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Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate
monoallelic expression (MAE) in various developmental and pathological processes.
However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited.
In this study, we conducted a systematic interrogation of MAEs in bone marrow
mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of
BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted
genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types
and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We
further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-
allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have
not been reported and are potentially hematopoietic specific, supporting MAEs are
functional relevance. Comparison of BMMC samples from a leukemia patient with
multiple clinical stages showed the fractions of constitutive MAE were correlated with
fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia
cells and normal cells showed that leukemia cells have much higher constitutive MAE
and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed
leukemia cell-specific MAEs, which were enriched in immune-related functions. These
results indicate MAE is prevalent and is an important gene regulation mechanism
during hematopoiesis and leukemogenesis. As the first systematical interrogation of
constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and
leukemogenesis, the study significantly increased our knowledge about the features
and functions of MAEs.

Keywords: single-cell RNA sequencing, constitutive monoallelic expression, random monoallelic expression,
bone marrow mononuclear cells, leukemia
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INTRODUCTION

Mammalian genomes including human genome are diploid, with
one haploid inherited from mother and the other inherited
from father. Although it is usually assumed that genes are
expressed from both alleles of the diploid genome, some genes
are expressed from only one allele, which is called monoallelic
expression (MAE) (Eckersley-Maslin and Spector, 2014a; Reinius
and Sandberg, 2015; Chess, 2016; Han et al., 2020). One kind
of the most studied MAE is genomic imprinting, in which
either the paternal or the maternal allele of imprinted genes
is expressed. The parental-origin-specific MAEs of imprinted
genes have been demonstrated to play an important role in
embryonic development (Reik and Walter, 2001; Ferguson-
Smith, 2011). However, the constitutive MAEs such as genomic
imprinting only account for a small fraction of total MAEs.
Random MAEs (rMAEs), that stochastically determine one allele
to be transcribed and lead to different cells of the organism
expressing different alleles, are much prevalent (Gimelbrant et al.,
2007; Deng et al., 2014; Reinius and Sandberg, 2015; Chess,
2016). The earliest reported rMAE was random X-chromosome
inactivation that was described >60 years ago (Lyon, 1961).
X-chromosome inactivation mainly balances X-chromosome
gene dosages between male and female, which carry one and two
copies of X-chromosome, respectively (Lyon, 1986). In contrast
to chromosome-wide rMAE caused by random X-chromosome
inactivation, autosomal rMAE on immunoglobulins and odorant
receptors has been well studied in the past decades (Pernis
et al., 1965; Hozumi and Tonegawa, 1976; Chess et al., 1994).
A lot of autosomal rMAEs interspersing over the genome was
detected in recent decade (Gimelbrant et al., 2007; Deng et al.,
2014; Reinius and Sandberg, 2015). Recent studies showed that
a considerable proportion of the rMAE should be attributed
to RNA transcriptional bursting, which describes the switching
kinetics of the two alleles expressing periodically (Kim and
Marioni, 2013; Choi et al., 2019; Larsson et al., 2019; Ochiai et al.,
2020). However, the genome-wide landscape of autosomal rMAE
in hematopoiesis is largely unexplored.

Single-cell RNA-sequencing (scRNA-seq) provides a unique
opportunity to analyze rMAE genome wide (Gimelbrant et al.,
2007; Deng et al., 2014; Borel et al., 2015). Tools have been
designed to perform rMAE analysis originally for full-length
scRNA-seq data, simultaneously dealing with the transcriptional
bursting, e.g., SCALE (Jiang et al., 2017) and scBase (Choi
et al., 2019), but they are not suitable for 3′-scRNA-seq data.
Analyses of rMAE in different cell lineages/types suggest that
rMAE is established during development (Eckersley-Maslin et al.,
2014b; Gendrel et al., 2014). However, the reported fractions
of autosomal rMAE in human genome are quite different from
study to study, ranging from 5 to 76.4% (Gimelbrant et al., 2007;
Deng et al., 2014; Borel et al., 2015; Kim et al., 2015; Reinius
et al., 2016). The contradictions between these studies may be
caused by different cell lineages/types and false positives of rMAE
identifications in these studies. Several studies have explored the
relationships between MAE and tumor (Meehan et al., 2007;
Walker et al., 2012; Polson et al., 2013; Al Seraihi et al., 2018;
Silcock et al., 2019). For example, MAE of TP53 was observed
in mutated brain tumors while not in healthy tissues, indicating

MAE potentially is associated with tumor progression (Walker
et al., 2012). However, these studies only analyzed a very limited
number of cells and did not conduct systematic analysis on
MAE. In order to systematically characterize the MAEs during
hematopoiesis and leukemogenesis, we identified and analyzed
the constitutive MAEs, cell type specific MAEs, and rMAEs using
large scale scRNA-seq data.

MATERIALS AND METHODS

Sample Information
The sample information and scRNA-seq data have been
described in our recent study (Qin et al., 2021). In short,
bone marrow mononuclear cells (BMMCs) were collected from
a boy diagnosed with acute lymphoblastic leukemia (ALL)
separately at four clinical time points, i.e., diagnosis, refractory,
complete remission, and relapse. In addition, the whole-genome
sequencing (WGS) data were generated from the boy’s saliva
sample and BMMC samples from the four time points, except the
complete remission stage (Zhang et al., 2018).

Identification of Genomic
Single-Nucleotide Variant and Filtering
Reads from WGS data were trimmed using cutadapt
(Martin, 2011), and then mapped to the hg38 human reference
genome with BWA (Li and Durbin, 2010). We used CNVnator
(Abyzov et al., 2011) to call copy number variations (CNVs)
in each of the samples, with default parameters. GATK best
practice pipeline (McKenna et al., 2010; DePristo et al., 2011) was
applied to process the duplicate-marked raw reads to analysis-
ready mapped reads. HaplotypeCaller mode of the GATK was
performed for each of the samples and then joint calling was
conducted across the samples. Low-quality (QUAL ≤ 30) single
nucleotide variants (SNVs) were removed and only autosomal
bi-allelic SNVs were kept. To avoid the cis-influence from CNVs,
we removed the SNVs located in the detected CNV regions
for each sample. We also removed the SNVs that were not
in dbSNP (v147). Finally, we removed the putative somatic
mutations. According to the empirical data, a SNV was identified
as a somatic mutation if its UMI count and percentage of the
alternative-allele (alt-allele) were not larger than 10 and less than
40%, respectively.

Single-Cell RNA-Sequencing Data
Process and Cell-Type Inference
The scRNA-seq raw data were processed following 10X Genomics
workflow, using Cell Ranger (suite 2), with hg38 human reference
genome. The basic transcriptomic analyses have been described
in our recent study (Qin et al., 2021), namely, filtering cells,
inferring major cell types, and identifying the cell states (i.e.,
normal cells or leukemia cells) in BMMCs.

The identified SNVs in WGS data were examined in mapped
reads of scRNA-seq data, as well as the information of cell barcode
and UMI in matched reads. Thus, it yielded the allelic UMI counts
for each given SNV for each cell. The variant allele frequency
(VAF) of alt-allele can be estimated directly by calculating the
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fraction of UMIs of alt-allele. When the reads were extracted from
the bam files, including both WGS data and scRNA-seq data,
only the ones with a Phred score larger than 30 at the given SNV
position were kept for further calculation.

Dimension Reduction and T-Distribution
Stochastic Neighbor Embedding
Projection
Dimension reduction was performed by principal component
analysis (PCA) and visualized by t-distribution stochastic
neighbor embedding (tSNE), following our previous study
(Qin et al., 2021). The cells were colored accordingly to
the inferred cell types, sample stages, or cell states. When
displaying the expression pattern, highlighted cells were colored
according to the allele expression, with their size scaled to log10
of the UMI counts.

Identification of Monoallelic Expressions
Cells from each sample, each cell type, or each subpopulation
(e.g., Norm) were pooled together to detect the constitutive
MAEs, in a way that the common concerns for the scRNA-
seq data, e.g., allelic drop-outs (ADOs), noise, and sparseness,
were largely alleviated or canceled out (Borel et al., 2015; Castel
et al., 2015). To increase the statistical power and reduce the false
positives, SNVs observed in at least 10 cells were used for further
analyses. We first identified the SNVs showing significantly
biased allele expression against the expected balanced expression
(by χ2-test). We further defined the SNVs showing serious
deviation, in which UMI fractions of the minor allele were <5%,
as constitutive MAE while other SNVs showing mild biased
allelic expression were defined as allelic imbalanced expression
(AIM). The constitutive MAEs in BMMCs were excluded from
the cell-type-specific MAEs.

To detect random MAE (rMAE) at single-cell level, we only
consider the SNV supported by >5 UMIs in a cell (i.e., “qualified”
cell), thus the observed MAE of a SNV was not caused by chance,
under an assumption of the binomial process (p < 0.05). This
criterion leads to exclusion of a lot of SNVs and cells, leaving
the SNVs possibly representing moderately and highly expressed
genes, which are less affected by the technical variations (Deng
et al., 2014; Kim et al., 2015; Zhao et al., 2017; Fan et al., 2018;
Stamoulis et al., 2019) and undergoing relative fast transcriptional
bursting (Kim and Marioni, 2013; Reinius and Sandberg, 2015;
Stamoulis et al., 2019). A SNV was identified as single-cell MAE
if its UMI of the minor allele was less than 1 or less than 5% of
its total UMI counts of the two alleles, following the previous
study (Reinius et al., 2016). The rMAE was defined as MAE
excluding the constitutive MAEs and cell type specific MAEs.
The fraction of rMAEs per cell was calculated by rMAE number
dividing by the number of SNVs passed the “5-UMI” criterion.
The cell fraction of a rMAE was measured by the proportion of
the cells that monoallelically expressed the certain allele among
the qualified cells.

Permutation of Random MAEs
To address the contribution of randomness in the observed
rMAE, we permuted the observed alleles of each SNV across

observed cells to calculate the expected proportion of single-cell
rMAEs. More specifically, for each SNV, we pooled the allele
UMIs across the observed cells together, from which allele UMIs
were sampled into each cell according to its original count. Then,
we used the same criterion to identify the expected rMAEs in
cells. The same procedure was used to test the significance of
biallelic mosaic rMAEs in balanced expressed SNVs, the two
alleles of which were not significantly biased in pooled cells
(p > 0.05; χ2-test). All the permutations in the analysis were
done by 1,000 times.

Detection of Leukemia-Specific
Monoallelic Expressions
Pairwise comparisons were conducted to detect the
leukemia-specific MAEs among three cell subpopulations
(i.e., Norm, preR.Leuk, and postR.Leuk). For each pair (e.g.,
preR.Leuk comparing with Norm), we first selected the MAEs
only in the test cells (e.g., preR.Leuk), and then tested if two
alleles of each MAE were expressed with significant difference
between the two cell subpopulations, by Fisher’s exact test
(p < 0.05). For detection of the leukemia-differentiated rMAEs
in single cells, we only included the rMAEs that were shared
between the comparing pairs. Cell numbers of the rMAEs and
non-MAEs in each cell subpopulation were pair-wise compared
by Fisher’s exact test (p < 0.05).

Annotation and Enrichment Analysis
The SNVs were annotated by ANNOVAR (Wang et al., 2010)
with relevant databases and assigned to genes according to
their locations within the gene region. The gene enrichment
analyses were performed by Metascape with default parameters
and background gene set (Zhou et al., 2019)1. For cell type specific
MAEs, the genes that were expressed in cells of the corresponding
cell type were chosen as the background gene set, e.g., B cells.

Statistical Analysis
All the statistical analyses in the study were conducted in R, and
if not specified, the Fisher’s exact test was applied. When it was
necessary, the BH method (Benjamini and Hochberg, 1995) was
used for multiple test corrections.

Data Availability Statement
Publicly available datasets were analyzed in this study. These
data can be found here: https://ngdc.cncb.ac.cn/,HRA000084 and
CRA000588. The code used in this study has been deposited in
https://github.com/faculty/MonoAlleleExpr.

RESULTS

Identification of Constitutive Monoallelic
Expression in Bone Marrow
Mononuclear Cells
The BMMCs were obtained from a boy diagnosed with acute
lymphoblastic leukemia (Qin et al., 2021). The BMMCs from

1https://metascape.org
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the boy at complete remission are treated as normal BMMCs
for analyzing MAE during hematopoiesis. After series of quality
control, 7,016 cells were left for further analyses. The boy’s saliva
sample was used for WGS (Zhang et al., 2018). SNVs were
identified in WGS data using GTAK (McKenna et al., 2010;
DePristo et al., 2011). We further filtered out SNVs by the
following three conditions: (1) SNVs in CNV regions; (2) SNVs
not in dbSNP database; and (3) SNVs detected in less than five
cells. Finally, we obtained 83,174 SNVs for MAE analyses, with a
median number of 287 SNVs per cell (Supplementary Table 1).
For each SNV, the allele that is the same as the reference is called a
ref-allele, while the other allele is called an alt-allele. The number
of UMI was used to represent the expression level of each allele.

The distribution of variant allele frequency (VAF) estimated by
UMI fraction across all cells was almost symmetrically centered
in 0.5 (Figure 1A and Supplementary Figure 1). There are
increased SNVs at both tails of the VAF distribution, suggesting
the existence of biased allelic expression. We further separate
the biased allelic expression into mildly biased allelic expressions
[allelic imbalanced expression (AIM)] (p < 0.05; χ2-test) and
strongly biased allelic expression with UMI fractions of the
minor allele <5%. The strongly biased allelic expressions are
constitutive MAEs across the BMMCs, accounting for 2.18%
of the SNVs (Figure 1B and Supplementary Table 2). The
constitutive MAEs contained several imprinted genes, such as
MEG8, NAP1L5, and IRAIN; e.g., rs143537461 (C/A) located on
imprinted gene MEG8, while only ref-allele (C) is exclusively
expressed in BMMCs (Figure 1C). In addition to the imprinted
genes, most of the detected constitutive MAEs are novel,
indicating the existence of many hematopoiesis specific MAEs.
For example, RPS14, showing strong constitutive MAE of
reference allele (Figure 1D), is associated with hematopoiesis,
particularly erythropoiesis (Wang et al., 2014; Schneider et al.,
2016). BRD2, showing strong constitutive MAE of alterative allele
(Figure 1E), is located in the MHC class II region and regulates
the expression of many genes involved in immune pathways
(Wang et al., 2021). GO enrichment analysis of constitutive
MAE showed the immune relevant functional categories are
significantly enriched (Figure 1F); e.g., “immune response-
regulating signaling pathway” (p = 2.78e−8) and “adaptive
immune system” (p = 1.27e−5).

Constitutive Monoallelic Expressions in
Major Cell Types of Bone Marrow
Mononuclear Cells
We classified the BMMCs into six major cell types: T cells
(38.33%; CD3D, CD3E, and CD3G), B cells (35.31%; CD79A,
CD79B, and CD19), natural killer (NK) cells (9.21%; FCGR3A
and NCAM1), myelocytes/monocytes (Mye/Mono; 8.55%; LYZ,
CD14, and CD68), erythroid cells (Ery; 5.97%; HBB and
HBA2), and hematopoietic stem and progenitor cells (HSPC;
2.64%; CD34 and AVP) (Figure 2A). We then identified the
constitutive MAEs in each of the six hematopoietic cell types.
Interestingly, the majority of constitutive MAEs identified in
each cell type were overlapped with that in BMMCs (Figure 2B
and Supplementary Table 3), indicating MAEs are either

conserved during development or highly shared between/among
different cell types. These cell type shared constitutive MAEs
include HLA-DQB2 (B cells), IL32 (T cells), and SERPINA1
(Mye/Mono). For example, SERPINA1, identified as constitutive
MAEs in BMMCs and only expressed in Mye/Mono (Figure 2C),
participates in the monocyte recruitment and proinflammatory
activation (Moraga et al., 2001; Janciauskiene et al., 2007). IL32,
identified as constitutive MAEs in BMMCs, T cells, and NK
cells (Supplementary Figure 2A), is a cytokine involved in
inflammation and cancer development.

Monoallelic expressions that are identified in specific cell
types but not in the BMMCs constitutive MAEs are called as
cell type specific MAEs. There are only a few MAEs shared
among these cell types (Figure 2D). GO enrichment analysis
of B cell specific MAEs showed that they were enriched in
the immune process including “TNF-α signaling pathway”
(p = 1.66e−3) and “positive regulation of NF-κB transcription
factor activity” (p = 6.25e−3) (Figure 2E). These cell type
specific MAEs include HLA-DRB5 (HSPC and Mye/Mono),
ZNF83 (Ery), NUP210 (T cells), MTSS1 (NK cells), MOB1A
(Mye/Mono), and RFTN1 and TCF12 (B cells). For example,
MTSS1, showing NK cell specific MAE (Figure 2F), is a tumor
suppressor gene in leukemia (Yu et al., 2012; Schemionek et al.,
2016) and plays an important role in the development of B
cells (Yu et al., 2012). MOB1A, showing Mye/Mono cell specific
MAE (Figure 2G), involves in the regulation of organ size and
tumor growth by enhancing apoptosis. TCF12, showing B cell
specific MAE (Figure 2H), is a transcription factor that regulates
gene expression during hematopoiesis. HLA-DRB5, which plays
an important role in antigen presentation, shows HSPCs and
Mye/Mono cell specific MAE (Supplementary Figure 2B).
NUP210, as a cell-intrinsic regulator of TCR signaling and T cell
homeostasis (Borlido et al., 2018), shows T cell specific MAE
(Supplementary Figure 2C).

Identification of Random MAEs at
Single-Cell Level
The scRNA-seq is a powerful approach to systematically analyze
rMAEs in BMMCs. After strict quality control, we identified
114 rMAEs in BMMCs at single-cell level, accounting for 20–
40% of the highly expressed genes (Figure 3A), giving rise to
7.29% SNVs showed rMAE per cell (Figure 3B), which is a
little lower than other studies (Deng et al., 2014; Reinius et al.,
2016; Savova et al., 2016), possibly due to our strict criteria (see
“MATERIALS AND METHODS”). It is interesting to examine
to which extend the observed rMAEs could be explained “by
chance”. We permuted (1,000 times) the alleles of each SNV by
sampling from the pooled UMIs across all cells, which resulted
in 3.25% SNVs showing rMAE per cell on average (Figure 3B).
Therefore, more than half (55.39%) of the rMAEs in real data
were not observed by chance.

The rMAEs were further divided into single-allele rMAE
and biallelic mosaic rMAE, with percentages of 78.1% and
21.9%, respectively (Figures 3C,D). The fractions of cells
showing rMAEs vary a lot among different single-allele rMAEs
(Figures 3C,D). Further investigation showed that most of the
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FIGURE 1 | Identification of constitutive MAEs in BMMCs. (A) Histogram of VAF in BMMCs estimated by UMI counts. AIM expression and MAE are highlighted.
(B) Identification of constitutive MAEs, with blue representing MAEs of reference allele while red representing MAEs of the alternative allele. The percentage of the
constitutive MAE is shown on the top left of the plot. (C) tSNE projection of BMMCs (background), colored by expressed allele of MEG8. The size of the highlighted
dot is scaled to log10 of UMI count. The pie chart in the bottom right shows the genetic allelic ratio of the two alleles from whole-genome sequencing (WGS) data.
(D) tSNE projection of BMMCs, colored by expressed allele of RPS14. (E) tSNE projection of BMMCs, colored by expressed allele of BRD2. (F) GO enrichment
analysis of the constitutive MAEs in BMMCs.

rMAEs of high cell fractions, which accounted for 36.0% of
the single-allele rMAEs, were observed in only one qualified
cell, but with UMI counts ranging from 6 to as high as 285

(Figure 3D). The single-allele rMAEs include CD52 (rs1071849),
SNHG5 (rs1059307), and HLA-B (rs2769), e.g., 9.2% of the cells
show rMAE on CD52 (Figure 3E). For biallelic mosaic rMAE,
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FIGURE 2 | Identification of cell type specific MAEs in BMMCs. (A) tSNE projection of BMMCs, colored by inferred major cell types. (B) Detected number of MAEs in
each major cell type. The shadowed (bottom) and bright (top) colors indicate the constitutive MAEs in BMMCs and cell type specific MAEs, respectively. (C) tSNE
projection of BMMCs, colored by expressed allele of SERPINA1. (D) The upset plot of the cell type specific MAEs. (E) GO enrichment analysis of the B cell specific
MAEs. (F–H) tSNE projection of BMMCs, colored by the expressed allele of MTSS1 (F), MOB1A (G), and TCF12 (H).

the fraction of the cells showing rMAE is low or intermediate
thus has not been detected in constitutive MAEs (Figures 3C,E).
For example, the fractions of cells showing ref-allele rMAE and
alt-allele rMAE at ELK2AP (rs1059713) are 16.2% and 11.7%,
respectively (Figure 3E). The fractions of cells showing ref-allele
rMAE and alt-allele rMAE at CLEC11A (rs13866) are 18.8%
and 25%, respectively (Figure 3E). Furthermore, we permutated
alleles of the biallelic mosaic rMAE and got rMAEs ranging from
2 to 18, which is significantly less than that of empirical value
(n = 19) (p< 0.001; permutation test) (Figure 3F), indicating that
the biallelic mosaic rMAEs were not observed by chance.

We then interrogated the rMAE by the cell type. As the largest
cell group, we detected 59 rMAEs in B cells, while there were 34
rMAEs in the smallest cell group (HSPCs), which was the same as
that in T cells (n = 34). Among the 114 rMAEs, about one-third

(n = 39) was shared by at least two cell types (Figure 3G).
Comparing with constitutive MAEs, the rMAEs are more shared
between cell types, indicating they are less cell type specific or the
stochasticity to increase the cell heterogeneity, despite that they
represent a range of highly expressed genes.

Leukemia Cells Showing Increased
Constitutive Monoallelic Expressions
and Random MAEs
In addition to analyzing “normal” BMMCs, the BMMCs
at diagnosis, refractory, and relapse of the same boy were
analyzed for studying the changes of MAEs in leukemia
(Supplementary Table 1). Interestingly, analysis of the four
samples showed that fractions of leukemia cells were correlated
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FIGURE 3 | Identification of rMAEs and their features. (A) The identified rMAEs with different thresholds of the observed number of cells. The non-rMAEs and rMAEs
are represented by olive and dark green, respectively. The orange line shows the percentage of rMAEs in the analyzed SNVs. (B) The percentage of rMAEs per cell
(red), comparing with permutations of alleles (gray). The inset shows the average of the percentages of rMAEs per cell. (C) The rMAEs, including single-allele rMAE
(red/blue) and biallelic mosaic rMAE (yellow), are detected in different fractions of cells. The density plots around the scatter plot show the density of rMAEs of
different cell fractions with the corresponding allele. (D) The pie chart shows the fractions of different types of rMAEs. The single-allele rMAEs of high cell fraction are
shown in circular stacked bars in the shadowed sector. Each bar represents a cell with stacked UMI counts (log10) of ref-allele (blue) and alt-allele (red) of a rMAE.
The dots with the same color indicate the bars (cells) of the same rMAE, while bars without a dot mean that they are of different rMAEs. (E) Circular stacked profile of
several rMAEs at the single-cell level. Each bar represents a cell with stacked UMI counts (log10) of ref-allele (blue) and alt-allele (red). Cells are ordered by the total

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 October 2021 | Volume 9 | Article 702897

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-702897 October 7, 2021 Time: 19:50 # 8

Fu et al. Monoallelic Expression During Hematopoiesis/Leukemogenesis

FIGURE 3 | (Continued)
UMI counts and the fraction of the ref-allele. Highlighted bars are cells showing MAE. The fraction of cells showing MAE is shown under the circular stacked profile.
A constitutive MAE (RPS14) is also displayed as a control. (F) The observed biallelic mosaic rMAEs (vertical line) are significantly more than that by allelic permutation
(p < 0.001). (G) Sharing of the rMAEs among different cell types. The circos plot shows the shared genes (purple line) and pathways (blue line) among different cell
types. Gray bar indicates the genes that are shared by other cell types, and black bar indicates the genes that are unique to the corresponding cell type.

with the fractions of constitutive MAEs (Supplementary Figure 3
and Figure 4A). We further identified the rMAEs in each cell
of the four samples and found that “normal” BMMCs showed
the lowest fraction of rMAEs and BMMCs at relapse showed
the highest fraction of rMAEs, while the other two leukemia
samples showed intermediate values (Figure 4B). Analyses of
constitutive MAEs and rMAEs manifested that leukemia samples
showed increased MAEs, thus we expected much stronger MAEs
in leukemia cells since the normal cells in leukemia samples may
not contribute to the increased MAEs.

After PCA, we clustered these BMMCs into normal cells,
leukemia cells before relapse (preR.Leuk), and leukemia cells
after relapse (postR.Leuk). Normal cells were further separated
into normal cells before relapse (Norm) and normal cells after
relapse (postR.Norm) (Supplementary Figure 4 and Figure 4C).
There are 2.41% and 2.90% SNVs showing constitutive MAE
in Norm and postR.Norm, respectively, while 3.35% and 3.11%
in preR.Leuk and postR.Leuk, respectively (Figure 4D), thus
leukemia cells have increased constitutive MAEs comparing with
normal cells. The rMAE per cell between Norm and postR.Norm
is not significantly different (Figure 4E). The leukemia cells
from both preR.Leuk and postR.Leuk showed significantly higher
levels of rMAE per cell, with postR.Leuk showing the highest
value (Figure 4E). The results showed that separating the
leukemia cells from normal cells in the leukemia samples made
their difference more pronounced.

Analyzing the Leukemia Cell-Specific
Monoallelic Expressions
Since we found that leukemia cells showed increased MAE,
it would be more interesting to identify the leukemia cell-
specific MAEs that potentially play an important role in
leukemogenesis and leukemia development. Although leukemia
cells showed increased MAEs comparing with normal cells,
we only detected a few constitutive MAEs showed significant
differences between normal cells and leukemia cells (Figure 5A),
which indicated that most of the MAE changes between normal
cells and leukemia cells are weak. GO enrichment analysis
showed that immune-associated categories were commonly
shared by the differentiated MAEs among Norm, preR.Leuk,
and postR.Leuk, e.g., “IL-4 production” and “positive regulation
of I-κB kinase/NF-κB signaling”. The postR.Leuk-specific MAEs
were enriched in “histone H3-K9 modification” and “mitotic cell
cycle checkpoint” and “apoptosis”, comparing with Norm and
preR.Leuk, respectively (Figure 5B). Among these leukemia cell-
specific MAEs, RPSAP58 (rs78322935) and TRG-AS1 (rs4373430)
only expressed one allele in leukemia cells (Figure 5C). TRG-
AS1 is a lncRNA and regulates cancer progression by interacting
with other microRNAs (Xie et al., 2019; He et al., 2020;
Sun et al., 2020). We further identified the relapse-specific

constitutive MAEs, which include ACER3, TCL6, and TFDP2
(Figure 5D). ACER3 coregulates cell proliferation and survival
with ACER2 (Hu et al., 2010) and plays an important role
in leukemia development (Chen et al., 2016); while TCL6 is
associated with clinical outcomes of B-cell acute lymphoblastic
leukemia patients (Cuadros et al., 2019); TFDP2 plays core roles
in apoptosis and cell proliferation (Korz et al., 2002). Altogether,
most of the significantly changed MAEs were involved in
immune pathways and regulation of cell proliferation, thus
could explain the association between increased MAEs and the
dysfunction in leukemia cells.

We also identified the significantly different rMAEs among
Norm, preR.Leuk, and postR.Leuk (Figure 5E). Among these
different rMAEs, 62.8% postR.Leuk showed rMAE at PTMA
(rs12415), which is significantly higher than that of Norm
(∼41.4%) and preR.Leuk (∼38.8%) (Figure 5F). Notably, PTMA
is associated with lymphocyte proliferation and apoptosis in
leukemia (Gómez-Márquez et al., 1989; Fan et al., 2006), thus
finding the change of rMAE on PTMA has a lot of implications.
The HLA-DRB1 (rs35445101) shows high reference allele rMAE
in Norm (∼70.8%) and preR.Leuk (∼94.7%), while postR.Leuk
maintains the lowest reference allele rMAE (35.7%) among these
cell populations (Figure 5F). HLA-DRB1 plays a central role in
antigen presentation and the decreased reference allele rMAE
may impact its function.

DISCUSSION

Mammalian genomes are diploid, we usually just assume both
alleles are equally expressed and did not consider the differences
between the bialleles (Jin et al., 2012; Han et al., 2020). In this way,
most studies only analyzed the average gene expression profile of
the two alleles, even though MAE has been discovered during
analyses of X-chromosome inactivation in the 1960s (Lyon,
1986), partially because most people do not realize the prevalence
of MAE. Large-scale interrogations of MAEs have demonstrated
MAEs were widespread in mammalian cells (Gimelbrant et al.,
2007; Zwemer et al., 2012; Deng et al., 2014; Gendrel et al.,
2014; Savova et al., 2016). The advance of scRNA-seq provides
new biological insight on MAE, although most studies only used
hundreds of cells (Deng et al., 2014; Borel et al., 2015; Kim et al.,
2015; Reinius et al., 2016). Taking advantage of high throughput
scRNA-seq with about 31,000 single-cell transcriptomes from
the same individual, this study provides a fine scale landscape
of MAE in hematopoiesis, at sample level, cell type level, and
single-cell level. In addition to the known imprinted genes, we
detected a lot of novel MAEs in BMMCs. As a cross validation,
we found more than three quarters of the constitutive MAEs
were reproducible in the bulk RNA sequencing of the same
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FIGURE 4 | Leukemia cells showing increased constitutive MAEs and rMAEs. (A) The fractions of constitutive MAEs are correlated with the fractions of leukemia
cells in BMMCs. (B) The fractions of rMAE per cell in BMMCs from control, diagnosis, refractory, and relapse. (C) tSNE projection of all BMMCs from the boy
diagnosis with leukemia, colored by the inferred cell states, namely, leukemia cells before relapse (preR.Leuk), non-leukemia cells before relapse (Norm), leukemia
cells after relapse (postR.Leuk), and non-leukemia cells after relapse (postR.Norm). (D) Constitutive MAEs of Norm cells, preR.Leuk cells, postR.Norm cells, and
postR.Leuk cells. (E) The fractions of rMAE per cell of Norm cells, preR.Leuk cells, postR.Norm cells, and postR.Leuk cells.*p < 0.05, **p < 0.01, ***p < 0.005, and
****p < 0.001.

individual. The MAEs are associated with immune functions,
which may indicate that the diversity of immunity is attributed
to MAE.

We detected a considerable number of rMAE at single-cell
level. Interestingly, a cell can stochastically express either of the
two alleles thus leading to different cells expressing different
alleles, which is called biallelic mosaic rMAEs. With a small
but significant number, such genes are presumably increasing
the cellular heterogeneity when the two alleles are different.
Meanwhile, the biallelic mosaic rMAEs might be caused by
transcriptional bursting thus it is the outcome of this important
periodic switching kinetics. Furthermore, we observed much
higher MAE levels in leukemia cells than that in normal cells,
indicating the association between MAE and leukemogenesis.
Leukemia-specific MAEs, including TCL6, TFDP2, and PTMA,
are reported to be associated with tumorigenesis and cell

proliferation. It is interesting to detect the TCL6 in leukemia-
specific MAEs, since it was recently reported that low TCL6
levels were associated with poor survival of B-cell ALL patient,
through a link between TCL6, TCL1B, and the AKT1 pathway
(Cuadros et al., 2019). The monoallelic expression may be
indicative of insufficient dosage or expression deficiency of TCL6
in our sample, who was also a B-cell ALL patient. Another
interesting gene would be PTMA, which shows significantly
higher proportion of MAE cells in the relapsed sample, and
studies demonstrated that, though in other types of cancers,
it can predict recurrence and poor prognosis (Ha et al., 2015;
Chen et al., 2018). The observation that a higher level of MAE
was in line with altered epigenetic regulations of leukemia
(Miles et al., 2020; Waanders et al., 2020). MAE is also
highly mediated by epigenetics, such as DNA methylation and
histone modifications (Eckersley-Maslin and Spector, 2014a;
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FIGURE 5 | Analyzing the leukemia cell-specific MAEs. (A) Venn diagram shows constitutive MAEs specific to preR.Leuk and postR.Leuk (underlined), after pairwise
comparisons. The green circle indicates preR.Leuk-specific MAEs, comparing with Norm, the orange circle indicates postR.Leuk-specific MAEs, comparing with
Norm, while the red circle indicates postR.Leuk-specific MAEs, comparing with preR.Leuk. (B) GO enrichment analysis of the leukemia cell-specific MAEs. The
colors match with that in (A). (C) RPSAP58 and TRG-AS1 show Leukemia specific MAEs. (D) ACER3, TCL6, and TFDP2 show postR.Leuk-specific MAEs.
(E) Pairwise comparison of the detected rMAEs among Norm, preR.Leuk, and postR.Leuk. Each dot represents a rMAE, and the axis indicates the cell fraction of
each rMAE, within the corresponding cell sub-population. Significantly biased (p < 0.05) rMAE in terms of the cell fraction is highlighted in red/blue. (F) Significantly
differentiated rMAE among Norm cells, preR.Leuk cells, and postR.Leuk cells. An increased number of cells showed MAE of ref-allele on PTMA (rs12415) in
postR.Leuk. HLA-DRB1 (rs35445101) shows increased MAE in preR.Leuk but deceased in postR.Leuk.
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Reinius and Sandberg, 2015), and interestingly, we found an
enrichment for “histone H3-H9 modification” in relapsed
leukemia cells (Figure 5B).

In summary, as far as we know, this is the first systematic
study on MAEs in human BMMCs using scRNA-seq and
analyzed MAE in three layers including sample level, cell type
level, and single-cell level. We found increased MAEs (both
constitutive and random) in leukemia cells by comparing with
normal cells, indicating the association between MAE and
leukemogenesis. Particularly, these leukemia-associated MAEs
may be the epigenetically therapeutic targets of leukemia.
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estimated by UMI counts.

Supplementary Figure 2 | tSNE projection of BMMCs (background), colored by
the expressed allele of IL32 (A), HLA-DRB5 (B), and NUP210 (C). The size of the
highlighted dot is scaled to log10 of its UMI count, and the pie chart in the bottom
right shows the genetic allelic ratio of the two alleles from WGS data.

Supplementary Figure 3 | Identification of constitutive MAEs in diagnosis (A),
refractory (B), and relapse (C), with blue representing MAE of the reference allele
while red representing MAE of the alternative allele. The percentage of the SNVs
with constitutive MAE is shown on the top left of the plot.

Supplementary Figure 4 | tSNE projection of all BMMCs from the boy diagnosed
with leukemia, colored by sampling times, namely control, diagnosis,
refractory, and relapse.
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