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Abstract

differentially expressed features.

also identified via traditional gene-based approaches.

the data efficiently.

Background: Analyzing the human transcriptome is crucial in advancing precision medicine, and the plethora of
over half a million human microarray samples in the Gene Expression Omnibus (GEO) has enabled us to better
characterize biological processes at the molecular level. However, transcriptomic analysis is challenging because the
data is inherently noisy and high-dimensional. Gene set analysis is currently widely used to alleviate the issue of
high dimensionality, but the user-defined choice of gene sets can introduce biasness in results.

In this paper, we advocate the use of a fixed set of transcriptomic modules for such analysis. We apply independent
component analysis to the large collection of microarray data in GEO in order to discover reproducible transcriptomic
modules that can be used as features for machine learning. We evaluate the usability of these modules across six
studies, and demonstrate (1) their usage as features for sample classification, and also their robustness in dealing with
small training sets, (2) their regularization of data when clustering samples and (3) the biological relevancy of

Results: We identified 139 reproducible transcriptomic modules, which we term fundamental components (FCs). In
studies with less than 50 samples, FC-space classification model outperformed their gene-space counterparts, with
higher sensitivity (p < 0.01). The models also had higher accuracy and negative predictive value (p < 0.01) for
small data sets (less than 30 samples). Additionally, we observed a reduction in batch effects when data is
clustered in the FC-space. Finally, we found that differentially expressed FCs mapped to GO terms that were

Conclusions: The 139 FCs provide biologically-relevant summarization of transcriptomic data, and their
performance in low sample settings suggest that they should be employed in such studies in order to harness
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Background

The human transcriptome, a snapshot of all mRNA mole-
cules in a cell or tissue, is invaluable in advancing precision
medicine. Many public databases have been established to
map drug responses to transcriptomic profiles, such as the
Welcome Trust Sanger Institute’s Cancer Genome Project
(CGP), the Connectivity Map (CMap) [1] and the Library
of Network-based Cellular Signatures (LINCS). While the
ability to measure gene expression levels of nearly every
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expressed gene in a cell allows for precise characterization
of tissues at the molecular level, transcriptomic data is
inherently noisy due to the dynamic nature of transcription.
This makes it difficult to identify patient subtypes when the
effect size is small, and also confounds direct interpretation
of analysis results. Statistical methods to handle such
high-dimension data typically control the false discovery
rates through p-value corrections and q-value thresh-
olding, or increase power via the simultaneous study
of multiple genes (i.e. gene sets). Gene set enrichment
analysis (GSEA) [2, 3] is widely used today in tran-
scriptomic analysis, and is facilitated by the Molecular
Signatures Database (MSigDB) [3], a database with
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17,779 gene signatures across seven collections. In practice,
researchers running GSEA typically choose a particular
subset or collection from MSigDB based on what they
believe to be related to the tissue or condition of the sam-
ple. This may induce biasness in the analysis as GSEA is
sensitive to the choice of subsets used [4], and also the
amount of gene filtering steps done during preprocessing
[5]. Furthermore, Liberzon et al. [6] also found significant
redundancies in MSigDB’s signatures, which can skew the
reported enrichment scores from GSEA.

An alternative to using user-defined gene sets is to em-
ploy data-driven approaches to construct lower-dimension
features so that the statistical power can be increased.
Principal component analysis has previously been per-
formed on microarray data to summarize the experimen-
tal dataset containing tens of thousands of genes to a
feature space that is a hundred-fold smaller [7, 8]. It was
observed that while the first three or four principal com-
ponents can sufficiently capture most biological signals in
a large microarray dataset [9-11], they fail to do so when
there is a small effect size and/or when there is a small
number of samples exhibiting the effect [12]. Recent ana-
lysis performed by Tan et al. on Pseudomonas aeruginosa
gene expression profiling experiments [13, 14] showed
that components derived from PCA had fewer associated
biological pathways than components from competing
methods such as ICA. More fundamentally, the under-
lying assumption of PCA (that the data is a multivariate
Gaussian) does not hold for transcriptomic data, which are
typically super-Gaussian. Lee and Batzoglou [15] suggested
the use of a related technique, independent component
analysis (ICA), as a more faithful model for such non-
Gaussian data. The statistically independent components
obtained from ICA have been reported to have biological
significance [16—-18], and are alternatively known as meta-
genes, transcriptomic modules or functional components
(FCs). Unlike gene sets, where a gene’s membership is
binary, functional components present a smoothed and
continuous version of set membership, better reflecting the
complex network and co-dependency of genes. A sample
transcriptome can then be expressed as a linear combin-
ation of these functional components:

n
8= ZfZIWfFfi + €

Where g; is the expression level of gene i, w is the
coefficient of the corresponding functional component F
and ¢ is the noise in the measurement.

The extensive corpus of public available microarray
data is useful for identifying functional components that
are representative of fundamental human biology. These
“data-derived” features have the advantage of not being
dependent on expert prior knowledge, and can be used
across different experimental conditions. In particular,
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analysis pipelines built on these features do not require
user-defined parameters, thus increasing reproducibility
of results. Engreitz et al. [19] previously demonstrated
the use of ICA to identify such features based on a set of
9395 microarrays from GEO, but the methodology
employed resulted in many correlated components, with
the maximum correlation being 0.802. We have leveraged
the exponential growth of GEO over the past decade to
obtain a ten-fold increase in data for training our ICA
model. Additionally, we have chosen to use the ICA algo-
rithm ProDenICA [20], which has been previously docu-
mented to have higher sensitivity to a wider range of
source distribution and better general performance than
the more common FastICA algorithm [21]. Although the
original authors of ProDenICA demonstrated its usage in
relatively small datasets, the method has been extended to
larger datasets recently, most notably by Risk et al. [22] in
their application to large fMRI data. In this paper, we
apply the algorithm to an even larger dataset based on the
human transcriptome (20,089 genes), and identified a set
of 139 functional components from a diverse range of
human microarray data. Using six different studies from
GEO, we demonstrate the usage of FCs in transcriptomic
analysis. Specifically, we present the following:

(1) Rigorous quantification of the 139 FCs through
multiple repeats and subsampling of data to ensure
reproducibility of the components. We also
constructed a tissue fingerprint library based on
GSE3526 and GSE7307 so that query samples can
be quickly mapped to the most similar tissue.

(2) Demonstration of the FCs as machine learning
features for sample classification in two different
studies from GEO (rheumatoid arthritis, GSE71370;
leukemia, GSE13159). We show that the FCs can be
used as classifier features without prior processing,
as opposed to typical workflows that require the
identification of DE gene sets before model training.
We also evaluated their robustness in dealing with
small training sets by subsampling the data from
GSE13159 at different sizes. The performance of the
models built using the FCs was then compared to
the ones built using the original genes, and found to
be superior when sample sizes were small. We note
that this makes our methodology particularly useful
for typical studies where the training set consist of
less than 50 samples.

(3) Demonstration of FC’s ability to regularize data, using
data from the MicroArray Quality Control (MAQC)
study and a multi-center AML study, GSE15434. The
FC-space clustering of MAQC samples is comparable
to that of the original gene-space, and analysis of the
AML study in FC space also produces more parsimo-
nious results across the different centers.
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(4) Evaluation of biological relevancy of differentially
expressed FCs. We apply differential expression
analysis to two different studies (rhabdomyosarcoma,
GSE66533; dengue virus infection, E-MTAB-3162)
and show that the significant FCs in both cases had
biological annotations that were similar to the results
from the original papers based on gene-level analysis.

Methods

Data collection

Raw data was collected as in [23]. Briefly, we obtained all
human GEO series records (GSEs) that were found on the
Affymetrix HG-U133 Plus 2.0 platform (GPL570) as of
March 2015. After filtering for GSMs with associated raw
CEL files, we obtained 2753 GSEs, containing 97,049
microarray CEL files. The CEL files were then processed
using robust multi-array average (RMA) [24, 25] and cor-
rected for technical bias [26]. The probes were then
mapped to 20,089 unique Entrez gene identifiers using the
R package Jetset v3.1.2 [27].

The dataset, containing 20,089 genes by 97,049 arrays,
was then quantile-normalized between arrays, and gene-
centered. This was followed by scaling and centering of the
dataset by array. We denote the resulting matrix by F.

Constructing a representative compendium

The Spearman’s rank correlation coefficient (p; ;) was
computed between all arrays. Distances between arrays
F; and F; were defined as 1 - p; ; and hierarchical clus-
tering of the arrays was performed using average linkage.
The maximum intra-cluster distance (cutoff height of
tree) was determined by using a k-nearest neighbor knee
plot, and the tree was cut accordingly to obtain the corre-
sponding clusters. We excluded clusters with less than five
members and selected the medoids of the remaining clus-
ters as representative samples. We refer to the collective
set of medoids as the representative compendium, and
denote it by X. To characterize the samples in the repre-
sentative compendium, we extracted the corresponding
metadata (title, source name, characteristics, description and
treatment protocol) from GEO using GEOmetadb [28] and
then parsing them with BioPortal’s Annotator [29] to get the
associated NLM’s Medical Subject Headings (MeSH) de-
scriptors. We mapped the descriptors to their highest level
term, and retained only the terms from the following four
categories: A (anatomical terms), C (diseases), D (drugs and
chemicals) and G (phenomena and processes).

To determine the relationship between the size of a de-
rived compendia and the time, we repeated the process
across various calendar years in the GEO repository. Arrays
in GEO at the end of each calendar year were processed
similarly to the above to yield both the full compendium
and the corresponding representative compendium for that
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year. The number of arrays in both compendia was then
tabulated as a function of time.

Whitening and selection of number of components

Whitening (decorrelation of variables followed by scaling)
of the data matrix [30] was done using singular value
decomposition (SVD), X = UDVYT. The orthogonal matrix
U is then inputted to the ICA algorithm. The diagonal
values (d;;) of the diagonal matrix D is related to the eigen-
values (g;) of the covariance matrix (X7X) by the trans-

i’ _ _di
g1 20088

necessary for consistency with the unbiased estimate of
variance.

The eigenvalues of the covariance matrix provides a way
to select the number of components. In particular, parallel
analysis is a well-documented method to stably perform
the selection [31-34]. We performed 5000 simulations by
running SVD on random matrices of the same dimension
as the input matrix X. For each sequential component in
the simulations, we obtained the median (Horn’s method
[31]) and 95-percentile (Glorfeld’s method [32]) of the
corresponding eigenvalues across the simulations, and
used them as the bias. We then subtracted the bias from
the actual eigenvalues of X, and retained the components
(n) whose corrected eigenvalues were greater than 1. We
define the whitened and reduced data matrix Y (g x ) as

formation e; = . The correction of g—-1 is

Y=\/g-1xU

X =UDpvT = x YDVT

1
vg-1

Where g=20089 genes, and the square root term is
introduced as a scaling factor so that the resulting di-
agonal matrix from the SVD of XX would be directly
comparable to eigenvalues of the covariance matrix.
We used the data matrix Y as input for ICA.

Independent component analysis

We implemented ICA using the R package ProDenlCA
[21]. The convergence threshold was set to le-6, with a
maximum iteration of 8000. Additionally, we set the
number of grid points for density estimation to be 2000,
and the robustness parameter (“order”) to 11. ICA pro-
duces the following output:

Y =S54

Where the source matrix S has dimensions g x n, and
the mixing matrix A has dimensions # x n.

A total of 100 independent runs of ICA were performed
on the input data Y, and the solutions were processed in a
similar method to Risk et al. [22]. First, all solutions were
converted to their canonical form by ordering the ICs
(columns of S) by their respective skewness. The solution
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with the highest negentropy score across the 100 repeats
was chosen to be the “best solution”, and was then com-
pared to the other 99 runs component-wise. For the
source matrix from the k-th run, S, we computed the
pairwise-component Pearson correlations with the “best
solution”, S°. We define the cost matrix C to maximize
these correlations:

r =

(1-p)

N =

1
T=2(1
rt=500+p)
C = min(r",r")

Where p is the DPearson correlation matrix.
Minimization of the overall cost is a linear assignment
problem, and was solved using the Hungarian algorithm
(R package clue [35]). Let B be the matrix that represents
this assignment, such that B;; =1 if the i-th component of
S° was assigned to the j-th component of S%, and zero
otherwise. The elements of the signed permutation matrix
P is then defined as

1, 1 [FZ/ < rﬂ

- ot
) l{ri,eri,l}

P =
L] ~1

For B;;#=0, and zero otherwise. The permutation
matrix is a 1-1 mapping and rearranges the columns of
S¥ (with appropriate reorientation of direction) so that
the correlations with the respective columns in S° are
maximized. The component-wise correlations of the 99
solutions with the “best solution” is then

&= cor(S?, [SkP]i)

Where S? and [S*P]; are the i-th component (columns) of
the “best solution” and the permuted source matrix from
the k-th run respectively.

Evaluation of component estimates

We resampled the full compendium randomly without re-
placement to obtain 50 similar-sized pseudo-representative
compendiums. Whitening was performed as described pre-
viously, but we selected the same number of components
as the original solution to facilitate comparison between the
models. For each of the 50 resampled compendiums, we
ran ICA ten times, and chose the solution with the highest
negentropy score as the solution for that resampled com-
pendium. We compared the 50 chosen solutions to the
“best solution” from the representative compendium using
the same methodology as per the previous section.
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Biological annotations of components

GO terms and relationship to the H collection in MSigDB
For each component, we defined the sets of genes with
loadings that were three standard deviations above or below
the mean as the up or down modules respectively for the
component. Collectively, we term the union of both set of
genes as active genes for the component. As per Engreitz et
al. [19], we performed GO enrichment analysis, using
TopGO [36] on the up and down modules separately.

The percentage overlap between gene signatures from
the H collection of MSigDB [3] and the active genes for
each FC was calculated. For each gene signature-FC pair,
we also checked for enrichment of overlapped genes by
performing a hypergeometric test; only pairs that had a
BH-corrected p-value of less than 0.01 were retained.

Fingerprinting human tissues: GSE3526 and GSE7307

All 353 normal human samples from GSE3526, coming
from 65 different tissue types derived from ten post-mor-
tem donors, were downloaded from GEO, processed and
projected into FC space. To obtain representative samples
from the 22 nervous system tissues, we calculated the pair-
wise distances within each tissue type and selected the
medoid (sample with the minimum distance to all other
samples within the same tissue type). Clustering of the 22
samples was then performed. The set of all samples from
GSE3526 were also used as a compendium to annotate
queries with their most similar tissue origin.

GSE7307 (Human Body Index) contains 677 samples
from 90 tissue types, some of which were from diseased
patients. We downloaded only the healthy samples, and
processed them as per GSE3526. We compared the tissues
types that were common to both GSE3526 and GSE7307
using Pearson correlation coefficient. To provide robust
estimates that were not affected by outlying samples in
the tissue types, we reported the median and the standard
deviation of the correlations for each “GSE/tissue”-“GSE/
tissue” pair. We also included the sub-compendium (“Hu-
man Tissue Compendium”), containing both 353 samples
from GSE3526 and 504 samples from GSE7307, in our R
package so that users can also use it to annotate their
query samples with the most probable tissue types.

FC applications and analysis

For all evaluation datasets, the raw CEL files were down-
loaded from GEO. Each GSE was processed independently
by running RMA on the set of samples, followed by
technical bias correction as per the earlier section “Data
Collection”. Projection of a dataset Qg into the corre-
sponding FC space is done via the matrix multiplication

QFC =S TQgene
A unitary vector space based on the FCs loadings can
also be defined by normalizing each component to have
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unit length, which we provide as an option in our R pack-
age. For all analysis in this paper however, projection onto
FC space was done using the original gene loadings in the
calculated FCs.

Wherever t-test was used, Benjamini-Hochberg correction
was performed on the p-values [37], with N either being the
total number of FCs (139), or the total number of genes
(20,089) being tested. For heatmaps, the genes and arrays
were clustered using hierarchical clustering with average
linkage, and the distance metric for both was defined using
the Pearson correlation:

Dist; ; = l—cor(Qi, Qj)

FCs as features for machine learning algorithms: GSE71370
and GSE13159
For GSE71370, the meta-data available in GEO was used
to annotate the samples under three categories: synovial
fluid from rheumatoid arthritis (RA) patients (RASFM),
peripheral blood from RA patients (RAPBM) and periph-
eral blood from healthy patients (HCPBM). Gene expres-
sion data were projected into FC space. For each of the
three pair-wise comparisons between categories, unpaired
t-tests were performed across the FCs, with a BH-corrected
p-value threshold of 0.05. The union of the three sets of dif-
ferentially expressed FCs was then used as the signature to
cluster the sample types. We performed hierarchical clus-
tering based on the FC values in the signature, using aver-
age linkage. To identify FCs that were specific to the
differences between RAPBM and RASFM, we focused on
the DE FCs that were unique to the pair (Le. not in com-
mon with DE FCs from the RASFM vs RAPBM analysis),
and report the corresponding GO enrichment annotations.
GSE13159 contains data from the Microarray Innova-
tions in Leukemia (MILE) study program, consisting of
eighteen different categories of leukemia (including a con-
trol group). The class labels of the individual sample were
obtained from the Data Supplement accompanying the
original publication [38]. After preprocessing as described
earlier, the data was projected into FC space using the uni-
tary vector space. The classification results were obtained
using the same methodology of the original authors, by
applying support vector machine (SVM) classifiers in
three independent runs using 30-fold cross validations.
The R package kernlab [39] was used to implement the
classifiers with a linear kernel function. We also defined
the call rate (CR) similarly as the number of determinable
calls. The sensitivity for each class was calculated as the
fraction of correctly predicted samples in that class out of
all determinable calls in the run. We report the mean CR
and sensitivity across the three runs.
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Performance of FC-based models in low sample settings
Samples from classes C3 (c-ALL/pre-B-ALL with t(9;22),
122 samples) and C8 (c-ALL/pre-B-ALL without t(9;22),
237 samples) in GSE13159 were defined as the positive and
negative groups respectively. For a given simulation run, we
randomly chose 22 C3 and 37 C8 samples as the held-out
test set. The remaining data in the two groups (100 C3 and
200 C8) were then subsampled at 5 10%, 20%, 40%, 60%
and 80% to produce corresponding training sets for training
SVM classifiers (same parameters as the above analysis for
GSE13159). For each subsampling percentage, we repeated
the sampling 200 times. For a particular sampling, we
calculate the negative predictive value (NPV), positive pre-
dictive value (PPV, aka precision), sensitivity (aka recall),
specificity and accuracy as follows:

P = [Class = C3]; N = [Class = C8]

Pred.P = |Predicted Class = C3]; Pred.N
= [Predicted Class = C8]

TP, = #[PnPred.P,); TN, = #[NnPred.N,]

TP,
PPV,=——"—
#[Pred.P,]
NPV, = N
¥ #|Pred.N,]
Sensitivity, = #[P?
Specificity, = #[NJ]C
TP, + TN,
Accuracy, = ——————
#[P] + #[N]

Where x is the model based on feature under consid-
eration (FCs or genes).

In addition, for each sampling, we also performed McNe-
mar's test with continuity correction on the classification
results from the two models (FC vs gene space). If the
calculated test statistic for the pair of models had a p-value
that was less than 0.05, we defined them to be significantly
different. When there is perfect agreement between the
pair, the test statistic is undefined; in this case, we simply
note that the two models are identical. For a given run, we
compute the percentage of the 200 samplings where the
two models were observed to be different.

The average across the 200 sampling for a given sub-
sampling percentage were then recorded as the respective
statistic for that run. A total of ten independent simulation
runs were performed, and the mean and standard devi-
ation for the statistics were reported across the ten runs.
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Fig. 1 Sizes of full and representative compendium as a function of
time. The number of arrays in both compendia is plotted here, as a
function of the year. In 2015, there were 97,049 arrays in the full
compendium and 2726 in the representative compendium
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For comparison, we also calculated the above statistics
using the full remaining data (i.e. subsampling percent-
age is 100%) at each run. Repeats were not performed
for this case.

FCs retain biological information while regularizing data:
MAQC and GSE15434

Affymetrix HGU-133 Plus 2.0 samples from the Micro-
Array Quality Control (MAQC) project were downloaded
from GEO (GSE5350) and processed. The 120 samples
were clustered in both FC space and full gene space, and
cophenetic correlation between the trees was computed.
For visualization purposes, a tanglegram [40] using both
trees was also generated. For evaluation of the FC-based
clustering tree, we grouped samples from A and C as a
mega-class, and B and D as the other mega-class. The tree
was cut to yield two clusters, and these were then classi-
fied as one of the two mega-classes based on the majority
of the cluster membership. The purity of the clustering
was calculated as

1 2
Purity = 120 Z #Correctly Classified Samples in C;
=1

Where C; is the i-th cluster. The Gini impurity for
each of the two clusters was calculated as

100
I

60

Percent of variance explained
40

T T T T T
0 500 1000 2000

SVD Column

Fig. 2 Variance explained by eigenvectors from SVD. (Left) Percentage of variance explained by each eigenvector. (Right) Cumulative variance
explained by the eigenvectors. The blue lines represent the cumulative variance explained by the leading 139 eigenvectors
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2

Gini Impurity(C;) = 1- fo
=1

Where f; is the fraction of samples in the i-th cluster
that are from the j-th mega-class.

GSE15434 contains a total of 251 AML samples, coming
from three different centers in Germany: Dresden (DRE),
Munich (MUC) and Ulm (ULM), with 78, 96 and 77
samples respectively. Approximately half of the samples
contained mutations in the NPM1 gene. We identified dif-
ferentially expressed (DE) functional components (FCs) and
genes between the NPM1-mutated and NPM1-wild type
groups using the R package limma [41] at a false discovery
rate threshold of 1%, and compared the number of shared
DE FCs/genes between the three test centers. We also per-
formed a typical gene set enrichment analysis [3] using the

11 ~
10+
20-
30-
40-
50-
60-

70+ -

Functional Component
|
\

110- =
120+ L
130 - -

1397\ T T T T 777\
0.0 0.2 0.4 0.6 0.8 1.0
Pearson Correlation (N=99)

Fig. 3 Correlation of FCs between the best solution and each of the
99 other runs. The yellow dots and the black lines are the mean and
standard error of the mean Pearson correlation coefficient values
respectively, for each FC. The empty blue circles are the maximum
coefficient recorded for the FCs
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4725 curated gene sets in the C2 collection of MSigDB
v5.0, using the recommended parameters of 1000 pheno-
type permutations and a false discovery rate (FDR) of 25%.
Significant gene sets were identified for both NPM1-mu-
tated and NPM1-wild type groups.

Differentially expressed FCs are biologically relevant:
GSE66533 and E-MTAB-3162

For GSE66533, the rhabdomyosarcoma samples were sepa-
rated into two main groups (33 PAX3-FOXO01 Fusion-Posi-
tive and 25 Fusion-Negative samples) based on descriptions
obtained from Supplementary 1 of the paper by Sun et al.
[42]. Gene expression data were projected into FC space,
and unpaired t-tests were performed across the FCs to
identify DE FCs. To perform a search for similar samples,
we calculated the Pearson correlation coefficient in FC
space between samples from the study and the full com-
pendium. For each sample in either group, we retained all
GSMs from the full compendium that had a correlation of
more than 0.95, and term these “neighbors”. We then took
the union of these “neighbors” within a group, and
removed GSMs that were not considered “neighbors” to at
least half of the group’s members. To identify GSMs that
were unique to either group, we focus on the set-difference

2000 3000 4000 5000

Counts (Genes)

1000

0

1 é 1b 15 20 25 30 35 40 44

Number of FCs

Fig. 4 Promiscuity of significant genes in FCs. Significant genes for
each FC were pooled together and tabulated. The histogram shows
the distribution of how frequently a gene is found to be significant
in one or more FCs. The x-axis is the number of FCs in which a
particular gene is found to be significant, and the y-axis is the number
of unique genes that meets that corresponding requirement. For
instance, the maximum number of FCs that a gene was found to be
significant in was 44, with only one gene achieving that criteria
(AKR1C3; Entrez ID 8644). This observed in the histogram at the 44th
position on the x-axis, with a height corresponding to 1 (represented
as a dot due to the scale). A total of 9091 genes were found to be

significant in only one to three FCs
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between the two sets of “neighbors”. We also applied our
“Human Tissue Compendium” to identify the tissue types
most closely associated with the samples.

For E-MTAB-3162, the raw CEL files was downloaded
from ArrayExpress [43] and processed. The meta-data
obtained from the sdrf file, and used to divide the dengue
patient samples into the two subgroups (Day O vs Day 4).
We performed t-test to identify the set of DE FCs. To map
the GO annotations to GO slim terms, we used the Map2-
Slim tool [44] from the Gene Ontology project, with the
go-basic ontology and the default goslim_generic subset.

Results

Representative compendium and parallel analysis

To avoid overrepresentation of any biological phenotype
in the training data, clustering of microarray samples
was performed on the full compendium (97,049 arrays)
to obtain a representative compendium. The height cut-
off of the clustering tree was determined to be 0.3 based on
k-nearest neighbor plots for k = 4 and 5 (see Additional file 1:
Figure S1). After the filtering step described in the methods
section, we obtained a representative compendium consist-
ing of 2726 samples. The clustering and filtering process
was found to be robust against varying sizes of the full
compendium, and scaled closely with the latter (Fig. 1).
86.4% of the samples have between two to nine unique
MeSH terms coming from the four MeSH categories
(Additional file 1: Table S1). The MeSH annotations of
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the representative compendium (Additional file 1: Table S1)
indicate that about a third of the samples were cancer-re-
lated (MeSH term: C04, neoplasms), with substantial num-
ber of representatives from other pathological conditions
and diseases found in skin and immune system. There are
also representatives from all major anatomical classes
(MeSH terms: A0-A9).

After whitening of the representative compendium,
parallel analysis suggested that only the leading 139
components should be retained. We note that the
number of retained components was the same for both
implementations of parallel analysis, using either the
median (Horn’s method [31]) or the 95-th percentile
(Glorfeld’s method [32]) for determining bias. Collect-
ively, the 139 components of the whitened data ex-
plained close to 80% of the total variance in the
representative compendium (Fig. 2). This whitened
and reduced matrix (20,089 x 139) was then used for
subsequent ICA processing.

ICA and evaluation of component estimates

On average, each of the 100 independent runs took 2461
iterations to reach the convergence requirement. The final
negentropy of the ICA solutions ranged from 0.2417 to
0.2443, with a median of 0.2442. Run 39’s solution yielded
the highest negentropy and was thus used as the “best
solution” in the rest of the paper. The 139 columns of the
canonized S matrix are the independent components

Percentage Gene Overlap With H Collection Signatures
(Filtered by BH p-value < 0.01)

FCs (1 to 139, from left to right)

Fig. 5 Relationship between FCs and H collection from MSigDB. Overlaps between the active genes and gene signatures from the H collection
were filtered for statistical significance and then presented as a percentage of the total number of genes in each signature
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obtained from ICA, and we refer to them as functional
components (FCs). Each FC had zero mean and unit
standard deviation.

The derived FCs were well correlated between all 100
runs (Fig. 3), and for the majority of the FCs, the mean
Pearson correlation coefficient was more than 0.8, with the
maximum being close to 1 for all the FCs. Similar results
were observed when Spearman correlation was used. We
note that the leading 25 FCs of our chosen solution were
also highly reproducible in the compendium subsampling
analysis, with median Pearson correlation coefficients of
more than 0.8. However, the correlation coefficients yielded
by the subsampling analysis were uniformly lower than the
ones observed in Fig. 3 across the FCs, and greater so for
the tailing FCs. In particular, FCs 65 to 139 had a maximum
Pearson correlation coefficient of less than 0.8 in the sub-
sampling analysis.

Biological interpretation of FCs

To gain better understanding of the FCs, we identified
the key gene contributors to each of them. The elements
of each component are the gene loadings, and can be
interpreted as the level of contribution of a gene to the
component’s score. For a given FC, we consider the set of
genes whose absolute loading is three standard deviations
above the mean as active genes. Apart from FC 1, which
only had 28 active genes, the number of active genes in
the other FCs ranged from 103 to 494, with a median of
382. Amongst the 20,089 genes, 12,978 genes were found
to be active in at least one FC. The majority of the genes
were active in only up to three FCs (Fig. 4), and the max-
imum number of components that a gene was observed
to be active in was 44.

The active genes for each FC were then used to obtain
GO annotations for the corresponding FC. Of the 139
FCs, 22 did not have any GO annotations, and a further
14 had only one GO annotation. The largest number of
GO annotation belonging to an FC was 58 (FCs 3 and 4).
A total of 689 unique GO codes were obtained across the
139 FCs, a 66% increase compared to the 415 unique GO
codes obtained from the corresponding 139 leading princi-
pal components. This suggests that there is more biological
signal in the FCs than components obtained via PCA, in
line with current literature [13]. The GO annotations for
some of the FCs are presented in this paper as part of the
reanalysis of other gene expression studies; the complete
set of GO annotation for the FCs can be found in our R
package, humanFC.

The percentage gene overlap between active genes in the
FCs and the respective gene signatures in the H collection of
MSigDB were calculated, and only the statistically significant
pairs are shown in Fig. 5. The highest overlap (75%) occurs
between FC 2 and the H collection signature “INTERFERO-
N_ALPHA_RESPONSE”, which contains 97 genes. Half of
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the signatures in the H collection contain 200 genes each, so
even a pair with 50% gene overlap in Fig. 5 can indicate up
to 100 shared genes. For instance, FC 10 and the gene signa-
ture “HEME_METABOLISM” have only a 52.5% overlap,
but the actual number of shared genes is 105. In particular,
FC 10 has five GO annotations (GO:0006782, GO:0051597,
GO:0015701, GO:0006879 and GO:0048821) that are all
related to heme metabolism, supporting a strong relationship
with the namesake gene signature.

Twenty of our FCs do not have any significant gene
overlap with the signatures in the H collection. Of
these, fourteen of them (FC 1, 36, 51, 59, 60, 90, 94,
99, 102, 103, 112, 118, 123, 128 and 137) also do not
have any GO annotations. The lack of GO annotations
for these FCs does not necessarily indicate a lack of
biological significance; for instance, the active genes

Table 1 Active Genes for FC 1

Direction

Chromosome
Number

EIF1AX X
DDX3X

PUDP

KDM6A

PRKX

XIST

NLRP2

TXLNG

ZFX

TSIX

KDMS5C
LOC102724689

Up RPS4Y1
(positive loadings)

Gene Symbol

Down (negative loadings)

X X X X X

O

EIFTAY
DDX3Y
ANOST1
PRKY
KDM5D
TTTY14
NLGN4Y
urty
TTTY15
DDX43
USPoY
SPESP1
ZFY
TXLNGY
FRG1CP 20

< 0 <X <X <X <X <X < X < < < N X X X X

< =
w

Gene symbols and chromosome number for the 28 active genes in FC 1,
grouped by their direction (sign of loadings)
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in FC 1 are clearly markers for sex-specific features
(Table 1). Insight into the characteristics of these FCs
can also be obtained by looking at the tissue samples
microarray experiments that have the highest or lowest
score in those FCs. In the case of FC 36, the ten low-
est scoring samples were mostly from myeloma cells,
whereas the highest scoring samples were from normal
epithelia.

Fingerprinting human tissues

We built a database of tissue fingerprints so that it could be
used to annotate future samples. In order to avoid fitting to
errors from a single study, we compared the fingerprints
from two relevant tissue studies (GSE 3526 and GSE7307)
with each other.

About a third of the samples from GSE3526 were from
22 tissue types belonging to the nervous system, and we
performed clustering of the representatives from these tis-
sues (Fig. 6). The clustering displayed underlying anatom-
ical and physiological similarities between the tissues. For
instance, the tissues from the three lobes (parietal, occipital
and temporal) were grouped together with the cerebral cor-
tex in one major cluster, whereas the other cluster was
enriched for tissues from the peripheral nervous system,
such as ganglia tissues (trigeminal, dorsal root) and the
spinal cord, and most members of the basal ganglia (sub-
stantia nigra, subthalamic nucleus, ventral tegmental area).
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There are a total of 65 tissues types that were common to
both GSE3526 and GSE7307 based on the annotations in
GEO (the tissue types in former is a proper subset of the
latter). The median Pearson correlation coefficients (MPC)
between tissues from GSE3526 and GSE7307 are shown in
Fig. 7. Tissues from the same classes (diagonal of Fig. 7)
were highly correlated, with an average MPC of 0.985 and
an interquartile range of 0.981 to 0.990. The mean standard
deviation across the whole MPC matrix was 0.0269, with
an interquartile range of 0.0157 to 0.0346.

FCs as features for machine learning algorithms

To demonstrate the applicability of our FCs as features for
use in machine learning algorithms, we apply our FCs to
two different studies (rheumatoid arthritis and leukemia).
Additionally, we performed subsampling of the leukemia
study to compare how model performances in FC space
and full gene space are affected in low-sample settings.

GSE71370 (rheumatoid arthritis)

GSE71370 contains three sample types: peripheral blood
from rheumatoid arthritis (RA) patients (RAPBM), periph-
eral blood from healthy patients (HCPBM), and synovial
fluid from RA patients (RASFM). Using the standard Affy-
metrix chip definition file (CDF), we found 6636 DE genes
between RASFM and HCPBM, and zero DE genes between
RAPMB and HCPMB.

Nervous System (Representative)
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Fig. 6 Representative tissue samples from the nervous system (GSE3526). Medoid samples from each tissue type were selected to be the
representative for the tissue. The representatives were then clustered using hierarchical clustering with average linkage. The full range of samples
can be found in Additional file 1: Figure S3 (no clustering performed, but the order of the tissue types is the same as here). The order of the FCs
in the plot can be found in Additional file 1: Text S1
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samples from GSE3526 and GSE7307. The figure shows the median correlation scores for each GSE/tissue-GSE/tissue pair. High correlation is

There are zero differentially expressed (DE) FCs between
RAPBM and HCPBM, 72 DE FCs between RAPBM and
RASFM, and 89 DE FCs between RASFM and HCPBM. 61
FCs were common in the latter two sets, resulting in a
combined signature of 100 FCs for clustering. Figure 8
shows the clustering results using the signature. A distinct
separation between the classes is observed, and the two
subgroups from the same tissue type (peripheral blood) are
clustered together. There are eleven DE FCs that are
unique to the comparison between RASFM and RAPBM.
Additional file 1: Figure S4 shows the corresponding clus-
tering results in gene space, and Additional file 1: Table S3

lists the FCs and the corresponding GO annotations. In
total, there were 75 unique GO terms that were associated
with the selected FCs.

GSE13159 (leukemia)

GSE13159 contains patient samples from 18 different clas-
ses of leukemia. Table 2 shows the confusion matrix of the
SVM classification model using data that was projected
into our FC space, and Fig. 9 summarizes the average dif-
ferences between our confusion matrix and that from the
original paper (Table 2 in Haferlach et al. [38]) after nor-
malizing for class size. The call rates (CR) achieved by
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GSE71370

Sample Class
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RAPBM
HCPBM

Color Key

-4 -2 0 2 4
Row Z-Score

mrﬁbﬁﬁmrm

Fig. 8 Clustering of GSE71370 samples using 100 FCs. 100 FCs were identified to be DE between the pairwise classes, and were used to perform
clustering on the samples. The three sample classes were separated very well by hierarchical clustering (average linkage), with only GSM1833142
appearing to be clustered incorrectly as RASFM. The order of the FCs in the heatmap can be found in Additional file 1: Text S1

100 FCs (clustered)

both models are very similar, although the class-wise sen-
sitivity of the model from Haferlach et al. was generally
slightly better, averaging at 0.0692 higher than the ones
from our model. For half of the 18 classes, the differences
between the sensitivities from the two models were insig-
nificant (the median difference is 0.0575), and for class
C15, our FC-based model outperformed Haferlach’s model
marginally. The misclassification patterns (off-diagonals of
the confusion matrices) were similar between both
models, although our FC-model misclassified samples as
C8 or C13 more frequently.

The random forest we built indicated that FC 18, 39
and 54 are the three most important variables (Fig. 10).

The corresponding GO annotations for the three FCs
(Table 3) are all related to immune response.

Performance of FC-based models in low sample settings

We subsampled two classes from the leukemia study at
various fractions to create datasets of varying sizes. The
FC space models had higher NPV, sensitivity and accuracy
than the full gene space models when the fraction of train-
ing data used was low (Fig. 11b, ¢ and e). Specifically, we
observed that the FC-based models had higher sensitivity
for subsampling fractions of up to 20% of the full training
size (300), and higher accuracy and negative predictive
value (p <0.01) for subsampling fractions of up to 10%
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Fig. 9 Differences between classification models (GSE12159). The average classification rate from both confusion matrices were normalized row-
wise by the total number of samples in each gold standard class. The difference between the matrix from Haferlach et al. and our FC-based
model was then computed and represented as a heatmap. Red squares represents higher values in the Haferlach et al. model; in off-diagonals
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(both p < 0.01). The FC-based model was also able to pro-
vide balanced predictions at very low subsample fraction
(5%), whereas the gene-based model breaks down and
predicts all negatives, resulting in undefined PPV (Fig. 11a)
and inflated specificity (Fig. 11d). As the amount of train-
ing data used increased, the performance of the models
across all evaluation metrics improved, and the predic-
tions of FC- and gene-based models increased in concord-
ance (Fig. 11f). At higher fractions of training data (0.4
and above), the full gene space models dominated in
terms of performance.

FCs retain biological information while regularizing data
We also studied how projection of microarray data into
the FC space can regularize data and reduce batch effects
in datasets. The MicroArray Quality Control project con-
tains samples from well-controlled, titrated mixtures,
allowing for a quantitative assessment of the extent of in-
formation loss when projecting into the FC space. The
acute myeloid leukemia study, which contains patient
sample from three institutes in different geographical loca-
tions, provides an avenue to investigate how much batch
effects are reduced when projecting into FC space.

MicroArray quality control data (MAQC)

In clustering MAQC samples in our FC space, we observed
that the sample classes were generally well preserved
(Fig. 12). In particular, if we define the classes based on the
compositions of HBRR and UHRR (mega-class 1; A and C,
mega-class 2: B and D), and cut the clustering tree to obtain
exactly two clusters, the resulting purity of the clusters is
0.9 (the Gini impurity for the clusters are 0.105 and 0.235).
The corresponding gene-space tree has a slightly lower pur-
ity of 0.875. However, the clustering trees obtained in FC
and full gene space were very similar with a cophenetic cor-
relation of 0.863, and certain misclassified samples, such as
the set containing A.18, B.6 and B.8, were common to both
clustering results (Additional file 1: Figure S2).

GSE15434 (acute myeloid leukemia)

Distinct separation of the AML samples by the three
study centers can be observed when the original gene
space data is projected on the first and fourth principal
components (Fig. 13a). Note that the first few compo-
nents all separate the study centers to various degrees,
and that the choice of using the first and fourth compo-
nent here was simply to enhance visual clarity.
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Fig. 10 FC importance in leukemia classification, as ranked from a random forest model. A random forest was built using the data from GSE13159,
with features being the respective FC scores. FC 18, 39 and 54 were the three most important variables identified by the random forest

Table 3 GO annotations for DE FCs (GSE13159)

The patient samples can be grouped into two main
phenotypical classes (Table 4). Results of the differential
analysis between the two AML phenotype classes (NPM1-
mutated and NPM1-wild tpe) were performed in gene and
FC space are shown in Fig. 13b (top). The gene sets

FC BH-Corrected GO ID Description . )
p-value that were enriched for both classes are also reported in
18 00102 GO:0050853 B cell receptor signaling pathway Fig. 13b (bottom).
G0:0002250 adaptive immune response . . . .
) Differentially expressed FCs are biologically relevant
GO:0006959 humoral immune response ] .
' 4 We reanalyzed data from two previous studies (rhabdo-
600002768 ‘STQ;EZG response-regulating cell myosarcoma and dengue virus infection) to demonstrate
that DE FCs can provide similar insight to a disease as
GO:0031295 T cell costimulation .
the conventional DE gene approach.
G0O:0030183 B cell differentiation
39 0.0102 GO:0002250 adaptive immune response GSE66533 (rhabdomyosarcoma)
GO:0060394 negative regulation of The rhabdomyosarcoma dataset contains patient samples
pathway-restricte.. that are either PAX3-FOXO01 Fusion-Positive or Fusion-
GO:0050853 B cell receptor signaling pathway Negative, and DE genes had been previously reported
GO:0002377  immunoglobulin production between the two groups. Ten FCs were found to be DE at
54 00100 GO0014068 positive regulation of the 0.01 level (p-values were BH-corrected). The Fusion-

GO:0050776
GO:0019371
GO:0007596

phosphatidylinosi...
regulation of immune response
cyclooxygenase pathway

blood coagulation

Positive samples generally had higher FC scores in FCs 59,
75, 82, 96 and 112, and lower scores in 66, 86, 98, 106 and
134 as compared to the Fusion-Negative samples (Fig. 14).
The GO terms associated with those FCs are listed in
Table 5; FCs 89 and 112 do not have associated GO terms.
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Fig. 11 Classification performance at various subsampling ratios. 100 independent simulation runs were performed, each using an independently
selected held-out test set. For each run, 200 repeats were performed using different training sets, and we calculated the mean performance
metrics across the repeats. At the lowest subsampling percentage (5%), a training set would consist of five C3 and ten C8 samples, both
randomly chosen. The performance metrics, averaged over the runs are: (a) Positive Predictive Value (i.e. precision), (b) Negative Predictive Value,
(c) Sensitivity (i.e. recall), (d) Specificity, (e) Accuracy, and (f) the amount of agreement between FC and gene based models. Error bars here
indicate the standard deviations (across the 100 runs) for the particular metric. *For eleven of the simulation runs (i.e. test sets) at the subsampling
percentage of 5%, the gene-space model predicted all negatives in at least one sampling, resulting in an undefined PPV. It should be noted that the
FC-based model consistently provided predictions for both classes across all runs; the average PPV for the FC-based model across those eleven runs

o NPV
0.75-
0.50-
0.25-
0.00-
0.05 0.1 02 04 06 08 1

Fraction of Available Training Data (N = 300)

D Specificity
1.00-
0.75-
0.50-
0.25-
0.00-
0.05 0.1 0.2 0.4 0.6 0.8 1

Fraction of Available Training Data (N = 300)

-

Concordance of FC vs Gene Model Results

Ave. Disagreement
o o o
N B [e2)

<
[S)

0 0.25 0.50 0.75 1.00
Fraction of Available Training Data (N = 300)

We also identified 38 and 43 “neighbors” for the
Fusion-Positive and Fusion-Negative group respectively. 32
of these “neighbors” were common to both groups. Note
that the maximum correlation between samples from the
two classes was 0.993, and the minimum was 0.890. The
mean correlation between the two classes was 0.970.

Using our “Human Tissue Compendium”, we found that
the highest correlation of the samples were with the tissue
types “myometrium” (top hit for 48 samples, mean

correlation is 0.865), followed by “endometrium” (top hit
for five samples), “deltoid muscle” (top hit for four sam-
ples) and “synovial_membrane” (top hit for one sample).

E-MTAB-3162 (dengue virus exposure)

The dengue viral study contained Day 0 and Day 4
patients, and the two time points were previously
reported to have different gene expression profiles due
to the dynamics of viral response. Six FCs were
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Fig. 12 Hierarchical clustering of MAQC samples in FC space. Clustering of MAQC samples (columns) and the FCs (rows) were performed using
average linkage. The sample classes were generally preserved across the clusters. The order of both the samples and FCs in the plot can be

differentially expressed between in Day 0 and Day 4
dengue patients (Fig. 15), which collectively mapped
to 150 unique GO terms (Additional file 1: Table S2).
Some of the GO terms pertain directly to dengue dis-
ease phenotype, such as “platelet activation”, “platelet de-
granulation” and “blood coagulation”. There is a clear
enrichment for immune response GO terms, with “immune
response” (GO:0006955) appearing in five of the six FC’s GO
annotations; the exception is FC 4, which is instead enriched
for cell division process terms. Other GO terms related to im-
mune response, such as “inflamatory response”
(GO:0009954), “neutrophil chemotaxis” (GO:0030593) and
“T cell receptor signaling pathway” (GO:0050852), also appear
in the annotations for at least two different FCs. The GO slim
terms in Table 6 provides a summarized view of the biological
processes covered by each FC, and shows the subtle differ-
ences between them. For instance, FC 12 is the only
immune-related FC amongst the five that also focuses on cell
adhesion and proliferation, whereas FC38 is almost com-
pletely dedicated to only the immune system process. FC2
has nine GO annotations that map to the GO slim term for
symbiosis/parasitism, and is also the only DE FC that has GO
terms specifically related to viral responses.

Discussion

The use of gene set enrichment analysis (GSEA) is
ubiquitous today in transcriptomic analysis, and the
growing number of gene sets (signatures) in the
MSigDB repository enables a better characterization of
biological processes. There is inherent subjectivity in

GSEA, however, due to the users’ choice of signatures.
Liberzon et al. [6] suggest that a more consistent and
reliable approach to GSEA would be to default to the
fifty signatures they identified and collected in the H
collection of MSigDB. These signatures were based on
a careful evaluation of all collections in MSigDB, and
were meant to encompass key biologically relevant gene
sets. In contrast to such a top-down construction, we
propose leveraging the large amount of microarray data
accumulated over the past two decades to employ data-
driven methods in identifying transcriptomic modules.
While the full compendium contains 97,049 arrays, we ul-
timately identified 2726 representative arrays, from which
we derived 139 transcriptomic modules (denoted as func-
tional components, FCs). It does not escape our notice
that the drastic reduction in dimensionality is analogous
to the reduction of the 17,779 signatures in MSigDB to
the 50 signatures advocated by Liberzon et al. This also
concurs with current literature [10-12] that despite the
large size of the human transcriptome, most biological
phenotypes can be fully captured in far fewer dimensions.
Preliminary work by our group [19] proposed a set of 423
FCs based on the available data in GEO as of May 2008,
and applied it to an AML study involving parthenolide
treatment (GSE7538). Despite having far fewer components
in our current FC space, we were also able to capture
the biological variance and found a set of 19 DE FCs
(Additional file 1: Figure S5) for that study. The FC
with the lowest BH-corrected p-value (FC 79) was also found
to be involved in inflammatory and immune responses.
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Fig. 13 Analysis of batch effects in GSE15434. a Gene space data projected on PC 1 and PC 4. b Results of differential gene and FC

analysis (top), and also GSEA (bottom), on the two phenotypes. GSEA was performed using the C2 (curated gene sets) from MSigDB.
The numbers in the Venn diagrams represent the number of genes/gene sets/FCs that were identified for each of those subsets. The
Venn diagrams were generated using BioVenn [54]

Although we retained only the leading 139 components
of the whitened data, ICA convergence on the tall matrix
took close to 2000 iterations to reach the preset threshold.
We used multiple repeats and also subsampling of the full
compendium to evaluate the results, and found that our
FCs were well-converged and reproducible. Many of the
FCs also had GO annotations for distinct pathways and
biological processes, and a few FCs corresponded directly
NPM1-mutated 42 55 41 with some of the gene signatures in MSigDB’s H collection
DRE, MUC and ULM are the three study centers (Fig. 5). We note that FCs without clear GO annotations

Table 4 Distribution of AML patient samples from the two
phenotypic classes across the three test centers in GSE15434

DRE MUC UM
NPM1-wild type 36 41 36
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Fig. 14 Heatmap of differentially expressed FCs in GSE66533. Ten DE FCs were identified. FC 82, 96 75, 112 and 59 generally had high scores in
Fusion Negative samples compared to Fusion Positive samples, while the opposite is true for FCs 134, 106, 66, 86 and 98. The order of the
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may indicate yet-undiscovered biological pathways, or a
higher level grouping that involved multiple pathways.
Analysis of the active genes also indicated that most genes
are not promiscuous; most genes are active in less than
three different FCs (Fig. 4). The most promiscuous gene
was AKR1C3 (Entrez ID 8644), which encoded an enzyme
from the aldo/keto reductase superfamily. The gene is pri-
marily responsible for the metabolism of prostaglandin
and some sex hormones, and is included in pathways from
KEGG and REACTOME such as arachidonic acid metabol-
ism, ovarian steroidogenesis and signaling by retinoic acid.
As a gene involved in metabolism, it also affects the dosages
of certain drugs such as warfarin [45]. More recently, it has
been implicated in some cancer studies [46, 47] due to its
role in cell growth/differentiation.

Despite the huge reduction in feature space, our FCs are
able to capture critical biological features of a dataset and
performed well when used in subsequent classification task.
In the rheumatoid arthritis study (GSE71370), Rajasekhar
et al. noted in their paper [48] that the rheumatoid arthritis
peripheral blood samples (RAPBM) and healthy control
samples (HCPBM) were highly similar with no DE genes
observed, while there were 3033 DE genes between RASFM
and HCPBM. However, we achieved a nearly-perfect (only
one healthy sample was misclassified) separation of the three
classes in the study using only a simple hierarchical cluster-
ing with 100 of our FCs as features (Fig. 8). In contrast, the
clustering obtained using the set of 6636 differentially
expressed probes between RASFM and HCPBM (at 0.05
FDR) was strictly inferior and produced two additional mis-
classifications (Additional file 1: Figure S4). Our FCs also

performed well as features in more complex machine learn-
ing models. In the leukemia study (GSE13159), Hafer-
lach et al. obtained a feature set of 3556 probesets by
combining the top 100 DE probesets identified across
each of the pairwise tests across the 18 leukemia clas-
ses. The feature set was then used to train pairwise
SVM models, and samples were classified based on a
max-vote scheme using all models. We repeated their
procedures, but used our full set of 139 FCs as features
in place of their manually defined feature set for the
classification task. We did not report specificity as the
computation method was unclear from the original
paper; additionally, since specificity focuses on the
negative classification, it is not informative here when
the number of negative classes can be easily inflated de-
pending on one’s interpretation of what qualifies as a
negative class. The misclassification patterns (off-diago-
nal, non-zero elements of Table 2) generally follow the
same trends as what the authors reported with slight dif-
ferences in the class predictions for C8 and C13 (Fig. 9).
While our classification sensitivity were generally lower
than the reported numbers in the original paper, our
choice of features were agnostic to the data values and
were not primed to maximize the difference between the
classes as the authors did with their pairwise feature selec-
tion algorithm. Additionally, the largest deviation between
the reported sensitivities occurs when the sample size is
small, such as that of C1 (thirteen samples). For classes
with larger sample sizes, the difference between the sensi-
tivities reported by our FC-based model and the original
paper are less significant. For instance, the sensitivities
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Table 5 GO terms associated with DE FCs for GSE66533

FC

BH-Corrected GO ID
p-value

Description

86

75

)

106

66

112
59
82

98

134

0.000946

0.00108

0.00140

0.00140

0.00193

0.00266
0.00992
0.00992

0.00992

0.00992

GO:0061551
GO:0001706
GO:0030574
G0:0022617
GO:1990440

GO:0006564
GO:0042149
GO:0036499

GO:0070059

G0O:0002523

GO:0030593
GO:0070488
GO:0035860

G0:1900028
GO:0010903

GO:0043627
GO:0030199
GO:0005975
G0:0044281
GO:0042632
GO:0051965

GO:0031290
GO:0030574
GO:0022617
GO:0030198

GO:0035456
GO:0051607
GO:0045669

GO:0071294
GO:0071276
GO:0001525
G0:0035025

G0:2000373

trigeminal ganglion development
endoderm formation

collagen catabolic process
extracellular matrix disassembly

positive regulation of
transcription fro...

L-serine biosynthetic process

cellular response to glucose starvation

PERK-mediated unfolded
protein response

intrinsic apoptotic signaling
pathway in...

leukocyte migration involved in
inflamma...

neutrophil chemotaxis
neutrophil aggregation

glial cell-derived neurotrophic
factor r..

negative regulation of ruffle assembly

negative regulation of very-low-
density ...

response to estrogen

collagen fibril organization
carbohydrate metabolic process
small molecule metabolic process
cholesterol homeostasis

positive regulation of synapse
assembly

retinal ganglion cell axon guidance
collagen catabolic process
extracellular matrix disassembly

extracellular matrix organization

response to interferon-beta
defense response to virus

positive regulation of osteoblast
differ...

cellular response to zinc ion
cellular response to cadmium ion
Angiogenesis

positive regulation of Rho protein
signa...

positive regulation of DNA
topoisomerase...
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reported for the two largest classes, C13 and C15, in the
original paper are 0.890 and 0.998 respectively. We report
corresponding sensitivities of 0.850 and 1.00, the latter of
which is higher than the original paper’s. We posit that in
the cross-validation procedure, classes with small sample
sizes may not be included in the training set within certain
folds, resulting in poor test set prediction results.

An additional benefit of using the FC scores as fea-
tures is that it is easy to train tree-based models that are
more interpretable than SVM. Using the same leukemia
dataset, we trained a random forest, which would have
been challenging to do if the full gene space (20,089
genes as features) was used instead. We identified FC18,
FC 39 and FC54 as the top three most important fea-
tures (Fig. 10) in separating the various leukemia classes,
based on the mean decrease in Gini index. Although the
three FC’s share a number of GO annotations and are all
related to inflammation (Table 3), we note that when an-
alyzed collectively, the described processes are subtly dif-
ferent; the GO annotations for FC18, FC39 and FC 54
suggest the biological processes of B-cell maturation,
B-cell production and small molecule immune modula-
tors respectively. In particular, genes CD22, CD19,
CD79A and HLA-DRA (Entrez IDs 4861, 5929, 5135
and 7978 respectively), which Haferlach et al. identified as
members of a “virtual immunophenotype” (Fig. 3 of [38])
for leukemia classification, are all active genes in the most
important FC (FC18).

FC-based models are also robust in low-sample count
settings. By subsampling two related leukemia classes
from GSE13159 at various percentage levels, we obtained
estimates of how well a classification model would per-
form if trained only on limited data. We note that the
FC-space models generally perform better than the corre-
sponding full gene-space models when the subsampling
percentage is low, displaying higher NPV, sensitivity and
accuracy (Fig. 11). Although the PPV for the gene-based
model is higher at the subsampling percentage of 5%, the
gene-based model did not provide and positive class pre-
diction in a number of simulations, leading to undefined
PPV for more than a tenth of the 100 simulation runs. In
contrast, the FC model performance was consistent
throughout the simulations and was not affected by the
specific choice of test set in particular runs. Since the
gene-based model predicted all negatives in those runs,
this correspondingly boosted its specificity and gave an in-
flated view of its actual performance. This is also evi-
denced by the low concordance of the models at low
subsampling percentages; at 5%, the FC-based models
produced outputs that were statistically different from
their gene-based model counterparts in more than half of
the simulations. Performance metrics for the gene-based
models are generally more sensitive to the subsampling
percentage, and display huge gains at each size increment
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Fig. 15 Heatmap of differentially expressed FCs in dengue patients from different exposure times. (E-MTAB-3162). Six DE FCs were identified, with
Day 4 patients having lower scores in FC 2, 12, 38 and 19 compared to Day 1 patients. Day 1 patients had lower scores in FCs 4 and 82

as opposed to the modest ones from the FC-based models.
At the maximum subsampling percentage (100%), gene-
based models consistently outperformed their FC-based
counterparts, highlighting the tradeoff between robustness
in low sample count settings and better fit at high sample
count settings. We note, however, that most studies in
GEO have sample sizes of that are less than fifty samples
(corresponding to a subsampling percentage of less than
17%). The maximum subsampling percentage in our study
corresponds to a training sample size of 300 samples, a
luxury that is often not available in the majority of typical
clinical studies where cost and tissue availability are sig-
nificant limitations. As of June 2017, there are 4627 GSEs
in GEO from the HG-U133 Plus 2.0 platform (GPL570),
of which 686 have less than five samples each, 1146 have
between five to ten samples and 1981 have ten to 50
samples. In such “small data” studies, we advocate the use
of our FCs as a way to utilize the information in the data
efficiently.

The use of FCs can also help in denoising the tran-
scriptomic data by emphasizing changes in the active

genes. Clustering of MAQC data in both gene and FC
space were observed to be highly correlated, although
the latter displayed slightly higher cluster purity. We also
considered a set of samples from AML patients collected
across three different study centers in Germany
(GSE15434) to study how the batch effects (Fig. 13a) are
affected by FC projection. The patient samples were or-
ganized into two phenotypes: those with NPM1 muta-
tions and those with the wildtype NPM1 [49]. A typical
differential gene expression analysis reveals that the DE
genes identified from the three centers have a small
overlap relative to the number of DE genes that were
unique to each study center (Fig. 13b). In particular, the
number of DE genes unique to the Dresden center was
twelve folds larger than the number in the overlap. Simi-
larly, significant gene sets associated with the two phe-
notypes using GSEA showed poor inter-center
parsimony. The DE FCs, however, showed greater con-
cordance between the three centers.

The FCs we have found are also biologically relevant,
and the traditional workflow for identifying DE genes can
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Table 6 GO Slim terms for DE FCs in E-MTAB-3162
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Table 7 Neighbors unique to Fusion-Positive Samples

FC BH-Corrected GO SIim ID  Number of Description

p-value Children ID
2 0.00933 GO:0002376 9 Immune system process
GO:0044403 5 Symbiosis, encompassing
mutualism through
parasitism
GO:0008150 5 Biological process
GO:0006950 4 Response to stress
GO:0007165 3 Signal Transduction
4 0.00933 GO:0006259 18 DNA metabolic process
GO:0051276 12 Chromosome
organization
GO:0009058 11 Biosynthetic process
GO:0006950 10 Response to stress
GO:0007049 9 Cell cycle
GO:0140014 8 Mitotic nuclear division
GO:0007059 7 Chromosome segregation
GO:0007010 7 Cytoskeleton organization
G0O:0000278 7 Mitotic cell division
GO:0000003 3 reproduction
GO:.0006464 2 cellular protein
modification process
G0O:0042592 2 Homeostatic process
GO:0051301 2 Cell division
12 0.00933 GO:0002376 16 Immune system process
GO:0006950 8 Response to stress
GO:0007165 8 Signal Transduction
GO:0008150 6 Biological process
GO:.0016192 4 vesicle-mediated transport
GO:0007155 3 Cell adhesion
GO:0008283 2 Cell proliferation
19 0.00933 GO:0002376 11 Immune system process
GO:0006950 11 Response to stress
GO:0007165 6 Signal Transduction
GO:0008150 5 Biological process
GO:0006810 3 Transport
GO:0009058 2 Biosynthetic process
38 0.00933 GO:.0002376 4 Immune system process
82 0.00933 GO:0008150 2 Biological process

The full list of GO annotations for the DE FCs can be found in Additional file 1:
Table S2. The table here presents all mapped GO slim terms that have at least
one child annotation in the full list for each FC

be done analogously to identify DE FCs. In GSE71370, we
compared rheumatoid arthritis synovial fluid samples
(RASFM) indirectly with HCPBM (healthy control syn-
ovial fluid samples were not included in the original study)
and identified eleven DE FCs, which were associated with
75 unique GO annotations. Many of them were

GSM Freq MinCor GSM description

GSM411049 17 0.939998 Leiomyosarcome (trunk wall)
GSM525975 16 0.935578 Liposarcoma — dedifferentiated
GSM525840 15 0.938809 Liposarcoma — dedifferentiated
GSM525978 14 0.943752 Leiomyosarcome (trunk wall)
GSM411126 14 0937972 Liposarcoma - dedifferentiated
GSM525837 13 0.943554 Unlisted sarcoma in trunk wall

Abbreviations: Freq, frequency of samples which had this neighbor; MinCor,
minimum correlation between those samples and the neighbor

immediately recognizable as markers of inflammation and
apoptosis. A few also had GO annotations that corre-
sponded to lipopolysaccharides (e.g. GO:0071222), which
have been reported [50] to be an inducer of microRNA
miR-155. This corroborates the role of miR-155 in the dis-
ease progression: overexpression of miR-155 is associated
with reduced production of matrix metalloproteinases and
is believed to therefore reduce inflammation [51], but it
also prolongs the presence of CD14+ in inflamed tissues
which can aggravate rheumatoid arthritis [48]. In the
rhabdomyosarcoma study (GSE66533) where 1002 DE
genes were originally identified between the two groups
(PAX3-FOXO01 Fusion-Positive and Fusion-Negative), we
identified ten DE FCs whose GO annotations (Table 5) in-
cluded typical cancer-related terms such as angiogenesis,
extracellular matrix catabolism and immune response. We
also demonstrated the use of our FCs in a viral infection
study: E-MTAB-3162 contains patient samples from a
dengue study performed by van de Wag et al. [52], with
the two sample groups determined by exposure time (day
0 and day 4). Differential profiles between the patient
groups (Fig. 4 of [52]) were identified by van de Wag et al.
by analyzing the transcriptome via pathways and gene sets

Table 8 Neighbors unique to Fusion-Negative Samples
GSM GSM description

GSM506629 19
GSM506648 17

Freq MinCor

0.943743 Monophasic synovial sarcoma

0.944286 Monophasic synovial sarcoma

GSM855589 15 0.946213 Ewing-negative poorly differentiated
small round cell sarcoma
GSM506642 14 095061  Biphasic synovial sarcoma

GSM855590 14
GSM506646 13
GSM506655 13
GSM506653 13
GSM1305464 12
GSM526066 12
GSM506632 12

0.944746 Ewing-negative fusiform cell sarcoma
0.950141
0.948231

Monophasic synovial sarcoma
Monophasic synovial sarcoma
0.945084 Poorly differentiated synovial sarcoma
0.947481
0.946055

Mammary gland tumor cell
Undifferentiated sarcoma in extremities

0.945403 Monophasic synovial sarcoma

Abbreviations Freq frequency of samples which had this neighbor, MinCor
minimum correlation between those samples and the neighbor
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found in Reactome. In particular, they found that Day 0
patients had expression levels that were enriched for cyto-
kine signaling, innate immune system, interferon signaling
and the complement immune system, as compared to the
healthy controls. Day 4 patients, when compared to the
Day O patients, were instead enriched for adaptive im-
mune system responses, cell cycle, DNA repair and me-
tabolism. Here, we identified six DE FCs between the Day
0 and Day 4 patients, and found that GO annotations for
these FCs were aligned with the reported trends. For in-
stance, FC 2, 12 38 and 19, which had higher FC scores in
Day 0 patients compared to Day 4 patients (Fig. 15), con-
tained GO annotations (Additional file 1: Table S2) that
were enriched for immune response and interferon path-
ways. In particular, “complement activation” is a GO an-
notation that was found in FC 12 and 38, “adaptive
immune response” was found in FC 12 and 19, and “in-
nate immune response” was found in FC 2, 12 and 19.
Notably, FC 4, which had higher scores in Day 4 patients
as compared to Day O patients, was associated with gene
expression and cell cycle. It had also been previously re-
ported [53] that genes CXCL10 (or IP-10, Entrez ID:
3627) and CXCL11 (or I-TAC, Entrez ID: 6373), both of
which are members of the NF-kB pathway, are highly up-
regulated upon dengue infection. We note that in the six
identified DE FCs, CXCL10 is an active gene in three of
them (FC2, FC38 and FC82), and CXCLI11 is an active
gene in two of them (FC2 and FC38). This is significant
when one considers that both CXCL10 and CXCL11 are
only active in eight FCs each (out of the possible 139 FCs),
and co-occur as active genes in only five FCs.

The compact representation of the full gene values
enables a quick scan across GEO datasets to search for
similar samples (“neighbors”) based on gene expres-
sions. We demonstrate this search process using the
samples in GSE66533, obtaining 43 “neighbors” for
the Fusion-Negative group and 38 “neighbors” for the
Fusion-Positive group. We note, however, that the
rhabdomyosarcoma samples are highly correlated be-
tween the two groups (mean Pearson correlation:
0.970). This means that the “nearest” sample to a
member of the Fusion-Positive group is also likely to
be “near” members of the Fusion-Negative group. Of
the “neighbors” we obtained, 30 were common to both
groups. Although leiomyosarcome samples seem to be
exclusively found in Table 7 and synovial sarcoma in
Table 8, this division is superficial as they were preva-
lent as “neighbors” common to both groups. Using the
Human Tissue Compendium, we also found that most
of the samples were similar to connective tissues such as
myometrium, endometrium and deltoid muscle, suggesting
that despite the diseased nature of the rhabdomyosarcoma
samples, the biological signals from the originating tissues
remained strong.
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Conclusions

Our FC methodology negates the need for selection of
genes to be used in classifier models, allowing it to be easily
implemented in smaller studies where data is scarce. Its su-
perior performance in classification tasks at sample sizes
common to clinical studies (less than 50 samples) suggest
that it is beneficial to perform analysis in FC space. We have
written up an R package (humanFC) that contains the FC
loadings and other functions for users to perform simple
analysis. The package can be downloaded at https://simt-
k.org/projects/humanfc

Additional file

Additional file 1: Text S1. Axis labels for Figures in Paper. Table S1.
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Gene space dendrograms (MAQC data). Figure S3. Heatmap of all samples
in nervous system (GSE3536). Figure S4. Clustering of GSE71370 samples
using 6636 DE genes. Figure S5. Reanalysis of GSE7538 (Parthenolide study
used by Engreitz et al.). Figure S6. Number of unique GO terms versus
number of leading principal components from PCA. Table S2. Full GO
annotations for DE FCs in E-MTAB-3162. Table S3. Full GO annotations
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