibrils at a concentration of 4.4 μM were incubated with 40 μM of A6 compound in 1% DMSO, 
50 mM MES pH 6, during 2 h at room temperature. Fluorescence spectra were recorded between 400 and 
600 nm: 40 μM of A6 (black), 40 μM of A6 + S-fibrils (green) and 40 μM of A6 + R-fibrils (red).
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the control groups: a DMSO-treated mouse and a PBS-inoculated mouse treated with 5 mg/kg of A6, nearly at 
the same time (149 dpi), even though they were without symptoms, in order to compare prion levels in their 
brains (Fig. 2c,1–3). Histological analyses using the PET-blot technique allow us to evaluate PrPSc deposits in 
brain tissue sections. It is rather a qualitative than quantitative method, allowing us to see the aggregation state in 
the brain between different groups at a given point. Our results showed that prion-inoculated mice treated with 
A6 has accumulated a substantial amount of PrPSc in the brain compared to the asymptomatic DMSO treated 
mouse, suggesting that the treatment with A6 induces a faster accumulation of PrPSc than in the control group. 
This result is consistent with the shorter median survival time observed for prion-infected mice treated with A6, 
suggesting that mice died earlier because they have accumulated PrPSc more quickly in their brains. As expected, 
the non-inoculated mice treated with A6 compound did not exhibit PrPSc deposits in their brains. Comparison of 
mice at the terminal stage of the disease (162–163 dpi) (Fig. 2c,4–5) showed that PrPSc deposits are equivalent in 
the brain tissue sections of the mice treated with A6 compared to DMSO-treated mice. To confirm that animals 
died of prion disease, histopathological analyses were done to check for spongiosis, by a Hematoxylin/Eosin (HE) 
staining (Supplementary Fig. S2a–d) and for astrogliosis, by GFAP immunolabelling (Supplementary Fig. S2e–h) 
on brain tissue sections of animals treated with DMSO or with A6 at 5 mg/kg. These two parameters are rather 
qualitative markers and informative of the pathological prion status of the animals.

Treatment of prion-inoculated mice with 10 and 20 mg/kg of A6 increased the survival time of 
animals with a slower accumulation of PrPSc in their brains.  Because the treatment of prion-infected 
mice with 5 mg/kg of A6 led to shorter survival time and faster accumulation of PrPSc deposits in mice, our aim 
was to evaluate the effect of higher concentrations of A6, as 10 and 20 mg/kg, to see if the treatment can worsen 
or not the pathology. As expected, all the mice inoculated with 22L prion strain developed the disease, whereas 
PBS-inoculated animals did not, either they were treated with pure DMSO (100 μL) or A6 at 20 mg/kg (Fig. 3a). 
Surprisingly, mice treated with 10 and 20 mg/kg of A6 presented an increase of their survival time compared 
to the DMSO-treated group (Fig. 3b). The median survival time ± IQR of prion-infected mice treated with 10 
and 20 mg/kg of A6 are 178 ± 8 and 180 ± 5 dpi, respectively, which are significantly higher than the 166 ± 13 
dpi of the DMSO-treated group (Fig. 3a,b). Statistical significant difference between curves was calculated 
using Log-rank (Mantel-Cox) test based on median survival time for A6 groups versus DMSO (p-values < 0.05 

Figure 2.  Mice treated with 5 mg/kg of A6 compound exhibit a decreased lifespan and an increased PrPSc 
burden. (a) Table summarizing the different groups of animals: prion inoculations, treatment performed, 
number of sick animals out of total number of animals (*means that in this group, one mouse was sacrificed 
while asymptomatic) and median survival time ± IQR (interquartile range). (b) Kaplan-Meier survival curves 
of mice intra-cerebrally (i.c.) inoculated with 5 μL of 22L prions, and treated with 50 μL of DMSO (n = 9, 
blue) or with 5 mg/kg of A6 (n = 9, red) by intraperitoneal (i.p.) route, (+22L + DM versus +22L + A6–5: 
non–parametric Mantel-Cox log-rank test, ** p-value = 0,0067). Healthy control mice, inoculated with 5 μL 
of PBS, were treated with 5 mg/kg of A6 (n = 5, black dashed, −22L + A6–5) or non-treated (n = 5, brown, 
−22L + DM). (c) Left panel: PET-blots analysis of coronal sections of control healthy mice non-inoculated with 
prions and treated with 5 mg/kg of A6 (−22L + A6–5) (1); mice inoculated with 22L prions and either treated 
with DMSO (+22L + DM) (2) or treated with A6 (+22L + A6–5) (3). Mice were all sacrificed at the same time 
(149, 149 and 147 dpi respectively) either in an asymptomatic or sick stage. Right panel: PET-blots analysis of 
coronal sections of sick mice: +22L + DM (4) and +22L + A6–5 (5) sacrificed at the same time (162 and 163 
dpi, respectively). Sections were labelled with SAF84 antibody to detect PrPSc and revealed with Vectastain 
ABC-AmP kit.
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*n = 32) represented in a Box-and-whiskers graph expressed as median values with 10 and 90 percentile interval 
(Supplementary Fig. S1b). Thus, by increasing the concentration of A6 from 5 to 10 and 20 mg/kg, the effect 
observed on animal lifespan is opposite. As we previously did, when the first mouse in the DMSO-treated group 
needed to be euthanized (162 dpi), we also sacrificed animals at the same time in the A6-treated groups present-
ing no symptoms, as well as a healthy mouse non-inoculated with prions and treated with A6 at 20 mg/kg. In 
this way, we can evaluate prion levels in their brains at the same time and the impact of the A6 treatment at 10 
and 20 mg/kg on prion propagation and aggregation. Histological analyses using PET-blot technique allow us 
to detect PrPSc deposits in animal brain tissues (Fig. 3c). Remarkably, we can see that the levels of PrPSc deposits 
are inversely proportional to the concentration of A6: the more A6 is concentrated, the less we observed PrPSc 
deposits in their brains (Fig. 3c,1–4). Our results suggest that the treatment with A6 slows down the rate of 
accumulation of PrPSc compared to the control group treated with DMSO. These results are consistent with the 
median survival times observed for prion-infected mice treated with A6 at 10 and 20 mg/kg, suggesting that mice 
die later, likely because they have accumulated PrPSc more slowly in their brains. Comparison of mice at the ter-
minal stage of the disease (185 dpi) showed that PrPSc deposits are equivalent in brain tissue sections between the 
prion-inoculated groups (Fig. 3c,5–6). Histopathological analyses were also performed to confirm the presence 
of spongiosis (Supplementary Fig. S3a,1–6) and astrogliosis (Supplementary Fig. S3b,1–6) in brain tissue sections 
of animals. Results confirmed that all sick mice died of prion disease.

Mice treated with 5 mg/kg of A6 did not revealed PK SDS-resistant PrPSc oligomers in their 
brains.  We then analysed brain homogenates of animals treated with A6 at 5 mg/kg to see if they contain some 
PK rSDS-PrPSc oligomers, as observed previously when prion-infected cells were treated with A6. Brain tissue 
samples, with normalized protein amounts, were PK-digested during 1 h at 37 °C and reactions were stopped by 
addition of a protease inhibitor cocktail. Samples were analysed by immunoblotting, using the SAFmix anti-PrP 
antibodies, as we showed that this mix specifically recognized the rSDS-PrPSc oligomers15,26. Brain homogenates 
of animals treated with A6 at 5 mg/kg did not revealed the presence of PK rSDS-PrPSc oligomers (Fig. 4a), and 
there is no difference in signal intensity between A6-treated animals and control samples either from non-treated 
(CTR), or DMSO-treated animals. Thus, A6 compound at a concentration of 5 mg/kg is not able to induce detect-
able PK rSDS-PrPSc oligomers in vivo suggesting that the shorter survival time observed in this group is not 

Figure 3.  Mice treated with 10 and 20 mg/kg of A6 showed an increased survival time with a slower 
accumulation of PrPSc in their brains. (a) Table summarizing the different groups of animals (*means that 
in this group, 2–3 mice were sacrificed while asymptomatic). (b) Kaplan-Meier survival curves of mice i.c. 
inoculated with 5 μL of 22L prions, and treated i.p. either with 100 μL of DMSO (n = 12, blue), or with 10 mg/kg 
(n = 12, red) or 20 mg/kg of A6 (n = 13, orange) (+22L + DM versus +22L + A6–10: non–parametric Mantel-
Cox log-rank test, *p-value = 0,012 and Wilcoxon test, **p-value = 0,0092. + 22L + DM versus +22L + A6–20: 
non-parametric Mantel-Cox log-rank test, *p-value = 0,016 and Wilcoxon test, **p-value = 0,0092). (c) Left 
panel: PET blot analysis of coronal tissue sections of healthy mice non-inoculated with prions and treated with 
20 mg/kg of A6 (−22L + A6–20) (1); mice inoculated with prions and treated with equivalent volume of DMSO 
(+22L + DM) (2); mice inoculated with prions and treated either with 10 mg/kg of A6 (+22L + A6–10) (3), or 
20 mg/kg of A6 (+22L + A6–20) (4). All mice were sacrificed at the same time either in an asymptomatic or sick 
status for comparison of amyloid load (164, 162, 163 and 162 dpi, respectively). Right panel: PET-blots analysis 
of sick mice: +22L + A6–10 (5) and +22L + A6–20 (6). Sections were labelled with SAF84 antibody to detect 
PrPSc and revealed with Vectastain ABC-AmP kit.
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linked to these oligomeric species. No difference in the monomeric bands of PrPSc (20–37 kDa) is seen as all the 
brain homogenates analysed are at the terminal stage of the disease, which is consistent with the PET-blots at the 
terminal stage of the disease (Fig. 2c,3–5).

PK-resistant PrPSc oligomers are clearly detectable in the brain of mice treated with 20 mg/kg 
of A6.  Brain homogenates of animals treated with A6 at 10 and 20 mg/kg were also analysed for the presence 
of PK rSDS-PrPSc oligomers (Fig. 4b). For each sample, protein levels were measured and normalized in order 
to have equivalent protein amounts. Immunoblots were performed on samples, after PK digestion as described 
above. Immunoblots showed that brains from animals treated with higher concentrations of A6 present detect-
able levels of PK rSDS-PrPSc oligomers. Interestingly, the levels of PK rSDS-PrPSc oligomers are proportional to 
the concentration of A6: much more oligomers are present in the animals treated with 20 mg/kg of A6 compared 
to those treated with 10 mg/kg. Regarding the control groups treated with DMSO, traces of PK rSDS-PrPSc oli-
gomers were observed corresponding to background levels (Fig. 4b). The loading charge control was done using 
an anti-β-actin antibody and confirmed that all samples were equivalently loaded on the gel (Fig. 4b). Animals 
non-inoculated with prions that were either treated with DMSO, or with 20 mg/kg of A6, did not present any 
PrPSc as expected. No difference in the monomeric bands of PrPSc (20–37 kDa) is seen as all the brain homogen-
ates analysed are at the terminal stage of the disease, excepted for the asymptomatic mouse treated with 10 mg/

Figure 4.  PK rSDS-PrPSc oligomers are not detected in the brain of mice treated with 5 mg/kg of A6 but are 
present in mice brains treated with 10 and 20 mg/kg of A6. (a) Brain homogenates from sick (S) mice inoculated 
with 22L prion strain (+) and either non-treated (CTR) or treated with DMSO (50 μL), or with 5 mg/kg of A6 
compound, were PK-digested (PK+) at 37 °C for 1 h. Reaction was stopped by a cocktail of proteases inhibitor. 
Samples were analysed by immunoblotting using SAF mix antibodies able to detect PK rSDS-PrPSc oligomers. 
Numbers indicate the incubation time of animals (days post-inoculation, dpi) starting after prion infection. 
Protein loading controls were performed using an anti-β-actin antibody on each sample, taken before PK 
digestion. Molecular weight markers are indicated on the right side of immunoblots. (b) Brain homogenates 
from mice inoculated (+) or not (−) with the 22L prion strain, were either non-treated (CTR), or treated 
with DMSO (100 μL) or with 10 or 20 mg/kg of A6 compound, and were analysed by immunoblotting after 
PK digestion (PK+). General mice status at the time of the sacrifice is indicated by capital letters (S: sick, H: 
healthy and A: asymptomatic). Numbers indicate the incubation time of animals (days post-inoculation, dpi) 
starting after prion infection. Immunoblots were probed with SAF mix antibodies for prion detection or with 
anti-β-actin antibody, as protein loading controls. Molecular weight markers are indicated on the right side of 
immunoblots.
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kg that presented less monomeric PrPSc as expected (Supplementary Fig. S4). In order to confirm the presence 
of PK rSDS-PrPSc oligomers in A6-treated mice at 20 mg/kg, we analysed brain homogenates of five different 
animals sacrificed at the terminal stage of the disease (Fig. 5). The immunoblot showed that all animals analysed 
exhibit these PK rSDS-PrPSc oligomers illustrating the fact that treatment with higher doses of A6 can induce PK 
rSDS-PrPSc oligomers in vivo.

Above a threshold of 1 mM, A6 induces a strong precipitation of PrPSc with appearance of 
rSDS-PrPSc oligomers in all fractions.  The in vivo effects observed are visibly dependent on the concen-
tration of A6 used. A6 compound is structurally related to another one, named MR100 that possesses a strong 
capacity to precipitate and aggregate prions in vitro with formation of rSDS-PrPSc oligomers on western blot. 
These properties have led to a diagnosis assay, called RCA (Rapid centrifugation assay) avoiding PK digestion 
step26. Due to the structural analogy between MR100 and A6 (Fig. 6a), and because A6 is able, as MR100, to 
induce rSDS-PrPSc oligomers on western blot, we believed that A6 could have the capacity to precipitate and 
aggregate prions in vitro. Thus, we have tested on a prion-infected brain homogenate, a range of concentrations of 
A6 (from 0.25 mM to 1.5 mM) using the same RCA protocol we previously developed with MR100, and by replac-
ing MR100 compound by A626 (Fig. 6). After 1 hour of incubation of the brain homogenate with the molecule, 
samples were centrifuged briefly at 8 000 g for 5 min, and pellets (P) and supernatants (S) were analysed on west-
ern blot. We used MR100 as a positive control of the aggregation, and the orange precipitate is clearly visible in the 
tube after centrifugation (Fig. 6b). A yellow precipitate is also clearly distinguished in A6 treated samples, which 
size is proportional to the concentration used (Fig. 6b), suggesting that A6 has the capacity to aggregate prions 
such as MR100. Western blot showed that consecutive to MR100 incubation, prions are mainly concentrated in 
the pellet fraction, with formation of rSDS-PrPSc oligomers (Fig. 6c). DMSO, used with an equivalent volume of 
the highest concentration of A6 (150 μL), was used as a negative control. Results showed that the solvent is not 
able to precipitate prions in the pellet and to form rSDS-PrPSc oligomers. Western blot analysis showed that at 
low concentrations (0.25 to 0.5 mM), prions mostly remained in the supernatant as soluble species with the pres-
ence of soluble rSDS-PrPSc dimers (Fig. 6c, left white square). At 1 mM of A6, an aggregation threshold occurred 
and immunoblot revealed the presence of rSDS-PrPSc oligomers in both supernatant and pellet (Fig. 6c). For 
concentrations above 1 mM, rSDS-PrPSc oligomers are more abundant in the pellet (Fig. 6c, right white square). 
Thus, A6 exhibit aggregation capacity towards prions, which is concentration-dependent. In order to estimate the 
proportion of rSDS-PrPSc oligomers within and between doses, we performed densitometry analyses on several 
independent RCA gels. Then, the ratio of rSDS-PrPSc oligomers in the pellet versus oligomers in the supernatant 
was calculated for each concentration and presented as a histogram (Fig. 6d). Results showed that the proportion 
of oligomers in the pellet versus oligomers in the supernatant is about 10 times higher at high doses (ratio of 1.7) 
compared to low doses (ratio of 0.16) (one-way ANOVA, **p-value = 0.0086).

This aggregation property of A6 compound likely reflects the difference observed in vivo regarding the incu-
bation time and the rate of accumulation of prions in the brain of animals. Interestingly, RCA aggregation exper-
iment with normal brain homogenate as a control was performed to see if A6 could also precipitate the normal 

Figure 5.  PK rSDS-PrPSc oligomers are present in all the brains of mice treated with 20 mg/kg of A6. Brain 
homogenates of mice non treated (CTR); treated with DMSO (100 μL) or treated with 20 mg/kg of A6 
compound, challenged (+) or not (−) with the 22L prion strain, were PK-digested. Samples were analysed 
by western blot using SAF mix antibodies showing PK resistant oligomers of PrPSc. Capital letters below each 
lane correspond to the general mice status at the time of sacrifice (S: sick; H: healthy). Numbers indicate the 
incubation time of animals (days post-inoculation, dpi) starting after prion infection. An anti-β-actin antibody 
was used as protein-loading controls, before PK digestion of samples. Molecular weight markers are indicated 
on the right side of each panel. The cropped blot is used in this figure and the full-length blot is presented in 
Supplementary Fig. S7.
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PrPC (Supplementary Fig. S4), as previously described for MR100 compound26. Pictures of the tubes showed that 
A6 pellets are visible but much smaller compared to the assay with infected brain homogenates (Fig. 6b), and the 
size of the pellets is not concentration-dependent (Supplementary Fig. S5). Remarkably, the immunoblot anal-
ysis showed that A6 is not able to precipitate PrPC (Supplementary Fig. S5), by contrast to MR100 compound as 
described previously26.

Discussion
Public concerns over the use of synthetic pesticides are growing since many studies have now shown their impact 
on human health including different kinds of cancers and neurodegenerative disorders1,32–34. Over the last dec-
ade, a new environmental movement in the occidental countries, promoting an organic agriculture has allowed 
the use of some botanical pest control and favoured the rebirth of botanical biopesticides19. Among them, the 

Figure 6.  A6 induces in vitro soluble and/or insoluble rSDS-PrPSc oligomers in a dose dependent manner. (a) 
Chemical structures of MR100 and A6 compounds. (b) Representative images of yellow precipitates after Rapid 
Centrifugation Assay (RCA)26. Prion-infected brain samples (50 μL) were incubated with 1.5 mM of MR100 
compound (positive control), or with an equivalent volume of DMSO (150 μL, negative control), or with a range 
of concentrations of A6 compound (from 0.25 mM to 1.5 mM) according to RCA protocol described previously 
and performed without PK digestion (PK-). After a centrifugation step, a visible precipitate appeared for MR100 
(orange colour) and A6 (yellow colour) but not for DMSO sample. The size of the pellet is proportional to the 
concentration of A6. (c) Western blot analysis of the supernatants and pellets after samples were processed 
by RCA. Immunoblot was probed with SAF mix antibodies to detect the presence of rSDS-PrPSc. Molecular 
weight markers are indicated on the left side of the panel. (d) Histogram representing the ratio of the levels of 
oligomers in the pellet versus oligomers in the supernatant for each concentration of A6. One-way ANOVA 
(**p-value = 0.0086) followed by Tukey’s multiple comparison test was performed for statistical significance 
(*p < 0.05, **p < 0.01).
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α-terthienyls (α-Ter), also called thiophenes, found in abundance in the roots of Tagetes species (family of 
Asteracea), are a powerful class of insecticides very efficient against larvae of several species of mosquitos18–20. 
Because regulations regarding the natural insecticides appeared softer than for the synthetics, one can also ask 
whether biopesticides are harmless or not for the human health.

In the present study, we showed a dual effect of A6 (Fig. 7), an analogue of α-Ter described for its herbicidal 
property, on prion propagation depending on the doses administered.

At the lowest dose of 5 mg/kg: the treatment with A6 compound accelerates the prion pathology, with appear-
ance of earlier PrPSc deposits and the survival time of mice is significantly reduced. However no PK rSDS-PrPSc 
dimers could be detected in brains (Fig. 7a)15. To analyse the aggregation property of A6 compound on prions, we 
performed an in vitro assay, the RCA described previously26. Our results on RCA showed that at the lowest dose of 
0.25 mM, A6 can induce rSDS-PrPSc oligomers that were detected in the supernatant but not in the pellet, which 
means that those species are soluble (Fig. 7a). Thus, at lower concentrations, A6 rather promotes soluble rSDS-PrPSc 
oligomers (ratio pellet/supernatant: 0.16, Fig. 6d), usually considered as neurotoxic species, which is consistent with 
our in vivo results of A6-treated mice at the lowest dose of 5 mg/kg exhibiting shorter incubation time.

At the highest doses of 10 and 20 mg/kg, we observed an opposite effect: A6 treatment delays the appearance 
of PrPSc deposits in mice brains and their survival times are significantly increased (Fig. 7b). We could also detect 
PK rSDS-PrPSc oligomers in all brain homogenates of mice treated with 10 or 20 mg/kg that were analysed. The 
detection of PK rSDS-PrPSc dimers in the group of mice treated with 10 and 20 mg/kg of A6, but not in the group 
treated with 5 mg/kg, strongly suggests that these oligomeric species are implicated in the increasing survival time 
of animals. Those PK rSDS-PrPSc oligomers could be either amorphous aggregates trapping a part of prion infec-
tiosity or non-toxic aggregates not able to propagate prions. Our in vitro results obtained by the RCA method26, 
are in agreement with this hypothesis since at high doses of A6, above 1 mM, prions aggregate into a yellow pre-
cipitate, and high levels of insoluble rSDS-PrPSc oligomers were detected in the pellet (Ratio Pellet/Supernatant: 
1.7, Fig. 6b–d), which is consistent with our in vivo results. Although the range of concentrations used in vivo 
and in vitro are quite different because the systems used cannot be comparable, one can notice that a ratio of 4 is 
observed. Indeed, we observed opposite effects in vivo between 5 and 20 mg/kg on prion propagation, while the 
same ratio is observed in vitro between 0.25 mM and 1 mM switching from soluble to insoluble PrPSc oligomers.

In addition, we also detected such kind of insoluble PK rSDS-PrPSc oligomers in different prion strains, 
including sporadic (sCJD) and new variant CJD26 by using MR100 compound, structurally related to A6, with 
four thiophene cycles instead of two. Remarkably, we showed that levels of rSDS-PrPSc oligomers are correlated 
with the length of the symptomatic phase of sCJD patients26. The more they are abundant in the brain tissue, the 
longer is the symptomatic phase of the disease, as if they have a protective role, which is in agreement with our 
present data of A6-treated mice at high doses. Interestingly, Herrmann et al.35 have shown that Luminescent 
Conjugated Oligothiophene (LCOs), molecules containing several thiophenes (n = 4–7) have the ability to gen-
erate SDS-stable PrPSc oligomers, very similar to A6, in a transgenic mouse model of prions. Administration of 
polythiophenes to the brain of prion-infected mice via osmotic minipump led to a survival of 80% and showed an 
anti-prion activity against mice and hamster strains35.

Regarding the mechanism of action, we used the fluorescence property of A6 to study the interaction of the 
compound with either soluble or fibrillar recPrP. A6 is a hydrophobic compound and in aqueous environment 
its fluorescence is quenched. Upon binding with PrP fibrils, either mouse or Hamster R-fibrils, the environment 
of A6 is less aqueous and the intensity of the signal is doubled illustrating the interaction protein-molecule. 
Epifluorescence studies also showed that R-fibrils could be labelled in blue by A6, in a similar way as ThT labelled 
R-fibrils in green (data not shown). ThT is a referenced fluorescent dye known to interact with beta-sheets of 
amyloid fibrils suggesting that A6 has a potential to be a tracer to study PrP fibrils. Interestingly, A6 is an analogue 
of LCOs with two thienyl cycles, and previous studies on LCOs showed that the fluorescent properties of these 
molecules are exacerbated upon binding with amyloid fibrils, not only PrP but also beta-amyloid peptide, and 
they have a strong potential as tracer of amyloid deposits in brain tissue36. It could be interesting in the future 
to see if A6 can label other amyloid fibrils such as beta-amyloid peptide and eventually explore its potential as a 
tracer of amyloid fibrils in Alzheimer’s disease tissues.

Our results showed that A6 interacts with PrP fibrils, but how to explain the precipitation observed and the 
formation of rSDS-PrPSc oligomers both in vitro and in vivo?

It was previously described that α-Ter generates oxygen radical species (superoxide anion radical, singlet oxy-
gen) and α-Ter radical18. Because A6 interacts with PrP, we can make the hypothesis that A6-PrP• radicals can be 
generated and re-association of A6-PrP• radicals can lead to rSDS-PrPSc oligomers covalently bound. Preliminary 
mass spectrometry experiments with mouse recombinant PrP oligomers did not allow us to demonstrate it (data 
not shown, Human Rezaï, personal communication). However many reasons such as the fact that the fibrils tested 
may not be adapted or the necessity of other cofactors could explain it. It has been demonstrated that α-Ter also has 
the capacity to inhibit several enzymes such as superoxide dismutase and acetylcholinesterase (AChE) both in vitro 
and in vivo leading to important consequences in nervous, respiratory and digestive systems of mosquito larvae18. 
Remarkably, a recent study conducted by Torrent et al.37 showed that: (i) AChE interacts with PrP monomers and 
aggregates them; (ii) upon AChE interaction with PrP fibrils, a complete rearrangement of the fibrils occurred and 
the enzyme looses its activity which worsen the cytotoxicity of prions; and (iii) in heterozygous AChE knock-out 
mice (TgAChE+/−) presenting 25% decrease in the levels of AChE enzyme, a prolonged survival time was observed 
when these mice were challenged by prions compared to control wild-type (WT) animals37. Thus, we cannot exclude 
that A6 can impair the homeostasis of AChE, as well as a possible competition of A6 in the complex formed between 
AChE/PrP. It is likely that a combination of several mechanisms explains the observed phenotype in the mice treated 
with low or high doses of A6 compound and further experiments will be necessary in the future to clarify them. Our 
results showed that the α-Ter analogue A6 could trigger soluble or insoluble rSDS-PrPSc oligomers that worsen or 
delay the prion pathology, depending on the doses used. The fact that the lower doses are more toxic than the high 
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ones, should alert us regarding the pesticides (synthetics or botanical pesticides). Since many pharmacological mol-
ecules are originally plant-derived extracts, we should revise our toxicological assays towards low doses for the future 
development of therapeutics in neurodegenerative disorders.

Figure 7.  Schema illustrating the dual effect of A6 biopesticide on prion aggregation and propagation. (a) A6-
mediated stabilization of soluble prion oligomers at low doses. Incubation of prion-infected brain homogenate 
with a low dose (0.25 mM) of A6 in vitro, allows formation of soluble rSDS-PrPSc oligomers (50–75 kDa) (1) 
that remains in the supernatant (S), whereas insoluble rSDS-PrPSc oligomers concentrated in the pellet fraction 
(P) are not formed (2). In vivo treatment of mice with a low dose of A6 (5 mg/kg) decreases animals’ survival 
time and increases prion amyloid deposits suggesting that soluble rSDS-PrPSc oligomers are toxic. These species 
are not visible in 5 mg/kg A6-treated mice brains. (b) A6-mediated stimulation of prion aggregation at high 
doses. Incubation of prion-infected brain homogenate with the highest dose (1.5 mM) of A6 in vitro, allows 
formation of insoluble rSDS-PrPSc oligomers (50–75 kDa) (2) mainly in the pellet fraction (P). In vivo treatment 
of mice with higher doses of A6 (10 and 20 mg/kg) increases animals’ survival time and decreases prion amyloid 
deposits suggesting that insoluble rSDS-PrPSc oligomers are less toxic. These species are quite abundant in mice 
brains treated with 20 mg/kg of A6, suggesting that insoluble rSDS-PrPSc oligomers have a rather protective role.
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Materials and Methods
Ethics statement and animal housing.  This project follows the specific French national guidelines on 
animal experimentation and animal well-being and was approved by the French National Ethic Committee for 
Animal Experimentation (Nr. CE-LR-11001). WT mice (4–6 weeks old) were housed in an A3/L3 biosafety facil-
ity, in an enriched environment with cotton pads placed in their cages. Animals had free access to water and food, 
and were fed under a standard chow diet (A03) (SAFE Diets, France).

Biological reagents and antibodies.  Pefabloc and proteinase K were purchased from Roche Diagnostics 
(Mannheim, Germany). The protein assay kit based on the bicinchoninic acid (BCA) was purchased from Pierce 
(Thermofisher Scientific, Saint Herblain, France). For immunoblotting analyses, we used a mix (SAF mix) of three 
anti-PrP antibodies (SAF60, SAF69 both recognize epitope 157–161 of HuPrP and SAF70 recognizes epitope 
156–162 of HuPrP) that were kindly provided by Dr. Jacques Grassi (CEA, Saclay, France). The SAF69 antibody 
is critical for detection of PrP oligomers. The SAF84 antibody (epitope 161–170 of HuPrP) used for PET-blot 
analyses was purchased from SpiBio (Montigny-le-Bretonneux, France). Secondary antibodies were from Jackson 
ImmunoResearch (West Grove, PA, USA). All other chemicals and antibodies were purchased from Sigma (Paris, 
France).

Chemical reagents.  The thienyl pyrimidine compounds A6, α-Ter, P30, A12, A14, A18 and A51 that exhibit 
or not rSDS-PrPSc oligomer-inducing activity15,26 were purchased from Maybridge (Cornwall, United Kingdom) 
and Key Organics Limited (Cornwall, United Kingdom). Stock solutions were prepared at 5 mM and drugs 
were solubilized in DMSO according to the suppliers’ recommendations. A6 was heated at 80 °C for 10–20 min 
to reach complete solubility. For the synthesis of MR100 (6,6′-(2,2′:5′,2″:5″,2″′-quaterthiophene-5,5″′-diyl)
bis(1,3,5-triazine-2,4diamine)), reactions were carried out as described previously26. Drugs are stored in the dark 
at room temperature.

Cell culture and cell screening assay.  The mouse neuroblastoma cell line N2a was purchased from the 
American Type Culture Collection (ATCC CCL131). The N2a58 subclone, which over-expresses mouse PrP 
(MoPrP), was chronically infected with the mouse-adapted scrapie strain 22L (N2a58/22L cells), as described by 
Nishida et al.38. N2a58/22L cells were cultured as described previously15,26. For drug screening, N2a58/22L cells 
(~106 cells/25-cm2 flasks) were incubated with the compounds (A6, P30, A12, A14 and A18) at a final concen-
tration of 20 μM (corresponding to 20 μL of drug at 5 mM or 20 μL of solvent alone DMSO, in 5 mL of medium 
for a T25 plate) for 4 days. At confluence, cells were lysed in 400 μL lysis buffer (0.5% NP-40, 0.5% Deoxycholate, 
10 mM Tris-HCl pH 8, 100 mM NaCl).

For a fast screening of drugs, 500 μL of N2a58/22L cell lysates were incubated with 50 μL of drug (P30, A6, 
MR100, α-Ter, and A21) at a final concentration of 0.5 mM, for 1 hour at room temperature and processed as 
described below for western blotting analysis.

Immunoblotting.  Protein concentration in cellular lysates was measured using the BCA assay. For west-
ern blots, all samples were normalized regarding their protein amounts and volumes. Normalized samples were 
digested with 20 µg/mL of proteinase K (PK) at a ratio of 1:25 (protease to protein) at 37 °C for 1 h. Digestion was 
stopped with 1X Complete (Roche, Boulogne-Billancourt, France) and samples were centrifuged at 20 000 g at 
4 °C for 30 min. Pellets were dissolved in 20 µL lysis buffer and 20 µL 2X loading buffer (0.1 M DTT, 3% SDS, 20% 
glycerol, 0.4 M Tris-HCl pH 7.4 and bromophenol blue), then boiled for 3 min before loading on 12% SDS-PAGE 
Criterion precast gels (Biorad, Marne-La-Coquette, France). Western blotting was performed according to stand-
ard procedures and MoPrP was detected with the SAF mix, as mentioned above (Cf. § “Biological reagent and 
antibodies”). Membranes were revealed with an ECL solution (Luminata Crescendo western HRP substrate, 
Millipore, Guyancourt, France).

Purification of prion protein and formation of amyloid fibrils.  Full-length recombinant mouse PrP 
encompassing residues 23–230 (MoPrP23–230) was expressed in E. coli and purified as described previously39. 
The purified recombinant MoPrP23-230 mostly folded into α-helices was confirmed by SDS-PAGE and electro-
spray mass spectrometry to be a single species with an intact disulfide bond and correct molecular weight as pre-
viously described by Ayrolles-Torro et al.15. After purification, MoPrP was stored in lyophilized form at −20 °C. 
Amyloid fibrils using full-length MoPrP23-230 were formed using the manual setup protocol of Breydo et al.40, 
and fibrils formation was monitored after collecting aliquots to which 10 μM of thioflavin T (ThT) were added41. 
ThT fluorescence emission spectra were recorded after excitation at 450 nm as previously described25,40. The qual-
ity of freshly made fibrils was also confirmed by transmission electron microscopy as described previously24. 
Fibrils were stored at 4 °C until use for further analyses. Two amyloid strains: hamster S-fibrils (for “shaking”) 
and hamster R-fibrils (for “rotation”) were kindly provided by Dr. Ilia Baskakov (University of Maryland School 
of Medicine, Baltimore, MD, USA). These hamster fibrils were produced in vitro using full-length hamster PrP, 
according to the manual format protocol as described by Makarava et al.29.

Fluorescence spectra.  The fluorescent properties of A6 compound were described previously (Nasri et al. 
2016). The A6 molecule has a λex = 372 nm and a maximal peak of emission of fluorescence at 460 nm. Interaction 
studies between PrPs (either α-folded or fibrils) and A6 were done by fluorescence and all spectra were recorded 
from 200–600 nm using a fluorimeter FluoroMax2 (JobinYvon Spex, Tokyo, Japan). Lyophilised MoPrP23-230 
was solubilized at 0.5 mg/mL (0.2 mM) in 50 mM MES buffer pH 6, and filtrated on 0.2 μm filter. The α-folded 
MoPrP23-230 stock solution freshly made and the MoPrP fibrils stored at 4 °C were diluted in 50 mM MES buffer 
pH 6, at a final protein concentration of 4.4 μM, and mixed with 50 μM of A6 compound, 1% DMSO, during 2 h at 
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25 °C. Hamster S- or R-fibrils (4.4 μM) were incubated with 40 μM of A6 compound, diluted in 50 mM MES buffer 
pH 6, 1% DMSO during 2 h at room temperature. Then, fluorescence experiments were conducted as described 
previously by excitation of the A6 compound at 372 nm.

Aggregation assay.  Brains from a terminally sick mouse (infected with 22L prions) or from a non-infected 
mouse were homogenized in 10% (w/v) sterile PBS solution using microbead-containing tubes and a Ribolysor 
apparatus (Biorad, Marnes la Coquette, France). Tubes were shaken for 45 s and homogenates were collected with 
an insulin syringe to obtain a homogeneous suspension, and immediately frozen at −80 °C. Then, we performed 
the aggregation test with a range of concentrations of A6 by following the protocol of the rapid centrifugation 
assay (RCA) initially described with the MR100 compound by Imberdis et al.26. Briefly, 50 µL of 22L-infected brain 
extracts (10% w/v) were diluted in PBS - 2% Sarkosyl and incubated with 1.5 mM (150 μL) of MR100, as a positive 
control of RCA, or a range of concentrations of A6 from 0.25 mM (25 μL) to 1.5 mM (150 μL), in a final volume of 
0.5 mL for 1 h at room temperature. A sample incubated with 150 μL of DMSO was used as a negative control of 
RCA, corresponding to the highest concentration used (1.5 mM). Samples were then centrifuged in a benchtop cen-
trifuge (Eppendorf) at 8 000 g for 5 min. Supernatants were removed and 50 μL aliquots were mixed with an equal 
volume of 2X loading buffer. Pellets were suspended in 50 μL of PBS -2% Sarkosyl and mixed with an equal volume 
of 2X loading buffer. Supernatants and pellets were analysed by western blotting using SAF mix antibodies.

Prion inoculations.  Groups of C57Bl/6J females (n = 10–15 animals/group) were inoculated with 5 μL of 1% 
brain homogenate infected with 22L prion strain into their striatum using a stereotaxic frame (Kopf Instruments, 
Tujunga, CA, USA) with the following coordinates: L: 2.0 mm; A/P: 0 mm; and D/V: −3.0 mm42. For control 
female mice (n = 10) non-inoculated with prions, 5 μL of PBS was injected into the striatum using the same 
method and coordinates. In a first series of experiments, mice were treated by intra-peritoneal route with 5 mg/
kg of A6 compound (50 μL at 3 mg/mL of A6) or with 50 μL of pure DMSO alone, for 5 weeks starting one week 
after prion infection. In a second series of experiments, mice were treated with higher concentrations of A6 
compound by intra-peritoneal route: either at 10 mg/kg (100 μL at 3 mg/mL A6) or 20 mg/kg (100 μL at 6 mg/
mL A6) or with 100 μL of pure DMSO alone, for 12 weeks starting one week after prion infection. For the high-
est treatment of A6 (10 or 20 mg/kg), the volume injected to mice was doubled due to the poor solubility of A6 
(especially at 6 mg/mL). During the experiments, groups of five mice were housed in cages placed in a ventilated 
protective room. Mice were scored positive for prion disease when three signs of neurologic dysfunction were 
observed and when progressive deterioration (according to 16 diagnostic criteria) was apparent, as described pre-
viously43,44. Once clinical signs were detected, the animals were observed daily and killed in extremis, as described 
previously43,44. Their brains were removed and immediately frozen at −80 °C for homogenization, or fixed in 
AntigenFix (Diapath, France) for immunohistochemical analysis.

Immunohistochemistry.  Brain tissues were fixed in AntigenFix solution (Diapath, France) for 24 h. Then, 
they were decontaminated for 30 min in formic acid solution according to the protocol described by Andréoletti 
et al.45 and stored in 100 mM phosphate buffer at pH 7.4 with 0.02% sodium azide. Samples were dehydrated 
in graded ethanol, cleared in cedar oil and embedded in paraffin. Using a microtome, 6 μm frontal sections 
were cut and mounted on Superfrost Plus slides (Microm France, Francheville). Sections were dewaxed and 
stained with hematoxylin and eosin (HE) as described previously46. Immunolabelling with anti-GFAP (1:500; 
Dako, Les Ulis, France) antibodies was performed according to the instructions provided with the Strept ABC 
Complex Kit. Labelling was visualized using 3–3′-diaminobenzidine chromogen solution (Sigma, France). For 
paraffin-embedded tissue blots (PET-blots), 6 μm frontal sections were cut using a microtome and placed on 
nitrocellulose membrane. After drying at 50 °C for 48 h, sections were dewaxed, digested with 25 µg/mL PK at 
56 °C overnight and then denatured with 3 M guanidine thiocyanate for 10 min. Membranes were blocked with 
casein for 30 min. The SAF84 antibody was used to label PrPSc and the Vectastain ABC-AmP kit (Vector labora-
tories, USA) to reveal antibody binding.

Softwares and statistical analyses.  Kaplan-Meier survival curves were done using the GraphPad Prism 
software (La Jolla, CA, USA). The difference between curves was tested using the non-parametric Mantel-Cox 
test and Wilcoxon test, with a probability of 0.05 defined as a significant difference. Survival times are expressed 
as median values. Oligomer fractions were quantified using Fiji software (2.0 version 2.0; National Institutes 
of Health, Bethesda, MD). Statistical analyses were performed on GraphPad Prism software using a one-way 
ANOVA coupled with a Tukey’s multiple comparison test, with a probability of 0.05 defined as a significant 
difference.

Equipment and settings.  The blots presented in Fig. 1, 4–5 and in Supplementary Fig. S4 were revealed 
with Amersham Hyperfilm ECL (Thermo Scientific, Illkirch, France) by using a Konica medical film processor 
SRX-101 (Konica Minolta, Amsterdam, Netherlands).

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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