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Abstract: Intensive efforts to develop anti-cancer agents have been made for over 60 years. However,
cancer is still considered a lethal disease. To study the best anti-cancer agents for improving the
survival rates of cancer patients, many researchers have focused on establishing advanced experi-
mental applications reflecting on the biomimetics of cancer patients involving the heterogeneity of
cancer cells. The heterogeneity of cancer cells, which are derived from various clones and affected
by different environments, presents different genetic backgrounds and molecular characteristics
attributed to the differential responses to cancer therapies, and these are responsible for the resistance
to cancer therapies, as well as for recurrence following cancer treatments. Therefore, the development
of advanced applications for the cancer patient is expected to help the development of more effective
anti-cancer agents. The present review evaluates recently developed cancer models encompassing the
heterogeneity of cancer cells, which present similar morphological architecture, genetic backgrounds,
and molecular characteristics to corresponding patient tumor tissues.
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benefits produced as a result of these drugs have not increased by a considerable amount
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because of the recurrences, resistances, and progressive nature of the disease [4-6]. Given
Academic Editors: Guido Giordano, ~ that cancer cells consist of a heterogeneous population, which results in phenotypic varia-
Pietro Parcesepe and Peter C. Hart tions, there is an increasing understanding that model systems containing heterogeneous
cancer cells would be a breakthrough in the development of anti-cancer agents, improving
the overall survival rate of cancer patients [7-9]. One of the challenges of developing
effective anti-cancer agents is that the usage of cancer models recapitulates the patient’s

tumor in the process of drug development to anticipate the response of new drugs to the
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ronment [10]. Heterogeneity in genetic mutations, in gene expressions, and in protein
modifications is considered as the major reason for driving the heterogeneity of cancer
cells in the long process of tumorigenesis [11]. In relation to the heterogeneity of cancer
cells, cancer stem cells (CSCs) are the main cause for generating the heterogeneity of cancer
cells [12]. CSCs that are asymmetrically divided produce CSCs and non-CSCs as their
differentiated progenitors [13]. They generate all cell types existing in tumors at the top
conditions of the Creative Commons  Of the tumor hierarchy [8,13]. A hierarchical organization of tumors governed by CSCs
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role in the development of CRCs via producing the heterogeneity of tumors [14]. LGR5*
CSCs also play an essential role in the recurrence and metastasis of papillary cancer and
CRC [5]. Although the characteristics of CSCs that possess initiation potential have been
considered as main causes of the metastasis and recurrence of cancer, the molecular mecha-
nisms have not yet been investigated and the exact phenomena have not been observed.
Cho and Ro et al. (2020) elucidated and explained how CSCs are involved in the recurrence
of CRCs.

Recently, cancer models possessing the heterogeneity of cancer cells and recapitulating
patient tumors have been developed and used as powerful experimental tools, such as an
organoid system with high efficiency for cancer patients and patient-derived xenograft
tumor (PDTX) [15-18]. They are becoming powerful applications for investigating person-
alized cancer treatments and drug development [19-21]. Recently developed 3D culture
organoids derived from cancer cells are being expanded to the study of cancer and used by
the medical society, allowing for more physiological human cancer studies in vitro [15]. The
cancer cells with stem cell characteristics can grow into self-organizing spheroids, reflecting
some structural aspects of native cancer tissues [22,23]. Recently, cancer organoids were
successfully derived from induced pluripotent stem cells (iPSCs). However, the limited
efficiency of successfully generated iPSCs-based cancer application is dependent on tumor
type and their mutational status is a limitation at present [24,25].

Animal model systems recapitulating cancer have also been established. Patient-
derived xenografts (PDTXs) have recapitulated their corresponding cancer tissues with
similar genetic characteristics and histological architectures [19,26-28]. Since PDTXs consist
of cancer cells, as well as of their neighboring stromal cells, the investigation of cancer
mechanisms or the therapeutic effects of anti-cancer agents are available in the presence
of the interconnection of cancer and stromal cells. Therefore, the PDTX model has been
the main focus of the medical society and drug-development schemes. However, the high
cost to establish and limit the usage of passages is a current limitation for high-throughput
drug screening and personalized therapeutic strategies [17,19,26]. This review focuses
on evaluating the characteristics of applications, to date, used for cancer research and
personalized therapies.

2. Limitations of Conventional Cancer Cell Lines

Given the relatively low cost, easy manipulation, and high-throughput availability of
cancer cell lines, they have been used as the most general, conventional in vitro model in
various disease studies and have especially contributed to the considerable achievements of
cancer research [29]. However, accumulating evidence has revealed that tumors consist of
various types of cells derived from different clones and are grown in different environments,
which accelerates the diversity of cancer cells [30-34]. Indeed, recent, advanced, genomic
analyses showed that every tumor comprises various clones, and even cancer cells derived
from the same clone have different characteristics [35-38]. The homogeneous, conventional,
cancer cell lines do not exhibit the diversity of cancer cells and do not represent the cancer
patients’ tissues. The identification of the mechanisms underlying cancer development and
the development of anti-cancer agents by using appropriate model systems containing the
heterogeneity of cancer is essential. However, cancer cells derived from primary-patient
cancer tissues have been used as advanced applications that contain the heterogeneity of
cancer cells. However, their heterogeneity is not adequate enough, and passage usability is
restricted. Recently, cancer model systems harboring the heterogeneity of cancer tissues,
such as tumor organoids obtained from cancer patient cells and patient-derived tumor
organoids (PDTXs), have been developed and used for cancer studies [21,39] (Figure 1).

Cancer model systems possess differential characteristics. The model systems can be
used for various cancer studies, such as drug screening, mechanisms involved in cancer
development in the presence of tumoral heterogeneity and the tumor microenvironment,
and biomarker development for predicting drug responses. Determining the model systems
suitable for each study helps to determine clinically and physiologically meaningful results.
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Conventional cancer cell line Tumor Organoid PDTX

* Tumor cells only * Tumor cells only * Tumor cells with stromal cells

* Homogeneous population + Tumoral Heterogeneity » Tumoral Heterogeneity

+ Ease in Genetic Manipulation + Ease in Genetic Manipulation + Difficulty in Genetic Manipulation

+ High-throughput screening available « High-throughput screening available * High-throughput screening unavailable
« Ease in Genetic Manipulation + Ease in Genetic Manipulation + Difficulty in Genetic Manipulation

* Relatively inexpensive * Relatively expensive * Expensive

Figure 1. Overview of general cancer models, at present.

3. Cancer Organoid Model Systems

Recently, cancer organoids retaining the similar genetic and phenotypic characteristics
of their original cancer tissues and tumor subtype have been developed and considered
as avatar model systems for cancer patients [40,41]. Cancer organoids have been used
as a prominent application for preclinical and translational research [42]. The definition
of organoids is a “mini-organ grown in vitro”. The organoids are self-organized, three-
dimensional tissue cultures that are derived from normal, adult stem cells [22,23,43]. The
adult stem cells divide indefinitely, producing all types of component cells as a part of their
progeny. Histologically, organoids, three-dimensional culture-generating organs in vitro,
were firstly developed by using mouse 1gr5* intestinal stem cells. Intestinal organoids,
3D-derived from lgr5* stem cells, produce all kinds of differentiated cells comprising the
intestine and form the structure of the intestine in vitro [43]. On the basis of recent reports
that apc mutation occurring in Igr5* stem cells is the origin of colorectal cancer (CRC),
organoid model systems, using apc-mutated 1gr5* stem cells, have been used as a powerful
CRC model system [14]. Moreover, living organoid biobanks have been developed by
using the tumor cells of CRC patients. The cancer organoids closely recapitulate the
heterogeneity of corresponding patient tumors, evaluated by the similarity of structure
and genetic-mutation status, gene-expression analyses, and the sensitivity of organoids
to anti-cancer agents compared with their original tumors. Given that the characteristics
of tumor organoids derived from cancer patients faithfully recapitulate the architecture
of their original tumor tissues and organoids, cancer-organoid-culture technology has
expanded to other types of cancers. Many researchers have established long-term organoid
cultures by using primary-colon [15,44], lung [45-47], esophageal [48], pancreatic [49-51],
prostate [51-53], breast [30,54,55], stomach [56,57], liver [40,58], and endometrial [59,60]
cancer and normal tissues.

4. Applications for Investigating the Cancer Type Lacking Experimental Models

Not all diseases have model systems for investigating the diseases, such as the identi-
fication of biomarkers and developing therapeutic agents. Organoid model systems could
be used as a powerful application for investigating diseases lacking experimental mod-
els [61,62]. Especially, given the scientific experiences for establishing protocols of various
cancer types of organoids, organoid-culture systems have been considered as a potential
model for investigating cancer types that lack experimental models [59,62]. Indeed, lung
cancer, one of the most lethal types of cancer worldwide [63,64], is generally classified
into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), comprising
approximately 80% and 20% of all lung cancers, respectively [65,66]. Although distinct char-
acteristics of SCLCs and NSCLCs exist, such as rapid doubling time and easy metastasis,
few studies have investigated this area because of the lack of SCLC model systems [67,68].
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Recently, Choi et al. (2020) established the organoids derived from SCLC with long-term
expansions. These SCLC organoids reproduce the heterogeneity of cancer cells as shown by
the recapitulation of original tumors, similar molecular expression patterns, and genomic
characteristics [6]. Interestingly, the SCLC organoids generated in this study present a
similar response to anti-cancer agents with corresponding cancer patients, suggesting that
the SCLC organoids established in this study produce model systems, such as the clinical,
usable avatar model system.

5. Organoid Model Systems Produced by Using a Genetic Mouse Model

Accumulating evidence has suggested that tumors consist of various types of cells,
and their genetic diversity drives the process of tumorigenesis. Tumor organoids derived
from cancer-patient tissues are confirmed as an application for patient avatar models [69].
Given the inter-patient, intra-tumoral, intra-clonal genetic diversity of cancer cells, an
investigation of cancer mechanisms and drug development should be cautiously conducted
to prevent the restricted usage of drug development or cancer mechanisms [69,70]. Tumor
organoids using tumor cells obtained from genetic animal model systems have been used
as an application for developing mechanisms involved in tumorigenesis and drug studies.
Cho and Ro et al. (2020) presented the molecular mechanisms of organoids derived from
the tumor cells of an apc-mutated mouse model. They identified the molecular mechanisms
underlying 5-FU recurrence by using an apc-mutated mouse model, which occurs in over
90% of CRC patients [4,5]. These molecular mechanisms identified by using a general
mouse model were beneficial for identifying that molecular mechanisms can be used for
most cancer patients.

6. The Limitations, at Present, of the Organoid Model System

Organoids derived from several cancer-type cells do not grow faster than those of
matching normal cells [52,71], possibly because of their rates of mitotic failure, reduced
telomerase activity, and oncogenic stress. Indeed, normal epithelial cell contamination
presents a challenge to the use of organoids derived from non-small-cell lung cancer.
The methods used to overcome tumor-purity problems have also been reported in the
literature [72]. The determination of tumor purity is the first and most important step,
and various methods have been suggested in the literature. Genetic analysis is the rapid
and easy method used to determine the tumor-purity factor [73,74]. Copy number (CN)
profiles were generated for 5 normal airway organoids (AOs) and 5 extra-pulmonary
tumor organoids, and 20 intra-pulmonary tumor organoids with matching AOs. The
tumor purity of lung cancer organoids was compared using intra- and extra-pulmonary
tumors [72]. A systematic evaluation of the presence of well-known lung tumor-specific
somatic mutations, such as EGFR, KRAS, FLT3, and STK11, was also reported. These
methods are also useful to detect the presence overgrown, normal AOs. Histo-morphology
and immuno-histo-chemistry (IHC) are powerful strategies used to determine the tumor
purity level. Histo-morphological features by hematoxylin and eosin (H&E) analyses are
methods used to easily classify the risk status of organoids. However, H&E analyses with
an evaluation of IHC could aid in the development of a classifier. Thyroid transcription
factor 1 (TTF-1), a marker normally expressed in type 2 pneumocytes and club cells in the
lung and tumor protein 63 (P63), expressed in the basal cells of respiratory epithelium, is
generally used [72].

Recent studies have successfully established tumor organoids by using lung tissues,
reducing growth factors and selecting tissue-specific growth factors. Kim et al. (2019)
showed that reduced growth factors, such as EFG and FGF, successfully established the
organoids derived from NSCLC and neighboring normal epithelial cells [7]. Choi et al.
(2020) also demonstrated that reduced MAP kinase growth factors with the increase in Wnt
agonists are essential or the long-term expansion of small-cell lung cancer (SCLC). Tumor
organoids cultured by these methods are considered as a patient avatar model confirmed by
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genetic-similarity analyses, histological morphology differences, and molecular expression
levels by the IHC of markers [6] (Figure 2).

Merits

+ Patient-derived tumor organoids derived from patients’ cancer tissues represent
molecular and phenotypic characteristics of cancer patients

+ Patient-derived tumor organoids can be easily and robustly established

+ Patient-derived tumor organoids are easily scale-up for drug study and biomarker
development

* Most Genetic modulation by using patient derived tumor organoids have been firmly
established

* Tumor organoids derived from cancer cells of patients can be used for investigating
personalized therapy

Challenges

+ Patient derived tumor organoids is lacking stromal cells involved in the tumor micro
environment

» protocols for tumor organoid for not all types of cancers have been established

» Methods for tumor organoids are relatively expensive compared to traditional cell lines

Figure 2. The benefits and limitations of organoid systems.

Merits and challenges exist in the current organoid system. Patient-derived tumor
organoids are considered as patient avatar model systems representing the heterogeneity
of patients’ cancer tissues. In addition, once established, the organoids are easily scaled
up for high-throughput drug screening and large-scale genomic screening. However, in
studies conducted by using tumor organoids, the effects of the tumor micro-environment
(TME) on cancer cells are not involved since tumor organoids only consist of cancer cells
without stromal cells.

7. Patient-Derived Tumor Xenografts (PDTXs) as a Patient’s Avatar Model

Patient-derived tumor xenografts (PDTXs), transplanted tumor fragments surgically
dissected from cancer patients and administered to immune-deficient mice, are an im-
portant model for translational and medical research [75]. PDTX model systems harbor
the heterogeneity of cancer tissues and constitute tumors similar to original tissues with
up to 14 passages. Given the differences in mouse and human conditions, PDTX model
systems are emerging applications for replacing mouse tumor model systems [76,77]. Since
a tumor fragment includes the patients’ stromal tissues, this model allows for translational
research in the presence of tumor-stromal interactions [19,78]. However, PDTXs possess
several issues. First, they have relatively low establishment rates and require a long period
of time to be performed [19]. Second, establishing a PDX model system is costly and
resource-intensive, limiting its statistical power. Therefore, PDTX model systems are not
suitable for high-throughput drug screening [17,77]. To date, tumor organoids are the most
effective application for drug screening (Figure 3).

Conventional cancer cell lines, PDTOs, and PDTXSs are established by different meth-
ods and have differential characteristics. Cancer cell lines are homogeneous and easily
grown two-dimensionally in ECM-coated plates. PDTOs consist of heterogeneous popula-
tions of cancer cells and are three-dimensionally grown in scaffolders, including Matrigel.
PDTXs, models engrafted on 5~10 mm fragmented cancer tissues into immune-deficient
mice, reflect on TME, as well as tumoral heterogeneity.

ECM: extra-cellular matrix; PDTOs: patient-derived tumor organoids; PRTXs: patient-
derived tumor xenografts; TME: tumor micro-environment.
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Figure 3. Establishment of cancer cell lines, PDTOs, and PDTXs.

8. Drug Study

The heterogeneity of cancer cells is responsible for the differential drug sensitivity
and intrinsic resistance to anti-cancer agents (Figure 4). Recently, organoids have been
successfully used for drug screening in the development of anti-cancer agents and test-
ing their application in a clinical environment. Wetering et al. (2015) established living
biobanks using colon-cancer-organoid-correlated molecular and genetic signatures. Using
the living biobank, they developed a drug-screening platform by using a 3D-organoid
culture [15]. Cancer organoids can act as a patient’s avatar model system for the use of high-
throughput drug screenings to allow for the improvement of precision medicine. Given
the mutational diversity of human CRC patient tumors, tumor organoids derived from
mouse models harboring highly frequent mutations in certain cancers are also an effective
method for developing cancer-mechanism studies. Cho and Ro et al. (2020) demonstrated
the recurrence mechanisms following 5-FU-based therapy using organoids derived from
general, genetic CRC animals and CRC patients. They identified the general molecular
mechanism underlying the recurrence of CRC by using a CRC animal model harboring an
apc mutation, a gatekeeper of CRC. Subsequently, the clinical uses of these mechanisms
were tested by using tumor organoids derived from CRC patients harboring differential
and diverse mutations [5]. Tumor organoids derived from mouse or patient tumor cells are
a powerful model for cancer studies [79,80].

Competition among various cancer cell clones results in the development of can-
cer. Surviving clones during anti-cancer treatment can be expanded, which results in
cancer recurrence.
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Figure 4. Diagram of recurrence in heterogeneous cancer cells.

9. Co-Culture System of Organoids

Cancer immunotherapies targeting immune checkpoints, such as CTLA4 and the PD-
1/PD-L1 axis, have presented substantial clinical benefits for various cancer types, such as
melanoma, leukemia, and lung cancer [81,82]. In addition, recent studies have shown that
cell therapies, such as CAR-T and -NK-cell therapies, are a promising therapeutic strategy
for cancer treatment with good clinical outcomes [83-86]. However, by lacking in vitro
model systems, the present research was restricted and difficulties in the development of
cancer immunotherapy models were faced by the researchers. Recently, many researchers
have focused on the establishment of co-culture systems using 3D-tumor organoids with
immune cells [87-89]. Dijkstra et al. (2018) generated the co-culture of tumor-reactive T
cells with tumor organoids. Their co-culture system showed an unbiased platform for
tumor-reactive T cells and provided a means by which to access the sensitivity of tumor
cells to a T-cell-mediated attack at the level of the individual patient, shown by how T cells
can efficiently assess and kill the corresponding tumor organoids. Moreover, the protocols
used for tumor organoid-T-cell co-culture systems were reported by Cattaneo et al. (2020).
Tumor organoids derived from NSCLC patients and microsatellite-instable CRCs grown
with CD8* T cells can be easily grown [90]. Therefore, the research has enabled the
establishment of ex vivo test systems for T-cell-based immunotherapy at the level of the
individual patient

10. Conclusions

The recent accessibility of innovative genomic analysis technologies, including single-
cell RNA sequencing, has redefined our understanding of biological heterogeneity across
cancer subtypes. Intra-/inter-tumoral heterogeneity that results from somatic mutations
and differential protein expressions and modifications occurred in the process of tumori-
genesis [91]. Therefore, the existence of new cancer model systems representing the het-
erogeneity of cancer cells are necessary to enhance our understanding of cancer biology
and develop effective anti-cancer agents. Recently, intensive, novel approaches have been
used to establish advanced in vitro and in vivo experimental applications representing the
heterogeneity of cancer cells, including 3D tumor organoids derived from tumor cells in
genetic mouse models or patient-specific tumors and PDTX mouse models. The innovative
model systems show advanced rather than conventional applications and present their
own advantages; every model system exhibits intrinsic limitations. Therefore, the selection
of appropriate model systems suitable for each study is fundamentally important to each
study’s success.
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