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Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour

that has poor prognosis despite aggressive treatment. A hallmark of these

tumours is diffuse invasion into the surrounding brain, necessitating a

multi-modal treatment approach, including surgery, radiation and chemo-

therapy. We have previously demonstrated the ability of our model to

predict radiographic response immediately following radiation therapy in

individual GBM patients using a simplified geometry of the brain and theor-

etical radiation dose. Using only two pre-treatment magnetic resonance

imaging scans, we calculate net rates of proliferation and invasion as well as

radiation sensitivity for a patient’s disease. Here, we present the application

of our clinically targeted modelling approach to a single glioblastoma patient

as a demonstration of our method. We apply our model in the full three-

dimensional architecture of the brain to quantify the effects of regional

resistance to radiation owing to hypoxia in vivo determined by [18F]-fluoromi-

sonidazole positron emission tomography (FMISO-PET) and the patient-

specific three-dimensional radiation treatment plan. Incorporation of hypoxia

into our model with FMISO-PET increases the model–data agreement by an

order of magnitude. This improvement was robust to our definition of hypoxia

or the degree of radiation resistance quantified with the FMISO-PET image

and our computational model, respectively. This work demonstrates a

useful application of patient-specific modelling in personalized medicine

and how mathematical modelling has the potential to unify multi-modality

imaging and radiation treatment planning.
1. Introduction
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumour

and accounts for the majority of primary brain tumours [1]. Following diagnosis,

GBM is often treated with surgical intervention followed by concurrent radiation

and chemotherapy [2]. GBM is characterized by invasive tumour cells that can be

found as far away as 4 cm from the tumour mass [3]. This tumour cell invasion

is not revealed by magnetic resonance imaging (MRI), the principal means of

monitoring GBM progression and response to therapy [4].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.1174&domain=pdf&date_stamp=2014-12-24
mailto:russell.rockne@northwestern.edu
http://orcid.org/
http://orcid.org/0000-0002-1557-159X
http://orcid.org/0000-0002-7070-0139
http://orcid.org/0000-0002-2390-6572
http://orcid.org/0000-0001-6461-3306
http://orcid.org/0000-0002-2464-6119


Table 1. MRI and FMISO-PET volumes for the study patient. MRI volumes are taken from the diagnostic image. Velocity of growth was computed from T1Gd
MRI volumes.

days between pre-
biopsy MRIs

velocity (cm per
year)

contrast-enhancing (T1Gd)
tumour volume (cm3)

T2 MRI tumour
volume (cm3)

FMISO-PET hypoxic
volume (cm3)

13 2.43 18.8 44.0 2.4
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1.1. Routine magnetic resonance imaging for glioblastoma
Clinically, glioblastoma progression and response to therapy

are monitored with MRI [4,5]. For the past two decades,

routine clinical imaging protocols for glioblastoma have con-

sisted of T1-weighted and T2-weighted MRI sequences, with

the addition of the gadolinium contrast agent on T1 MRI

(T1Gd) as well as fluid attenuation inversion recovery

(FLAIR) based on the T2 MRI [6]. Regions of hyperintensity

on the T1Gd MRI correlate with high tumour cell density

and ‘bulk tumour’. In contrast, the T2 and FLAIR images

reflect vasogenic oedema typically associated with inflamma-

tory response to infiltrating tumour cells, at a much lower

density than found on the T1Gd region.

Glioblastoma is a particularly hypoxic neoplasm and is, in

part, histologically defined by the presence of endothelial pro-

liferation, angiogenesis and necrosis. The cascade of events

which initiate and propagate angiogenesis may involve both

acute and chronic hypoxic events leading to a heterogeneously

hypoxic neoplasm [7]. Although the human brain is oxygen

rich in its native state, glioblastoma tumour cells consume

oxygen through cooption of existing vasculature as well as

stimulation of new vasculature [7]. Increased hypoxia is a hall-

mark of aggressive tumour growth [8–10] and is known to

reduce the efficacy of radiation therapy (RT) [11] and is nega-

tively correlated with prognosis, although this is debated [12].

In order to investigate the role of hypoxia in mediating response

to RT, we studied an MRI-based patient-specific computational

model of tumour growth and response to RT and combined

it with hypoxia determined with [18F]-fluoromisonidazole

(FMISO) positron emission tomography (PET) [13,14].

Our patient-specific computational model quantifies a

prediction of response to RT using in vivo MRI data. Patient-

specific growth rates are quantified by net rates of proliferation

and invasion and are calculated using routinely available MRI

obtained prior to treatment. Response to RT can be described

by the linear-quadratic dose–response model [15]. The motiv-

ation for this patient-specific computational modelling is the

need for more quantitative and individualized medicine that

unifies molecular and anatomical imaging modalities as well

as incorporates tumour growth and response rates, which

have been shown to vary from patient to patient [16–19]. We

present an analysis for one GBM patient with MRI and

FMISO-PET prior to RT to document our method and demon-

strate an approach to quantifying hypoxia-mediated resistance

to RT using patient-specific computational modelling.
2. Material and methods
2.1. Glioblastoma patient case study
We study a single glioblastoma patient with two MRIs and an

FMISO-PET study prior to RT. The patient received the standard-

of-care chemo-RT following diagnostic biopsy and was followed

serially with MRI throughout the disease course. Tumour size
data were recorded prior to and following RT to be compared

with predictions of a patient-specific computational model. The

model was used to investigate and quantify the role of regional

hypoxia in determining MRI-defined response to RT.

2.2. Natural history and diagnosis
The subject of this study is a 73-year-old man who provided

informed consent to participate in an observational study

approved by the local institutional review board (IRB). An MRI

obtained at the time of presentation demonstrated a left temporal

lobe lesion surrounded by oedema. A needle biopsy via a bur

hole procedure was performed of the left temporal lobe lesion.

Multiple tissue sections revealed areas of glial neoplasm as well

as areas of necrosis with associated pseudo-palisading of neoplas-

tic nuclei. On the basis of these pathological findings, the biopsy

was most consistent with WHO grade IV GBM [7].

2.3. Imaging data
The patient’s diagnostic and pre-operative MRIs were performed

13 days apart. Three days after the biopsy procedure and 2 days

prior to the first fraction of RT, the patient underwent an [18F]-

FMISO-PET study on an IRB-approved research protocol. MRI

and PET protocols can be found in the electronic supplementary

material. The patient underwent an MRI study 3 days following

the completion of RT, and subsequent images were taken at

two-month intervals. The MRI and PET images were spatially

coaligned to a common coordinate system using a rigid body

transformation to the BrainWeb phantom [20] using the PFUS

package within the PMOD software [21] and statistical parametric

mapping, available through the MATLAB software suite [22].

2.4. Tumour volume data
Tumour volumes were measured for the T1Gd and T2 sequences

for MRI studies (table 1) using a semi-automated threshold-based

pixel intensity background subtraction software developed in

MATLAB. The accuracy and reproducibility of this method is compar-

able to manual tumour delineation [23]. Specifically, tumour

volume V (cm3) was calculated numerically using the formula

V ¼
XN

i¼1

Aidzi,

where the image series is composed of N two-dimensional

slices, acquired in the axial plane, and where slice i has thickness

dzi and tumour area Ai. The tumour area Ai is determined by summ-

ing the number of pixels containing tumour on slice i. The tumour

growth velocity, shown in table 1, was calculated based on changes

in radius of a sphere of equivalent volume measured prior to biopsy

on the T1Gd images.

2.5. Quantifying hypoxia in vivo with FMISO-PET
The co-registered FMISO-PET images were scaled to the average

venous blood concentration of FMISO activity (see the electronic

supplementary material for details) to produce a tumour/blood

(T/B) ratio image seen in figure 1 [24]. A T/B ratio greater than

or equal to 1.2 (T/B � 1.2) was associated with regions of hypoxia

and used to determine the total hypoxic volume (HV; table 2) [24].
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Figure 1. Orthogonal views of the patient’s diagnostic T1-weighted gadolinium enhanced (T1Gd), T2-weighted MRI and FMISO-PET obtained prior to RT, with the
composite RT dose based on MRI-defined margins. The yellow region of the FMISO-PET image indicates hypoxia as defined by tumour-to-blood values greater than
or equal to 1.2 [24]. (Online version in colour.)

Table 2. Hypoxic volume and maximum tumour-to-blood (T/B) pixel value
within MRI-defined tumour regions for the patient. T2þ is defined to be
the T2 MRI abnormality with a uniform 2 cm margin. T2-T1Gd is the T2
region less the contrast-enhancing T1-weighted tumour region, including
regions of necrosis. HV is distributed throughout the tumour, from the bulk
(T1Gd) to the periphery (T2þ).

region HV (cm3) T/B max

T2þ 2.430 1.523

T2-T1Gd 0.646 1.454

T1Gd 0.698 1.523
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PET imaging is inherently noisy, and there can be isolated

voxels of FMISO uptake scattered throughout the brain; defining

HV as T/B � 1.2 and restricting the FMISO signal to the region

of T2-weighted MRI abnormality largely excludes this noise and

isolates the FMISO signal to the tumour area [25]. The HV is dis-

tributed within the tumour, from the bulk tumour mass (T1Gd)

to the invasive edge and tumour periphery, defined by the T2/

FLAIR abnormality with a 2 cm margin (T2þ; table 2). The

FMISO T/B values in the whole brain have a mean and standard

deviation of 0.813+0.223 and are not normally distributed

(one-sample Kolmogorov–Smirnov test p , 0.0001).

2.6. Radiation treatment
Five days after the diagnostic biopsy, the patient was treated with

RT delivered with a three-dimensional conformal treatment plan

using 6 MV photons. The target volumes were defined as the

T2-defined abnormality with a 2.5 cm margin, which had a

planned target dose of 54 Gy delivered in 30 daily fractions of

1.8 Gy per fraction. An additional dose was delivered to a smal-

ler volume defined by the gadolinium-enhancing region plus a

2 cm margin of 7.2 Gy delivered in an additional four daily frac-

tions of 1.8 Gy per fraction for a total of 61.2 Gy to this region.

The target volumes are labelled as isodose curves of 61.2 and

54 Gy on the planning MRI in figure 1. Radiation was delivered
with concurrent temozolomide (TMZ) 75 mg m22 given daily

during course of RT and continued adjuvantly for a total of

14 months [2].
2.7. A mathematical model of glioblastoma growth
and response to radiation therapy

@c
@t

z}|{rate of change of
glioma cell density

¼ r � (D(x)rc)
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{net migration

þ rc 1� c
K

� �zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{net proliferation

� R(S, c(x, t))
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{loss due to

radiation therapy

ð2:1Þ

and

D(x)
zffl}|ffl{migration

rate

¼
Dw for x [ white matter
Dg for x [ grey matter
0 for x [ cerebrospinal fluid or outside the brain:

8<
:

(2:2)

The proliferation–invasion radiation therapy (PIRT) model

is a partial differential equation that quantifies the spatial and tem-

poral rates of change of glioblastoma cell density and incorporates

the delivery and effect of RT. The model describes tumour cell

density, denoted c ¼ c(x, t) at time t and location x ¼ (x,y,z) in

units cells per mm3, in terms of diffuse invasion and density-depen-

dent logistic growth. Logistic growth relates the per capita growth

rate to available space for the cells to grow, so that if there are

few cells in a unit volume of tissue, the overall growth rate is

higher than if there are many cells per unit volume. The maximum

number of tumour cells that can fit in a cubic millimetre of tissue is

known as the carrying capacity, denoted K, and is computed to

be 1.91� 106 (cells mm23) assuming a 10mm diameter tumour

cell. Once the tumour cell density reaches the carrying capacity

(c ¼ K) at a particular spatial location, the tumour cells are space-

restricted and therefore do not proliferate. Because we do not

incorporate the clearance of dead cells, when the tumour cell den-

sity reaches the tissue carrying capacity, we assume the tumour

cells are dead or become quiescent in this region.



cerebrospinal
fluid (CSF)
no migration (D = 0)

white matter
faster migration (Dw)

grey matter
slower migration (Dg)

Figure 2. The BrainWeb phantom provides a voxel-wise probability map used to define the invasion rate of the tumour in model simulations [20]. Each voxel is
composed of grey matter, white matter and/or CSF in relative proportions such that the sum of all tissues in each voxel is unity. The voxels in the phantom are cubic
with dimensions 1 � 1 � 1 mm ¼ 1 mm3.
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The PIRT model (equations (2.1) and (2.2)) quantifies glio-

blastoma growth in terms of two net rates: proliferation (r,

per year) and invasion (D(x), mm2 per year). The invasion of

malignant tumour cells into the brain parenchyma is influenced

by the anatomy of the brain, codified in equation (2.2): tumour

cells preferentially migrate along the myelinated axons of neur-

ons composing the white matter and move more randomly and

slowly through the dense grey matter which composes the corti-

cal surface and some internal structures of the brain [26,27]. The

last term in equation (2.1) represents the loss of tumour cells

owing to RT and is based on the linear-quadratic model and

the clinical RT plan, discussed below and given in equations

(2.3) and (2.4).
2.8. Differential motility
The invasive migration of tumour cells throughout the brain

presents a challenge to understanding the true extent of the

subclinical disease, as tumour dispersal speeds can vary up to

100-fold between pioneering cells in white matter compared

with the more random motion in the core of the tumour and in

grey matter [7,27,28]. To model this behaviour, the tumour cell

invasion rate (equation (2.2)) is a function of the spatial variable

x, so that glioma cells migrate 100 times faster in the white matter

than in the more dense grey matter, Dw ¼ 100Dg [29,30]. The

BrainWeb phantom was used for tissue classification, partition-

ing the brain into grey and white matter in addition to

cerebrospinal fluid (CSF) on a 1 mm3 cubic grid. The phantom

is used to define the invasion rate of tumour cells spatially in

the brain D(x), figure 2 [20,31]. The simulated tumour is initiated

as a single voxel of cells located at approximately the centre

of mass of the T1Gd-defined tumour volume. The model

equations are solved using a numerical approach, with time

and spatial grids determined to meet stability requirements

(see the electronic supplementary material) [17].
2.9. Modelling the effect of radiation therapy on
glioblastoma multiforme tumour cell density

S
z}|{fraction of

cells surviving RT

¼ exp �a
 

dose(x, t)þ dose2(x, t)
a=b

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{linear�quadratic !0
BBBB@

1
CCCCA: (2:3)

Equation (2.3) is the surviving fraction of cells (S) from the

linear-quadratic dose–response model. Equation (2.3) converts

radiation dose in units of Gy defined in space and time (denoted

dose(x,t)) as determined by the patient’s clinical radiation treat-

ment plan into a biological effect of each radiation treatment
[11,15,32,33]. The linear-quadratic model is the most widely used

dose–response model in radiation oncology [11]. First-order

repair kinetics are not included in this model because these effects

are negligible at dose fractions of less than 2 Gy.

R
z}|{net radiation

effect in PIRT model

¼ [1� S]
zfflfflffl}|fflfflffl{probability of

cell death per radiation fraction time

c 1� c
K

� �zfflfflfflfflfflffl}|fflfflfflfflfflffl{density-mediated
radiation response

:

(2:4)

The radiation loss term in the PIRT model (equation (2.1)) is

nonlinear and follows the same density-dependent logistic formal-

ism as the tumour growth model, so that the rate of tumour cell

death is related to the rate of killing and the density of tumour

cells. The probability of cell death (1 2 S) from the linear-quadratic

model (equation (2.3)) determines the rate of cell killing during

each treatment fraction time (equation (2.4)). For low cell densities,

the effect of RT is linearly related to the fraction of tumour cells

killed. This assumption is consistent with the common under-

standing that cells actively undergoing mitosis are more

susceptible to DNA damage and are found at the rim and periph-

ery of the tumour more than the dense core [11]. However, when

the cell density is close to the carrying capacity of the tissue K, it

is assumed that the effect saturates owing to increased interstitial

pressure and decreased dose per cell. When the tumour cell den-

sity reaches carrying capacity (c ¼ K), there is no radiation effect.

This situation corresponds to an unresponsive necrotic core,

where we assume that there is no radiation-induced cell killing,

because the cells are already dead. A necrotic core is a histologic

and radiographic hallmark of glioblastoma that develops when

the tumour growth exceeds the tissue carrying capacity.

2.10. Patient-specific radiation sensitivity
In order to quantify radiation sensitivity on a patient-specific

basis, we use the linear-quadratic model with the ratio a/b

fixed. This allows us to regard a as the single parameter to

define radiation sensitivity. For each point in space and time,

an effective dose and probability of cell survival can be calcu-

lated that corresponds uniquely to the individual patient’s

treatment plan and the linear-quadratic dose–response model

parameter a. Increasing a decreases the probability of cell survi-

val, S, and therefore increases the probability of RT-induced cell

death. Increasing values of a correspond to increasing treat-

ment effect and deviation from untreated growth. With the

ratio a/b fixed, the single parameter a can be uniquely deter-

mined using either the T1Gd or T2 post-chemoradiation

tumour size, using a bootstrap optimization technique, yielding

a one-to-one relationship between a and model prediction

error, as described in Rockne et al. [17]. The first T2 MRI follow-

ing chemoradiation was used to determine the radiation

response parameter a owing to the localization of FMISO-PET

activity within the T2þ region (table 2).



Table 3. Patient-specific tumour growth and response rates quantified with the patient-specific PIRT model.

net invasion rate D
(mm2 per year)

net proliferation rate r
( per year)

relative invasiveness
D/r (mm2)

radio-sensitivity a
( per Gy)

12.84 13.82 0.93 0.055
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2.11. Model of hypoxia-modulated radiation resistance
The ratio of the parameters a/b in the linear-quadratic model

provides a measure of tissue response to radiation exposure. In

our treatment simulations, the ratio a/b is held constant at

10 Gy, which is a reasonable assumption for tumour tissue and

consistent with previous work [11,25,34–36]. The relative contri-

bution of the ratio a/b to radiation response is modulated by the

presence of hypoxia. We use the scaling oxygen enhancement

ratio (OER), which determines relative resistance to RT in regions

of low oxygen [37–39]. The implementation of the OER to the

linear-quadratic model is to modify the radiobiological par-

ameters a and b to be spatially defined, so that the OER is

applied in regions of hypoxia, as follows:

S ¼ exp �a(x) doseþ dose2

a=b(x)

� �� �
, (2:5)

a(x) ¼
a

OER
if x [ hypoxic region

a if x � hypoxic region

(
(2:6)

and
a

b
(x) ¼

a

b
OER if x [ hypoxic region

a

b
if x � hypoxic region:

8><
>: (2:7)

The OER assumes values between one and three [40],

corresponding to no hypoxic effects and maximum effect,

respectively. Although the OER is often considered a function

of oxygen tension measured in units of mm Hg, we associate

the T/B FMISO-PET image with a volume fraction of hypoxia

and implement the OER in a binary, voxel-wise manner as

shown in equations (2.5)–(2.7).
2.12. Quantifying hypoxia-mediated radiation
resistance with the proliferation – invasion
radiation therapy model

The PIRT model is used to investigate the role of FMISO-PET-

defined hypoxia in determining model-predicted radiation

response and to test the sensitivity of our definition of hypoxia

in influencing radiographic response to RT. Each simulation

was run using an anatomically accurate three-dimensional

brain phantom [20] and the patient’s three-dimensional confor-

mal radiation dose prescription extracted from the treatment

planning system (Philips Pinnacle). The following treatment

scenarios are considered:

(1) Clinical radiation dose delivered with spatially uniform

treatment response. This corresponds to a value for the

OER equal to one (OER ¼ 1) at all locations in the brain,

and assumes that all tumour cells are equally susceptible

to RT damage.

(2) Clinical radiation dose with localized radio-resistance owing

to hypoxia via a binary relationship. This quantifies focal

radio-resistance defined by the patient’s FMISO-PET scan,

where the tissue to blood value is greater than or equal to

1.2 [24], defines the HV where the OER is modified. Four

simulations were performed with the OER equal to 1.5, 2.0,

2.5 and 3.0 to characterize a range of hypoxia-mediated
responses. The spatially defined OER is given by

OER(x) ¼
1:0 if

T
B

(x) , 1:2

1:5, 2:0, 2:5 or 3:0 if
T
B

(x) � 1:2:

8><
>: (2:8)

2.13. A patient-specific proliferation – invasion
radiotherapy model

To establish a histopathological correlation of cellular density

to imaging, we associate enhancing features on T1Gd and

T2-weighted MRIs with high and low tumour cell densities,

respectively [41,42]. One corollary of this estimate is the model-

ling of a diffuse gradient of tumour cells invisible to imaging.

The relative proportion of occult disease is characterized by an

invisibility index (the ratio of the model parameters D/r [43])

which has been inversely related to the volume of hypoxia

within the tumour measured on FMISO-PET relative to the over-

all tumour mass on MRI, so that more nodular tumours (small

ratio D/r) are more hypoxic than diffuse tumours (large ratio

D/r) [9]. This can be interpreted as the difference between vascu-

lar cooption and tumour-driven angiogenesis in diffuse versus

nodular neoplasms, respectively.

The PIRT model (equation (2.1)) predicts a nearly linear radial

growth of the abnormality seen on imaging, which approaches a con-

stant velocity defined by Fisher’s approximation v ¼ 2
ffiffiffiffiffiffiffi
Dr
p

[44,45].

A constant velocity of imageable growth on MRI has been demon-

strated for 27 untreated low-grade gliomas [46] computed from

serial MRI observations. The invisibility index and velocity of

growth are computed from gross tumour volumes and combined

to calculate patient-specific net rates of diffusion (D) and proliferation

(r) [17,42].

2.14. Patient-specific model parameters
Patient-specific model parameters D and r were calculated based

on baseline tumour growth kinetics using pre-biopsy MRI. Specifi-

cally, within the spectrum of dynamics observed in glioblastoma,

the patient’s net rates of invasion and proliferation that charac-

terize the tumour growth lie within 1 standard deviation of the

population mean observed in 63 patients [16]. Similarly for

the patient-specific radio-sensitivity parameter a, the calculated

value of a ¼ 0.055 (per Gy) reflects neither an exceptionally resist-

ant nor sensitive response (table 3). The relative invasiveness or

‘invisibility index’ (D/r ¼ 0.93 mm2) reflects a tumour growth

pattern which is balanced between cooptive and angiogenic vascu-

larity and therefore predicts a modest hypoxic burden.

2.15. Spatial metrics of model accuracy
In order to assess the accuracy of model predictions, we compare

the simulated and actual tumour regions on T1Gd and

T2-weighted MRI using spatially defined similarity metrics.

Each metric returns a value indicating the quality of agreement

between model and observed tumour growth. This analysis

was performed on the two MRIs prior to RT and on the first

MRI following RT on both the T1Gd and T2 tumour volumes.

Model-predicted RT response is defined with the first MRI

performed post-RT [17]. Because we do not explicitly model che-

motherapy, we cannot confidently apply this model or analysis
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Figure 3. Left column: tumour size versus time. The dashed line is the model-predicted tumour size on T2-weighted MRI, solid line is T1-weighted gadolinium
enhanced (T1Gd) MRI. Black circles are tumour sizes calculated volumetrically with 1 mm error bars based on interobserver measurement uncertainty, and the grey
rectangle represents when radiation therapy (RT) was delivered. Middle column: zoom-in of tumour size versus time during RT. Right column: three-dimensional
renderings of RT dose, FMISO-PET and model-predicted tumour following RT. Top row: patient-specific simulation of RT without the oxygen enhancement ratio (OER)
to model uniform sensitivity to RT. Bottom row: simulation with hypoxia-mediated radiation resistance in regions of FMISO-PET T/B activity greater than 1.2.

Table 4. Relative and absolute volumetric error between model-predicted post-chemoradiation tumour size and that measured directly from the MRI. Error is
reduced by an order of magnitude in the bulk tumour (T1Gd) where the hypoxia is localized.

MRI region
relative error
volumetric radius (%)

absolute error
volumetric radius (mm)

Post-RT prediction with focal FMISO-PET radiation resistance T1Gd 1.10 0.2

T2 0.20 0.04

Post-RT prediction with uniform radiation sensitivity T1Gd 14.60 2.63

T2 0.50 0.11
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to MRI observations beyond the first two post-radiation scans,

when adjuvant chemotherapy is often administered. Similarity

metrics using algebraic combinations of true-positive (TP),

false-positive (FP), false-negative (FN) and true-negative (TN)

are computed on a voxel-wise basis and include the positive

predictive value ¼ TP/(TP þ FP), sensitivity ¼ TP/(TP þ FN),

specificity ¼ TN/(FP þ TN), Jaccard index ¼ TP/(FN þ TP þ
FP) and volume similarity ¼ 1 2 (jFP-FNj/(FP þ 2TP þ FN)).

These metrics take values from 0 to 1, with one indicating

exact agreement. Model-predicted and observed tumour radii

were also compared.

In addition to voxel-wise metrics of concordance, we quantified

morphological similarity by computing the distance between the

predicted and observed tumour surfaces in three dimensions.

This measure returns a distribution of distances, so that a value

of zero in this distribution indicates intersection of the simulated

and actual tumour surfaces. We report the median and standard

deviation of this distribution—the closer to zero and smaller the

variance, the better the model prediction. Reporting the median

and standard deviation allows us to evaluate both variance and

bias in our model predictions and avoid a cancelling effect of

including both positive and negative distances that would be

reflected in the mean of the distribution.
3. Results
Using our patient-specific model for glioma growth and

response to RT, we find the incorporation of hypoxia-mediated

radiation resistance defined with FMISO-PET leads to an order

of magnitude decrease in relative volumetric error, from 14.6%

to 1.1% (table 4). Incorporation of hypoxia-mediated resistance

provided better qualitative and quantitative predictive value

to the model in regions of high cellular density where the

hypoxia was localized, despite the relatively small volume of

hypoxia within the tumour region, representing only 13% of

the bulk tumour mass. Relative error on the T2-weighted

MRI-based tumour size was improved more modestly, from

0.5% to 0.2%. Absolute differences between volume-based

tumour radius ranged from 0.04 to 2.63 mm. Interobserver

error in gross tumour radius has been estimated as +1 mm

[47], indicating that simulation predictions are comparable

to estimated uncertainty in measurable tumour size, summar-

ized in table 4 and illustrated in figure 3. Additionally, when

comparing the PIRT model simulation with and without incor-

porating the OER, 238% more tumour cells survived owing to

local hypoxia resistance effects and 24% of the model-predicted
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Figure 4. Spatial metric between the model-predicted T1Gd surface (light/cyan contour) and the observed tumour boundary (dark/red contour) on the second
pre-RT MRI, indicating a median (+standard deviation) of 2.2+ 2.2 mm using the observed tumour region (dark/red) as ‘true’. Similar accuracy was observed
for the post-RT MRI (table 4). Negative distances indicate an under-estimation of the model-predicted tumour front, whereas positive distances indicate an over-
estimation, with zero distance indicating intersection of the surfaces. (Online version in colour.)
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tumour cells prior to treatment were killed by the radia-

tion, indicating a 10-fold overestimate of RT effect without

hypoxic resistance.

Spatial concordance between the model-predicted disease

burden prior to and following RT was measured through

voxel-wise similarity metrics. These metrics are challenged

by the spatial alignment of the clinical MRI with the atlas

and by a large number of true negatives for pixels far outside

the gross tumour region. With this limitation in mind, we

observed an increase in voxel-wise concordance by incorpor-

ation of localized hypoxia-modulated radiation resistance for

most metrics. Volume similarity was increased from 0.844 to

0.91, and the Jaccard metric was increased from 0.72 to 0.83.

Sensitivity increased from 99.75 to 99.87, although specificity

decreased from 30.25 to 15.61.

The distance between surfaces analysis was performed for

all three MRI studies, two prior to biopsy and one immediately

following the full course of RT on T1Gd and T2 sequences

are illustrated in figure 4. The median distance (+standard

deviation) between measured and predicted surfaces, not

including overlapping voxels with a distance measure of

zero, decreased on T1Gd from 2.8+2.0 to 2.2+2.2 mm and

were unchanged on T2, from 2.8 (+3.4). These results indi-

cate an improved model–data agreement in the tumour core

(T1Gd) where the hypoxia is localized and a stable model pre-

diction in the tumour periphery (T2), with an overall bias of

overestimating the outward growth of the tumour.
3.1. Sensitivity analysis
To investigate the sensitivity of our predictions to definitions of

hypoxic regions and parameter selection, we considered a range

of OER values in the HV ranging from 1.5 to 3.0. This produced a

parabolic relationship between relative volumetric error and

OER using T1Gd size such that the minimum model–data

error occurred at approximately OER¼ 2.5. OER values

between 2.0 and 3.0 yielded relative volumetric errors at or

below approximately 1%, and all resulted in an order of magni-

tude improvement to the model prediction. This analysis

demonstrates the robustness of the model predictions to
variations in OER, and by extension, the volume fraction of

hypoxic cells the T/B FMISO-PET image represents.

To further investigate the role of spatial localization

of radiation resistance, simulations were also performed in

isotropic three-dimensional spherical symmetry without

anatomical complexity, using the T1Gd isodensity as a

lower bound threshold to determine the hypoxic region.

In these simulations, we observed a similar outcome, that

is, that model–data agreement is substantially improved

with the inclusion of hypoxia-mediated radiation resistance,

where HV is within the bulk tumour region. However, the

model predictions were not as accurate with this simplifica-

tion. This suggests that the contrast-enhancing region is not

a suitable surrogate for hypoxic tumour, and that a more

specific indicator such as FMISO-PET in three dimensions

not only improves the model prediction, but is also needed

in a spatially heterogeneous tumour such as GBM. Sensitivity

of model-predicted tumour burden following RT based on

variability in the tumour growth (D, r) or response rates (a,

a/b) is discussed in detail in the supplement to Rockne

et al. [17] and is not sufficient to account for the improvement

in model–data agreement.

3.2. Limitations and considerations
This study focuses on one patient to document our method and

demonstrate an approach to quantifying hypoxia-mediated

resistance to RT using patient-specific computational model-

ling. More patients must be studied in order to support our

findings that incorporation of FMISO-PET-defined hypoxia

improves the predictions of the computational model.

As in our previous work [17], we assume the delivery and

effect of RT to be an instantaneous, deterministic event using

the linear-quadratic equation and its corresponding prob-

ability of cell survival/death. Concurrent chemotherapy is

assumed to be included in the net effect of RT and is not

modelled explicitly. The survival benefit of adding TMZ che-

motherapy to radiation treatment was demonstrated in the

landmark study by Stupp et al. [2] and established a ubiqui-

tous standard of care for newly diagnosed glioblastoma.

However, it remains an open question of how best to translate
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the additive therapeutic benefit of TMZ into a mathematical

model. The assumption that the effect of TMZ is included in

the response rate parameter a does restrict the interpretation

of the model predictions for this study.

To further study the additive effect of TMZ to radiation

response, one could identify patient cohorts that received

RT alone and compare the radiation sensitivity parameters

in that cohort with those who received both RT and TMZ.

A paired analysis could be performed to control for vari-

ations in the tumour growth rates D and r, as is done in

the recent study by Adair et al. [48]. For intravenously deliv-

ered therapy such as TMZ, the blood–brain barrier will result

in heterogeneous drug delivery spatially within the tumour.

Advanced imaging such as dynamic contrast enhanced or

perfusion MRI could be used to infer a drug concentration

gradient within the tumour, and a similar mathematical

formalism for the loss of tumour cells owing to RT could

be used to model the effects of TMZ. A study of this kind

would aid in the development of a TMZ model that could

be used to study the effects of TMZ that is administered

alone following chemoradiation.

The patient’s stereotactic needle biopsy was not modelled,

as the volume of tissue removed was at the core of the

tumour and not a significant portion of the overall tumour

mass. The inflammatory response of the tumour and

normal appearing surrounding brain owing to surgery may

impact MRI abnormalities, particularly on T2/FLAIR. We

assume any such effects arising from only a needle biopsy

did not impact response to RT, presentation of disease on

follow-up imaging or tumour progression. Most glioblastoma

patients receive extensive surgical removal of their lesion,

which can be modelled by setting that portion of the compu-

tational domain and tumour model to zero.

This study assumes no changes to hypoxia through the

course of radiotherapy, which does not include the effects of

re-oxygenation that could change the distribution of hypoxia

within the tumour [49]. The linear-quadratic model does not

reflect myriad repair processes and micro-environmental

changes induced by radiotherapy [50], although extensions

to the L–Q model exist to approximate the effects of re-

oxygenation and hypoxia [51]. Hypoxia dynamics can be

studied with kinetic FMISO-PET imaging [52]; however, this

approach remains relegated to the imaging time point. More-

over, we consider hypoxia a binary variable, which does not

account for intravoxel heterogeneity. A more detailed math-

ematical model of the angiogenic process as it relates to

hypoxia could be implemented to explore this heterogeneity,

as proposed in [53,54].

Finally, this approach is driven by imaging modalities

and does not account for molecular or genetic heterogeneity

that is known to exist within glioblastoma, based upon data

generated by the TCGA Research Network: http://cancer

genome.nih.gov/ [55]. It has been shown that the molecular

subtypes defined by the TCGA vary spatially within a

single patient’s tumour [56], suggesting that a single molecu-

lar subtype may not be sufficient to characterize a patient’s

disease. This emphasizes the need for targeted and image-

localized biopsies within various regions of the tumour, as

shown by Gill et al. [57]. To account for genetic and molecular

heterogeneity influence in imageable response to treatment,

one would need a multi-scale, patient-specific model frame-

work. Such an undertaking is not attempted here, although

the authors recognize that molecular alterations likely play
an important role in determining tumour evolution and

response to treatment.
4. Discussion
We have investigated a computational model of human

glioblastoma growth that incorporates hypoxia-mediated resist-

ance to RT based on FMISO-PET in the complex architecture of

the brain on a patient-specific basis. Incorporation of focal radi-

ation resistance improves model–data agreement, measured

with a variety of metrics, despite the small hypoxic burden

(13%) of the tumour. The model predictions are improved by

the incorporation of an OER to approximate the degree of

radio-resistance created by hypoxic conditions within the

tumour. The large improvements in model–data agreement

attributable to a modest volume of hypoxia-mediated resistance

to radiation effect underscores the significance of spatial hetero-

geneity in delivery and response to RT in glioblastoma and the

complexity of a three-dimensional model.

Without the incorporation of OER and localized radiation

resistance, the model is unable to fully capture post-RT

tumour size in regions of high cellular density, motivating

the addition of the OER parameter derived from in vivo clinical

data. Ideally, a more patient-specific, biologically driven model

of the process of angiogenesis, hypoxia and necrosis using a

modelling approach which integrates multi-modality imaging

is desired [53,54]. In conjunction, prospective interventional

imaging studies which capture changes in intratumoural

hypoxia throughout the course of therapy are needed in

order to improve models of hypoxia-driven resistance to RT

to account for changes in the hypoxic state of the tumour.

Moreover, daily fraction radiotherapy likely introduces pheno-

typic and genotypic selection pressures which eliminate the

sensitive tumour cells and leave the most aggressive, resistant

clones to repopulate following therapy completion [58].

The goal of modelling biological response to therapy

has been long sought after, but there have been no demon-

strable successes with the potential for impacting individual

treatment planning [59]. Other efforts to incorporate bio-

logical effect into radiation treatment plans have either

relied on static features of the tumour [60] or are not capable

of being truly patient-specific because of the large number of

parameters to be estimated [61–65]. We have developed a

technique to incorporate proliferation, invasion and response

to RT of the tumour over the time course of treatment within

the three-dimensional anatomy of the brain. Granting all the

assumptions and limitations of the simple proliferation–

invasion tumour growth model, this framework has provided

a methodology to investigate the role of FMISO-PET-defined

hypoxia in modulating radiation response in vivo quanti-

tatively. By providing quantitative metrics of a patient’s

response to radiotherapy, our model has the potential to

unify multi-modality imaging and treatment planning and

establish a useful application of patient-specific modelling

in personalized medicine.
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