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Abstract: The intestinal epithelial monolayer forms a transcellular and paracellular barrier that
separates luminal contents from the interstitium. The paracellular barrier consists of a highly
organized complex of intercellular junctions that is primarily regulated by apical tight junction
proteins and tight junction-associated proteins. This homeostatic barrier can be lost through a
multitude of injurious events that cause the disruption of the tight junction complex. Acute repair
after injury leading to the reestablishment of the tight junction barrier is crucial for the return of
both barrier function as well as other cellular functions, including water regulation and nutrient
absorption. This review provides an overview of the tight junction complex components and how
they link to other plasmalemmal proteins, such as ion channels and transporters, to induce tight
junction closure during repair of acute injury. Understanding the components of interepithelial tight
junctions and the mechanisms of tight junction regulation after injury is crucial for developing future
therapeutic targets for patients experiencing dysregulated intestinal permeability.
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1. Intestinal Epithelium as a Selective Barrier

The intestine is lined with a monolayer of columnar epithelium that maintains two critical
functions: (1) selectively filtering luminal contents, including nutrients, water and electrolytes, to allow
for their translocation into the circulation and (2) forming a barrier to prevent the translocation of
luminal toxins, commensal or pathogenic microorganisms, and foreign antigens into the circulation [1].
Under homeostatic conditions, these functions are regulated by both transcellular and paracellular
pathways, the latter of which are primarily maintained by apical tight junction proteins through
paracellular pore and leak permeability pathways [2,3]. The paracellular pathway is associated with
the charge and size selective transport of materials through the space between intestinal epithelial cells.

Intestinal barrier homeostasis is disrupted through tight junction protein dysregulation, which
occurs via a variety of injurious events, including microbial degradation and bacterial toxin exposure,
exposure to cytotoxic agents, exposure to pro-inflammatory cytokines such as IFNγ and TNFα,
intestinal autoimmune disease such as Celiac disease, and intestinal ischemia [4–9]. The loss of
tight junction integrity results in the formation of a third pathway, known as the high-capacity and
nonselective unrestricted permeability pathway, which can allow for the unrestricted movement of
microorganisms and large proteins across the paracellular space [10]. An inability to rapidly repair
the tight junctions in order to restore epithelial barrier function is detrimental to the patient, as it can
result in various pathologies, including sepsis and multiple organ dysfunction [11,12]. Therefore,
understanding factors that can regulate the tight junction complex during repair of injured intestinal
epithelium is crucial for developing future therapeutic targets.
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2. Tight Junction Protein Structure

Tight junctions are made up of a number of protein elements, including transmembrane claudins
(total of 27 mammalian claudins), as well as myelin and lymphocyte (MAL) and related proteins for
vesicle trafficking and membrane link (MARVEL) [13–18]. MARVEL domain-containing proteins are
a component of a larger group of tight junction-associated MARVEL proteins (TAMPS) that include
transmembrane proteins such as occludin and tricellulin [18–20]. Other tight junction-associated
transmembrane molecules include junctional adhesion molecules (JAM-1, -2, and -3) that can regulate
the formation of tight junctions and migration of neutrophils [21–26]. Additionally, intracellular
scaffold proteins such as zonula occludens (ZO) -1, -2, and -3 play an integral role in tight junction
protein assembly and link tight junction transmembrane proteins with the actin cytoskeleton [27–30].

Intestinal claudins exist in two different classes: sealing claudins and pore-forming claudins [31].
Increased membrane expression of sealing proteins results in a ‘tighter’ epithelial barrier, further
restricting the movement of luminal contents through the paracellular space. Sealing tight junction
proteins include claudins-1, -3, -4, -5, -8, -11, -14, 18, and -19 [17]. Alternatively, increased membrane
expression of pore-forming proteins (including claudins-2, -10a/-10b, -15, -16, and -17) reduces the
selectivity for luminal contents that can pass between epithelial cells, thereby increasing paracellular
permeability [17]. Each pore-forming claudin has an ionic charge specificity for cations or anions as
well as ionic size selectivity, thereby increasing the permeability for ions based on claudin-specific
permeability characteristics. An interesting interaction between the two classes of claudins has been
observed with the displacement of pore-forming claudins by sealing claudins. For example, in a
claudin-8 transfected Madin–Darby canine kidney II (MDCK II) cell line in which claudin-8 expression
occurred in the absence of doxycycline, claudin-8 displacement of claudin-2 was visualized upon
immunofluorescent imaging [32,33]. Specifically, claudin-8 served to replace claudin-2 in tight junction
strands in this model, which reduced the number of functional paracellular cation pores [32].

Tight junction protein expression in the intestinal tract is tissue- and age-specific. For example,
claudin-2 is normally expressed in the human small intestine but is reported to be expressed only in
the colonic crypt of fetal humans and absent in the adult colon under homeostatic conditions [34].
Overall, claudin-2 generally exhibits higher expression in leaky epithelial tissues, such as colonic
tissues from a subset of patients with inflammatory bowel disease [35]. Additionally, its protein
expression was detected throughout the crypt–villus axis of human small intestines but was only
detected in undifferentiated crypt cells of human colonic tissue [36]. Other claudins follow suit
regarding crypt–luminal axis expression with some pore-forming claudins (-2, -10, -13, -15) being
restricted to the intestinal crypt base in murine tissue while other sealing claudins (-3, -4, -7, -8) are
expressed in luminal epithelial cells [37–40].

Special Functions of Select Tight Junction Proteins

As discussed throughout the remainder of this review, regulation of tight junction proteins is a
vital component of epithelial barrier repair after injury. However, specific tight junction proteins can
have additional special functions that are species and age dependent. In the case of claudin-4, there
is an age-dependent disparity between cellular localization of tight junction proteins [41]. Intestinal
porcine claudin-4 is localized to the apical surface of porcine jejunal enterocytes within the first two
days of age and only localizes to the lateral surface between adjacent epithelial cells beyond two days of
age [41]. This age-specificity of claudin-4 localization in piglet jejunum may be due to immunological
naivety that newborn piglets experience. Piglets must be able to acquire and absorb immunoglobulins
and other immune-related molecules, including cytokines and antimicrobial peptides, from colostrum
within the first day of life to prevent death via bacterial sepsis [42]. It is reported that this age-specific,
apical surface localization of claudin-4 occurs in jejunal enterocytes at the same period of time in which
the vital immune macromolecules are absorbed into the bloodstream [41]. Therefore, this special
function of claudin-4 localization is necessary to allow for the proper uptake of immune molecules by
the piglet, and subsequent relocalization to the lateral surface may aid in sealing of the paracellular
space between adjacent epithelial cells once the immune constituents are absorbed.
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Another tight junction protein, tricellulin, serves a special function in the tight junction barrier
where more than two epithelial cells meet. Tight junction strands between two adjacent epithelial
cells typically associated laterally to pair with another tight junction strand, forming bicellular tight
junctions between the two cells [43]. However, these bicellular tight junctions are not continuous
at tricellular epithelial cell contacts and have therefore been described as tricellular tight junction
proteins. While traditional tight junction proteins, such as occludin and claudins, are found in both
bicellular and tricellular tight junctions, tricellulin is concentrated to the tricellular tight junction and
its knockdown in the EpH4 cell line of immortalized mouse mammary gland epithelium resulted in
altered organization of bicellular tight junction proteins [20]. Additionally, tricellulin has been shown to
not affect the permeability for ions while forming a barrier to macromolecules in tricellulin-transfected
MDCK II cells overexpressing tricellulin in the tricellular tight junctions [44]. Overall, it is crucial to
consider all components and special functions of tight junction proteins when studying tight junction
structure. Furthermore, the understanding of these tight junction special functions may be crucial to
restoring barrier function following injury.

3. Acute Mechanisms of Repair in Injured Intestinal Epithelium

When the monolayer of intestinal epithelium is injured, such as that which occurs during
ischemia/reperfusion injury or exposure to pathogenic microbes such as rotavirus [45,46], detachment
of the epithelium from the basement membrane and separation of adjacent epithelial cells from one
another due to dysregulation and loss of tight junctional proteins occurs. Furthermore, the loss of
polarity-establishing tight junctional proteins results in the loss of cell polarity, which abolishes apical
and basolateral positioning of localized molecules such as ion channels/transporters, resulting in
their mislocalization [47]. When homeostatic positioning of ion channels and transporters is lost,
this can subsequently lead to the dysregulation of a multitude of cellular functions including water
absorption/secretion, intracellular and organelle pH, and nutrient absorption.

Once the cause of intestinal injury is resolved, such as restoration of blood flow in ischemic injury,
rapid mechanisms of intestinal mucosal repair take place in a well-orchestrated series of reparative
events. Initially, small intestinal villi contract via the contraction of myofibroblasts adjacent to the
epithelial basement membrane and centrally along the central lacteal. Villus contraction is characterized
histologically by a quantitatively diminished villus height [48] and occurs in response to mediators
such as PGE2 [49]. Villus contraction results in reduction of the denuded surface area that remains
to be covered by epithelial cells. Simultaneously, restitution of epithelial cells shouldering the site of
injury occurs to cover the denuded area [50]. These cells depolarize to disassemble microvilli, allowing
for subsequent lamellipodia-driven movement via actin–myosin treadmilling, while maintaining
transient attachment to the basement membrane through integrins [11]. Although the underlying
intestinal layers may not appear exposed to luminal contents since the mucosa is no longer denuded,
the unrestricted permeability pathway via poorly formed tight junctions allows for microorganisms
and macromolecules to cross the epithelial barrier. In order for the tight junction barrier and cell
polarity to be restored, tight junction proteins internalized during injury, such as the endocytosis of
occludin that accompanies anoxic injury in Caco-2 cells, must be reinserted back into the membrane
via recycling endosomes [51–53]. Ultimately, following these acute repair mechanisms, crypt cells can
proliferate and differentiate to restore the proper number of epithelial cells to the monolayer in order
to regain full homeostatic function.

4. Regulation of Tight Junctions via Ion Channels/Transporters

Closure of the tight junction after acute intestinal injury is paramount in restoring barrier function
and returning to homeostatic functioning. Tight junction proteins can be regulated by many factors,
including cytokines, growth factors, and nutrients. For example, transport of glucose by SGLT1 has been
shown to result in the physiological opening of tight junctions in an NHE3-dependent mechanism [54].
Alternatively, ion channel/transporters, including proteins from the Na+/H+ exchanger (NHE) family
as well as chloride channel protein 2 (ClC-2) have also been shown to regulate tight junction proteins,
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specifically after intestinal ischemic injury [55–57]. This review will examine the reparative role of
these transport proteins specifically related to restoration of junctions.

4.1. NHE2 and Intestinal Repair

The gastrointestinal epithelium is home to many ion transporters that are collectively responsible
for regulating homeostatic cell functions, including the regulation of nutrient absorption, cytosolic and
organelle pH, water absorption and secretion, and cell volume [58]. One major family of ion transporters
in the human GI tract is the SLC9 gene family, also known as the NHE family. NHE isoforms belonging
to the SLC9A gene subgroup (SLC9A1-9) can be either plasmalemmal or intracellular, depending on the
isoform and tissue location within the gut [59]. Additionally, the Na+/H+ exchanger 5 (NHE5) is the
only isoform for which expression has not been shown in the gastrointestinal tract [60]. These proteins
are responsible for the electroneutral antiport of Na+ into intestinal epithelium in exchange for H+

secreted from the cell to maintain cellular pH and volume.
An additional function of NHEs that continues to be explored is the link between NHEs and the

tight junction. One mechanism that links NHEs to the tight junction is through binding to the actin
cytoskeleton. Specifically, Na+/H+ exchanger 3 (NHE3) has been shown to bind directly to the actin
cytoskeleton and indirectly through various binding partners, including ezrin [61,62]. The ezrin protein
is known to link the plasma membrane to the cytoskeleton in its active, phosphorylated conformation
through binding to actin with its C-terminal region [63–65]. This interaction with the cytoskeleton has
been shown to regulate plasma membrane tension, which is involved in motility and endocytosis [66].
Ezrin links the cytoskeleton to the plasma membrane through binding of its N-terminal region to either
membrane lipids or cytoplasmic regions of transmembrane proteins, including NHE3 [66,67]. Thus,
by linking transmembrane proteins such as NHE3 to the cytoskeleton, there is an indirect link between
transmembrane proteins and tight junction proteins.

Of the NHE isoforms that have been described in the gut, Na+/H+ exchanger 2 (NHE2) is
one of the least described NHEs in regards to its homeostatic and pathophysiologic functionality.
However, NHE2 has been linked to paracellular barrier function and tight junction regulation during
the recovery of injured intestinal epithelium [55,56]. In both porcine and murine models of intestinal
ischemic injury, NHE2, rather than NHE1 or NHE3, appears to be the primary NHE responsible for
regulating tight junction proteins during the recovery of ischemia-injured intestines [55,56]. During ex
vivo recovery of porcine intestinal ischemia, selective pharmacologic inhibition of NHE2 enhanced
epithelial recovery, as evidenced by significant elevations in transepithelial electrical resistance (TER)
while inhibition of NHE1 or NHE3 did not elicit a recovery response [56]. In the same study, this
NHE2-specific inhibitory effect on recovery was independent of epithelial restitution, and NHE2 was
shown to co-immunoprecipitate with ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 (EBP50),
also known as NHE regulatory factor 1 (NHERF1), in ischemia-injured porcine ileum. These data
suggest that NHE2 regulates restoration of the tight junction barrier during recovery of intestinal
ischemia and is potentially linked to the actin cytoskeleton through binding partners (Figure 1).
Although NHE2 is also implicated in the in vivo recovery of murine intestinal ischemia, the genetic
knockout of NHE2 in the murine model has the inverse effect when compared to pharmacologic
inhibition of NHE2 in the porcine model of intestinal ischemia [55]. Specifically, NHE2 null mice exhibit
increased blood-to-lumen 3H-mannitol flux at 1.5 and 3 hours after ischemic injury as well as a change
in localization of occludin and claudin-1 from the membrane to the cytosol when compared to wild-type
mice [55]. Additionally, epithelial restitution after intestinal ischemia was unaffected by the absence
of NHE2 in this model. It is important to note that pharmacologic inhibition or genetic knockout of
NHE2 may affect intracellular pH (pHi) since NHEs are known to contribute to pHi changes, and these
potential pHi changes can affect charge selectivity of the paracellular pathway [68,69]. However,
further studies will be required to determine if NHE-mediated changes in pHi are linked to alterations
in the tight junction. Together, this information suggests that NHE2 regulates acute recovery after
intestinal ischemic injury in a tight junction-dependent manner, whereas its absence delays restoration
of tight junction barrier function.



Int. J. Mol. Sci. 2020, 21, 972 5 of 11

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 11 

 

acute recovery after intestinal ischemic injury in a tight junction‐dependent manner, whereas its 

absence delays restoration of tight junction barrier function. 

 

Figure 1. Schematic representation of the potential link of NHE2 to the actin cytoskeleton and 

subsequently the tight junction through binding partners. The primary candidate protein linking 

NHE2 to the actin cytoskeleton is phosphorylated ezrin. Based on information known about NHE3 

and data from NHE2 in vivo studies, NHE2 may bind directly to ezrin or indirectly through 

additional binding partners, including NHERF1/EBP50. 

4.2. ClC-2 and Intestinal Repair 

Chloride secretion from intestinal epithelium into the lumen is crucial for homeostatic water 

absorption/secretion via maintaining an osmotic balance with luminal accumulation of both chloride 

and sodium ions. This subsequently allows for proper mucosal hydration of the epithelial layer, 

which protects the lumen as food passes through the intestine [70]. The primary protein responsible 

for chloride transport into the intestinal lumen is the apically located cystic fibrosis transmembrane 

receptor (CFTR) [71]. However, another contributor to transepithelial chloride transport within 

intestinal epithelium is the voltage‐gated ClC‐2 protein, one of nine mammalian proteins belonging 

to the chloride channel (ClC) protein family [72]. ClC‐2 has been shown to localize in the plasma 

membrane at tight junction complexes within mouse intestinal epithelium [73] or has plasmalemmal 

basolateral localization within guinea pig colons [74], suggesting species‐ or tissue‐specific 

localization of ClC‐2. 

In addition to its role in transepithelial chloride transport, ClC‐2 has been shown to regulate 

intestinal tight junction barrier function in various injury models. After porcine intestinal ischemic 

injury, stimulation of ClC‐2 with the ClC‐2 agonist lubiprostone during ex vivo recovery on Ussing 

chambers resulted in marked increases in TER and reduced mucosal‐to‐serosal mannitol flux [57]. 

Contrasting the effect of ClC‐2 stimulation with lubiprostone, the genetic absence of ClC‐2 in a 

murine model of intestinal ischemia resulted in significant increases in blood‐to‐lumen mannitol 

clearance while also reducing expression of membrane‐bound occludin and claudin‐1 after up to 3 

hours of in vivo recovery [75]. In this murine model, occludin co‐localized with ClC‐2 after co‐

immunoprecipitation studies, and its localization to the tight junction region was diffuse in ClC‐2 

null mice after up to 3 hours of recovery [75]. Additionally, in a murine model of dextran sulfate 

sodium (DSS)‐induced colitis, the absence of ClC‐2 increased disease severity, as measured through 

significant losses in body weight and significant increases in disease activity index [76]. ClC‐2 null 

mice treated with DSS also demonstrated significantly increased expression of claudin‐2 and reduced 

occludin expression in the same study. Interestingly, a recent in vitro study established Caco‐2 cells 

Figure 1. Schematic representation of the potential link of NHE2 to the actin cytoskeleton and
subsequently the tight junction through binding partners. The primary candidate protein linking NHE2
to the actin cytoskeleton is phosphorylated ezrin. Based on information known about NHE3 and data
from NHE2 in vivo studies, NHE2 may bind directly to ezrin or indirectly through additional binding
partners, including NHERF1/EBP50.

4.2. ClC-2 and Intestinal Repair

Chloride secretion from intestinal epithelium into the lumen is crucial for homeostatic water
absorption/secretion via maintaining an osmotic balance with luminal accumulation of both chloride
and sodium ions. This subsequently allows for proper mucosal hydration of the epithelial layer,
which protects the lumen as food passes through the intestine [70]. The primary protein responsible
for chloride transport into the intestinal lumen is the apically located cystic fibrosis transmembrane
receptor (CFTR) [71]. However, another contributor to transepithelial chloride transport within
intestinal epithelium is the voltage-gated ClC-2 protein, one of nine mammalian proteins belonging
to the chloride channel (ClC) protein family [72]. ClC-2 has been shown to localize in the plasma
membrane at tight junction complexes within mouse intestinal epithelium [73] or has plasmalemmal
basolateral localization within guinea pig colons [74], suggesting species- or tissue-specific localization
of ClC-2.

In addition to its role in transepithelial chloride transport, ClC-2 has been shown to regulate
intestinal tight junction barrier function in various injury models. After porcine intestinal ischemic
injury, stimulation of ClC-2 with the ClC-2 agonist lubiprostone during ex vivo recovery on Ussing
chambers resulted in marked increases in TER and reduced mucosal-to-serosal mannitol flux [57].
Contrasting the effect of ClC-2 stimulation with lubiprostone, the genetic absence of ClC-2 in a murine
model of intestinal ischemia resulted in significant increases in blood-to-lumen mannitol clearance
while also reducing expression of membrane-bound occludin and claudin-1 after up to 3 hours of in vivo
recovery [75]. In this murine model, occludin co-localized with ClC-2 after co-immunoprecipitation
studies, and its localization to the tight junction region was diffuse in ClC-2 null mice after up to
3 hours of recovery [75]. Additionally, in a murine model of dextran sulfate sodium (DSS)-induced
colitis, the absence of ClC-2 increased disease severity, as measured through significant losses in body
weight and significant increases in disease activity index [76]. ClC-2 null mice treated with DSS also
demonstrated significantly increased expression of claudin-2 and reduced occludin expression in
the same study. Interestingly, a recent in vitro study established Caco-2 cells overexpressing ClC-2
(Caco-2ClCN2), and this ClC-2 overexpression resulted in a decrease of the pore-forming claudin-2
protein while maintaining claudin-1 and claudin-4 protein levels to that of control cells [77]. As an
aside, although cell volume and pHi is partially regulated by ClC-2 and thus the genetic knockout
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of ClC-2 can affect these intracellular factors, studies will be needed to determine if ClC-2-mediated
changes in these intracellular factors have an effect on the tight junction [78,79]. Based on these
studies, there appears to be a mechanistic link between ClC-2 and the regulation of membrane claudin
expression, but further studies will need to be carried out to determine how ClC-2 plays a role in
claudin expression patterns. Nonetheless, current data suggest the critical role of ClC-2 in barrier
function during recovery from epithelial injury while also reinforcing the link between ClC-2 and the
tight junction barrier.

The link between ClC-2 and the tight junction was initially shown to exist through intracellular
caveolar trafficking of occludin via interaction with both caveolin-1 and the small GTPase Rab5 in a
cell line derived from human intestinal Caco-2 cells (Figure 2) [80]. This connection between ClC-2,
occludin, and caveolin-1 was further supported in vivo with a model of DSS-induced colitis. ClC-2
null mice treated with DSS had significantly displaced occludin/caveolin-1 densitometry readings
toward high-density, detergent-soluble fractions of sucrose density gradient-based fractions when
compared to wild-type mice treated with DSS [76]. These data suggest that after DSS-induced colitis,
occludin and caveolin-1 are strongly associated in the cytosol of mice lacking ClC-2 but not in mice
normally expressing ClC-2. In tandem, overexpression of ClC-2 in Caco-2ClCN2 cells was reported to
not only exhibit enhanced tight junction barrier function through significant increases in TER and
reductions in apical-to-basal inulin flux, but this ClC-2 overexpression further connected ClC-2 to
caveolin-1 and caveolar trafficking of occludin [77]. Specifically, ClC-2 overexpression in Caco-2ClCN2

cells exhibited both significantly increased occludin protein and reduced endocytosis of occludin when
compared to control cells while simultaneously diminishing both caveolin-1 protein and caveolae
assembly [77]. Furthermore, this study reported that selective inhibition of ClC-2 lead to both reduced
occludin protein and increased caveolin-1 protein. Taken together, there is strong evidence from both
in vitro and in vivo models that links ClC-2 to the tight junction protein occludin and its regulation by
caveolar trafficking. Based on the presented evidence, it is believed that ClC-2 facilitates the shuttling
of endocytosed tight junction proteins back to the apical–lateral membrane to repair injured tight
junctions. However, further mechanistic studies are required out to determine the precise mechanisms
of these events.
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Figure 2. Schematic representation of the link between ClC-2 and caveolar trafficking of occludin. This
schematic is a slight modification from a previously published figure [81] to more closely associate
ClC-2 to both the tight junction complex and to caveolin-1-associated endocytosis and recycling of tight
junction proteins such as occludin. Note that the representation of ClC-2 at the tight junction complex
is not exclusively apical in localization, which leaves room for ClC-2 to be more closely associated with
occludin in the membrane.
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5. Conclusions

Injury of intestinal epithelium affects both the epithelial cells and the junctional structures that link
them. A great deal of attention has been focused on mechanisms of epithelial restitution, but a lesser
level of attention has been paid to the reassembly of tight junctions within repairing epithelium. This
intriguing process appears to be intimately associated with ion channels, which in the case of NHE2
and ClC-2, is facilitated by a close association with tight junction regulatory proteins. With ClC-2
in particular, the mechanism of ion channel-facilitated tight junction reassembly has been linked to
endosomal recycling of tight junction proteins, with evidence of restoration of the positioning of
tight junction integral membrane proteins during the reparative process, and increased membrane
expression of sealing claudins with cellular over-expression of ClC-2. However, how precisely ion
channels interact with structures such as endosomes, and how this facilitates insertion of sealing tight
junction proteins at the repairing tight junction will require further study. Nonetheless, it does appear
that ion channels such as NHE2 and ClC-2 have a greater cellular function than ion transport alone.
It is conceivable that the transport of select ions accompanies a structural change that sets off a series of
signaling events associated with tight junction reassembly, but this will require additional mechanistic
work. Ultimately, further studies to uncover the relationship between ion channels and reassembly
of tight junctions has the potential to lead to novel therapeutic targets for patients with increased
intestinal paracellular permeability.
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