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Purpose: Breast density is important in the evaluation of breast cancer risk. At present, breast den-
sity is evaluated using two-dimensional projections from mammography with or without tomosynthe-
sis using either (a) subjective assessment or (b) a computer-aided approach. The purpose of this work
is twofold: (a) to establish an algorithm for quantitative assessment of breast density using quantita-
tive three-dimensional transmission ultrasound imaging; and (b) to determine how these quantitative
assessments compare with both subjective and objective mammographic assessments of breast
density.
Methods: We described and verified a threshold-based segmentation algorithm to give a quantitative
breast density (QBD) on ultrasound tomography images of phantoms of known geometric forms. We
also used the algorithm and transmission ultrasound tomography to quantitatively determine breast
density by separating fibroglandular tissue from fat and skin, based on imaged, quantitative tissue
characteristics, and compared the quantitative tomography segmentation results with subjective and
objective mammographic assessments.
Results: Quantitative breast density (QBD) measured in phantoms demonstrates high quantitative
accuracy with respect to geometric volumes with average difference of less than 0.1% of the total
phantom volumes. There is a strong correlation between QBD and both subjective mammographic
assessments of Breast Imaging - Reporting and Data System (BI-RADS) breast composition cate-
gories and Volpara density scores — the Spearman correlation coefficients for the two comparisons
were calculated to be 0.90 (95% CI: 0.71–0.96) and 0.96 (95% CI: 0.92–0.98), respectively.
Conclusions: The calculation of breast density using ultrasound tomography and the described
segmentation algorithm is quantitatively accurate in phantoms and highly correlated with both
subjective and Food and Drug Administration (FDA)-cleared objective assessments of breast density.
© 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13503]
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1. INTRODUCTION

Dense breast tissue is an independent predictor of increased
breast cancer risk.1–3 Women demonstrate a natural contin-
uum of breast density, and the presence of dense fibroglandu-
lar breast tissue is estimated to increase the risk of breast
cancer by four- to sixfold.4,5 The only factors associated with
greater increases in breast cancer risk are age and certain
genetic mutations, such as those in the BRCA genes.6–9 In
this era of precision medicine, risk models for screening
based on breast density have increasingly been proposed as
an alternative to risk models based on age.10–12 For risk-based
screening using breast density to be effective, the methods to
assess breast density must be reliable, robust, accessible, and
consistent.

Breast density refers to the percentage of breast tissue that
is relatively opaque to mammography.13 The fourth edition of
the Breast Imaging-Reporting and Data System (BI-RADS)
developed by the American College of Radiology and pub-
lished in 2003 incorporated a quantitative component of den-
sity percentages to the four quartile breast density categories.

More recently, the fifth edition of BI-RADS published in
2013 removed the quantitative component and instead pushed
forth ordinal categories (A, B, C, and D) with more emphasis
placed on the masking effects of the dense tissues. The over-
all result has been a shift toward higher density assessments
for all women.14 Following publication of the fifth edition of
BIRADS, it has also been demonstrated in the literature that
the use of categorical mammographic density scales rather
than continuous percent mammographic density measures
results in a significant loss of information. For example, the
use of a categorical scale can force very different clinical
decisions based on an arbitrary category cut-off that may not
be clinically relevant or meaningful. The more precise contin-
uous density measures have been shown to better capture the
density–risk relationship, resulting in more personalized and
accurate risk assessments.15

There is currently no gold standard method to accurately
estimate breast density. Currently utilized methods range
from (a) qualitative to quantitative and from (b) visual to fully
automated. The vast majority of subjective and automated
assessments of breast density rely on two-dimensional (2D)
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images. These 2D images are derived from either 2D mam-
mographic images or synthesized from three-dimensional
(3D) digital breast tomosynthesis (DBT). The challenge with
using 2D mammographic images or 2D synthesized mammo-
graphic images as a means to assess breast density is that the
3D heterogeneity of fibroglandular breast tissue is not cap-
tured. Additionally, challenges exist with the subjective
assessment of breast density, as multiple studies have demon-
strated significant inter- and intra-reader variability.16,17

Transmission ultrasound imaging is an emerging technol-
ogy that has a long history18–29 that provides a 3D representa-
tion of tissue characteristics. The purpose of the work
described in this paper was twofold: (a) to establish an
algorithm for quantitative assessment of breast density using
full-wave 3D transmission ultrasound imaging28 and (b) to
determine how these quantitative assessments relate to both
subjective mammographic assessments of BI-RADS breast
composition categories and objective measures provided by
FDA-cleared VolparaDensity software. We believe that the
high resolution and quantitative accuracy of full-wave 3D
inverse scattering ultrasound tomography28 should improve
the accuracy of estimates of breast density.

2. MATERIALS AND METHODS

2.A. Transmission ultrasound scanning of the
breast

All scans were performed on a multimodality transmission
and reflection ultrasound imaging system (QT Ultrasound,
LLC, Novato, CA; Fig. 1). The scanner consists of a water
bath in which the breast (or phantom) is immersed, a transmit-
ter and receiver array set for transmission imaging, and three
reflection arrays for reflection imaging. This is an investiga-
tional use of this device. The scanner and the imaging algo-
rithms have been fully described in previous literature.29–31

2.B. Segmentation algorithm

In contrast to other manual segmentation techniques, we
segment using a fully automated approach. The algorithm for
automatic quantitative breast density (QBD) measurement
performs the following steps in sequence:

1. Segmentation of the whole breast from surrounding
water.

2. Segmentation of the relatively high-speed breast tissue
from the total breast tissue volume.

3. Segmentation and removal of the skin from the high-
speed breast tissue.

4. Calculation of the breast density as a ratio of high-
speed breast tissue volume to the total breast tissue vol-
ume. The final output is expressed as a percentage
(QBD value).

The details of segmentation of high-speed breast tissue
from skin and fat are as follows:

1. The attenuation image information is used to determine
the breast volume. For each 1 mm vertical level (mov-
ing from the nipple to the chest wall):

a. From the border of the image space, the algorithm
moves inward horizontally until pixels with nonzero
attenuation are encountered. It is assumed that the
breast has nonzero attenuation whereas the attenua-
tion of the water bath can be considered zero.

b. From the surface of the breast (i.e., the point at
which the attenuation changes from zero to nonzero)
to the midpoint of the image space, the pixels are
labeled “breast tissue.” It is assumed that everything
from the surface of the breast to the center of the
breast is breast tissue.

c. To account for the vertical convexity of the breast,
the algorithm moves upward until pixels with non-
zero attenuation are encountered. From these pixels
onward, the pixels are labeled “breast tissue.”

d. Pixels labeled “breast tissue” that are close to the
border between the breast tissue and the water bath
are labeled “border pixels.”

2. The speed of sound image is then segmented on the
basis of speed and the pixel information from the atten-
uation segmentation carried out above. This is valid
since the speed of sound image is coregistered with the
attenuation image. This yields the separation of fibrog-
landular tissue and skin from fat. Fibroglandular tissue
and skin are segmented together from the total breast
tissue volume since they both have higher speed of
sound (>1510 m/s) than that of fat (<1480 m/s).

3. In the last step, the skin is segmented and removed by
exclusion of the border pixels as defined in step 1(d).

In the above algorithm, attenuation is used initially
because attenuation in water is almost zero, whereas it is
approximately two to three orders of magnitude larger in
breast tissue. The speed of sound (SOS) and reflection
images were also used to constrain the total breast volume
based on a priori known SOS of skin and lack of reflecting
objects in water. The reflection image gives an accurate delin-
eation of the skin. Note, however, that the segmentation of

FIG. 1. Photograph of the multimodality transmission and reflection
ultrasound imaging system. [Color figure can be viewed at wileyonlinelibra
ry.com]
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the SOS is critical for distinguishing fibroglandular tissue.
This requires high-resolution speed images that are obtained
by modeling refraction and diffraction effects in 3D, which
are required to avoid artifacts and volume averaging effects.28

Presently, we used a SOS of 1489 m/s as a threshold to dis-
tinguish fibroglandular from fat tissue. This was a universal
value used for all image sets in this study, since the quantita-
tive values for the SOS at each voxel should be independent
of the breast type, and only dependent on the tissue type at
that voxel.32 This multistep automatic method utilizes the
information from both the attenuation and the speed of sound
images in an intelligent manner specifically adapted to the
breast and yields segmented speed of sound and attenuation
images. The algorithm is summarized in Fig. 2.

2.C. Phantom studies

The algorithm was tested on multiple phantoms, the first
and simplest of which was a cylindrical polyurethane phan-
tom with cylindrical inclusions (Metropolis Design and Pro-
totyping, North Salt Lake, UT). It consisted of an outer
cylinder of polyurethane 40.5 mm wide with two cylindrical
holes, each 9.25 mm in diameter, and a third cylindrical hole,
7.2 mm in diameter (Fig. 3). The outer cylinder background
SOS is 1440 m/s, with attenuation 0.9 dB/cm. One of the
cylindrical holes was filled with a high speed plug (1540 m/
s, attenuation 1.6 dB/cm), the second larger hole and the
smaller hole were filled with background material, so that
only one cylindrical hole was segmented out as in Fig. 6.

The algorithm was also tested on a cylindrical polyur-
ethane phantom, three inches tall and three inches in diame-
ter, with spherical inclusions (Fig. 4). The spherical
inclusions had a SOS of 1560 m/s and attenuation 1.6 dB/
cm. The background cylinder had a SOS of 1470 m/s, and
attenuation 0.9 dB/cm. The spherical inclusions were con-
structed to be 1 cm in diameter, and the dimensions were ver-
ified with a caliper. The volume of these spheres was
measured (a) by direct calculation using the formula for the
volume of a sphere and (b) by volume displacement in a grad-
uated cylinder filled with water. The graduated cylinder was
filled to 4 cc. Addition of six spheres to the water raised the

volume to 7.20 cc; thus, the estimated volume of each sphere
was 3.20 cc/6 = 0.53 cc. This agrees well with the volume
calculated using the formula V ¼ 4

3 pr
3, which gave

V = 0.52 cc, for a sphere of radius 0.50 cm.
The algorithm was also tested on a calibration phantom

consisting of a polyurethane cylinder 60 mm tall and
80 mm in diameter containing four 8-mm-diameter water-
filled holes, four 15-mm-diameter spheres, two 1-mm-dia-
meter rods, and two 5-mm-diameter rods (Fig. 5) Half of
the spheres and half of the rods were made of high-speed
material: 1540 m/s speed of sound and 1.7 dB/cm attenua-
tion at 1.3 MHz. The remaining inclusions had a SOS of
1440 m/s and 0.9 dB/cm attenuation. The background
material had a SOS of 1480 m/s and attenuation of 0.9 dB/
cm. A calculation based on the geometry of the phantom
and standard formulas for the volumes of spheres and
cylinders indicates that high speed material corresponding
to fibroglandular tissue accounts for 18.70% of the breast
volume.

2.D. Correlation of QBD with BIRADS and Volpara
density scores

The clinical feasibility of the algorithm was first tested by
applying the algorithm to transmission ultrasound images
from 17 volunteers. QBD values calculated by the algorithm
were compared to BI-RADS33 breast composition categories
assigned by four board-certified breast radiologists following
review of the corresponding two-view mammograms. The
radiologists were blinded to the QBD scores.

To compare the QBD values with the BI-RADS breast
composition categories,34 it was necessary to convert the BI-
RADS mammographic composition categories to breast den-
sity (BD) scores. We therefore used the values in Table I.
These values are subjective17 estimates, but are used consis-
tently, to quantify the BIRADS score. We also compared and
correlated the QBD values with quantitative density scores
provided by VolparaDensity35 software, for a cohort of 25
volunteers. We opted to assess the correlation with the Spear-
man q, since we do not know a priori, that the relationship
between QBD and Volpara is linear.

FIG. 2. Summary of segmentation algorithm. [Color figure can be viewed at wileyonlinelibrary.com]
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3. RESULTS

3.A. Verification with phantoms

The results of segmentation for the cylindrical phantom
with cylindrical inclusions are shown in Fig. 6. The density
value based on geometry was 3.96%, whereas the QBD value
was 4.09%. The results are summarized in Table II.

The results of segmentation for the cylindrical phantom
with spherical inclusions are shown in Fig. 7. The density
value based on geometry was 0.92%, whereas the QBD value
was 1.00% (Table II).

The total volume of the phantom was calculated as 347.50
cubic centimeters (cc). The spheres had a total volume of
6 9 0.53 cc. The ratio (6 9 0.53)/347.50 gives 0.92%.

For the calibration phantom (Fig. 5), the density value
based on geometry was 18.70% in comparison to the QBD
value which was 18.66%. The corresponding image set is
shown in Fig. 8 (along with a supplementary media file
showing 3D segmentation of the relatively high-speed
regions within the phantom).

See also Video, Supplemental Digital Content 1, which
shows a rotating segmentation of the calibration phantom
showing the high-speed rods and spheres segmented out from
the entire phantom. This shows the high resolution of our
method and avoidance of 2D artifacts. There has been a great
deal of research toward ultrasound tomography.21,22,36–39

However, these methods generally rely on 2D (not 3D) full-
wave methods or ray-based forward models40 in the

FIG. 3. Photograph (left) and schematic (right) of the cylindrical phantom
with cylindrical inclusions. On the schematic, the label Ø symbol indicates
diameter (not radius) of the associated holes. All measurements are in mil-
limeters. [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 4. Photographs of (a) polyurethane phantom with spherical inclusions
(left) and (b) isolated spherical inclusions (right). [Color figure can be viewed
at wileyonlinelibrary.com]

FIG. 5. Isometric (left) and planar (right) views of the calibration phantom.
On the planar view, the label Ø indicates diameter and THRU indicates
through holes. There are four (4 9 ) through holes in the phantom which are
filled with water upon placement of the phantom in water. All dimensions
are in millimeters.

TABLE I. Conversion of BI-RADS breast density categories to quantitative
scores.

BI-RADS category BD score

a 6.0

b 14.8

c 51.2

d 78.4

FIG. 6. Segmented transmission ultrasound images (coronal and axial views)
of the cylindrical phantom with cylindrical inclusions for geometric compari-
son. Top row: segmented total volume, middle row shows segmented periph-
eral capsule and internal cylinder. Bottom row: segmented internal cylinder
without the peripheral capsule (representing skin). Quantitative breast density
score is volume in bottom row divided by volume in top row.
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inversions. Thus, they may have 2D artifacts or lower resolu-
tion, which may affect the segmentation process adversely.

3.B. Verification on volunteers

A typical automatically generated result from a clinical
volunteer subject is shown in Fig. 9. First, a comparison of
the speed of sound image (top row) with the segmented
image (middle row) shows a clear correlation. Second, the

bottom row shows that the “skin removing” part of the algo-
rithm effectively removes the tissue corresponding to skin.

There was high correlation between the QBD values and
the categorical BIRADS breast density scores (Fig. 10).
There was also high correlation between QBD and scores
determined by Volpara, as shown in Fig. 11 which shows the
scatter plot of QBD values against Volpara density scores for
a sample size of 25. The nonparametric Spearman coefficient
for this correlation was r = 0.96 (95% CI: 0.92–0.98,
P < 0.0001). The correlation equation is y = 0.52x–0.023.

Figures 12–14 show application of the QBD algorithm to
three different classes of breast densities: a fatty breast with
QBD of 10.9%, a heterogeneously dense breast with QBD of
29.5%, and a very dense breast with QBD of 62.5%. Taken
together, these figures show the effectiveness of the QBD
algorithm on a variety of breast densities. We emphasize that
these SOS images are the standard images that come from the
scanner. The attenuation and reflection images are not shown
since they are used only to accurately determine the breast
volume, which is clearly seen in the images. We note that
Case 2 in Fig. 10 is an outlier which we believe indicates the
coarseness of the BIRADS composition score. Note that the
SOS threshold value chosen in the segmentation is consistent
for all image sets. One value is used for all breasts, since our
image is a high-resolution 3D map of intrinsic tissue charac-
teristics, independent of the scanner. This value (1489 m/s)
was determined empirically. Further studies are ongoing to
optimize this threshold value.

The algorithm uses the attenuation image as well as the
speed of sound image. The attenuation and reflection images
are used only to determine the whole breast volume and so
are not shown. Once the breast volume is isolated, we use the
quantitative estimate of the tissue SOS at each particular
voxel for the critical segmentation operation to distinguish
between fibroglandular and other tissue. This operation
requires lack of artifacts and high resolution which requires
modeling and reconstruction incorporating both refraction
and diffraction effects in full 3D.28 The voxels are
0.4 mm 9 0.4 mm 9 1 mm in size and the image space is
531 9 531 pixels in the coronal view of the breast. The verti-
cal extent of the image space varies with the size of the
breast, with each level representing a 1-mm-thick slice.

TABLE II. High speed material as a proportion of phantom volume: QBD
value vs geometry-based value.

Phantom
QBD value,

%
Geometry-based

value, %

Cylindrical phantom with cylindrical
inclusions

4.09 3.96

Cylindrical phantom with spherical
inclusions

1.00 0.92

Calibration phantom (with rods and
spheres)

18.66 18.70

FIG. 7. Top row, speed of sound images of the cylindrical phantom with
spherical inclusions; Bottom row, high speed spheres segmented out.

FIG. 8. Quantitative breast density segmentation algorithm applied to calibration phantom; (left) speed of sound image, (middle) segmented peripheral capsule
and high-speed spheres and rods. The segmentation is based on speed of sound > 1489 m/s.
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See Video S2, which shows the rotating fibroglandular tis-
sue of a human breast segmented out based on the present
algorithm and SOS, attenuation, and reflection values. Part of
the skin is shown for perspective, and a subcutaneous vein is
visible.

Finally, we also demonstrate that there is a psychovisual
tendency to overestimate 3D volumes from projections. This

disparity is particularly relevant in the case of solid objects
with convex or concave margins. As seen in Fig. 15, the light
gray 3D object appears to cover almost 50% of the cross-sec-
tional area. This is approximately true independent of the azi-
muthal view. However, it can be shown through geometric
considerations that the fraction of the volume of the cube
occupied by the light gray volume is given by Eq. (1), where
d/a is the ratio of the width, d, of the light gray cross to the

FIG. 9. Steps in the quantitative breast density algorithm: Top row, speed of sound images. Middle row, breast separated from the water bath with skin and fibrog-
landular tissue segmented from the total breast tissue volume. Bottom row, remaining fibroglandular tissue following the segmentation and removal of skin. The
segmentation is based on speed of sound > 1489 m/s.

FIG. 10. Comparison of quantitative breast density (QBD) values and BI-
RADS-based subjective breast density scores.17 The vertical axis is the per-
centage of total breast volume that is fibroglandular tissue — either the QBD
value or the subjective value assigned to BiRADS composition categories.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 11. Comparison of quantitative breast density and Volpara density
scores. The Spearman rank correlation r is 0.96
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length of the side of the cube, a, and h is the height of the
light gray region above the bottom of the cube.

f ¼ d
a

1� h
a

� �
(1)

d=a ¼ h=a ¼ 1=7 (2)

Hence, for the case shown in Fig. 15, (where d/a = h/
a = 1/7), the volume fraction is only ~12%, whereas a projec-
tion from any side view would imply a much larger volume
fraction of ~49% (ratio of the area of the light gray region to
the square on the right panel of Fig. 15).

4. DISCUSSION

We observed that the QBD algorithm was quantitatively
accurate for simple phantoms with both 2D (cylindrical) and
true 3D (spherical) inclusions. Specifically, we verified the
quantitative accuracy of the QBD algorithm against theoreti-
cally calculated values. This establishes the importance and

accuracy of the high resolution and quantitative accuracy of
the segmentation. We note that some research groups have
skipped this important first step — validation. In the clinical
setting, upon evaluation of images from volunteer subjects,
the fibroglandular tissue volume segmented by the QBD
algorithm showed high visual correlation with the speed of
sound image.

There is known 3D heterogeneity within fibroglandular
breast tissue, which we refer to as topological diversity. The
key point in this analysis is that the fibroglandular tissue is
nonconvex and contains voids. Consequently, two 2D projec-
tions as in mammography can misrepresent the true 3D

FIG. 12. Transmission ultrasound images of a fatty breast quantitative breast
density (QBD = 10.9%). Top row, speed of sound image; L to R: coronal,
axial sagittal image. Middle row, fibroglandular tissue and skin segmented
from the total breast tissue volume. Bottom row, remaining fibroglandular tis-
sue following the segmentation and removal of skin. The segmentation is
based on speed of sound > 1489 m/s.

FIG. 13. Transmission ultrasound images of a heterogeneously dense breast
quantitative breast density (QBD = 29.5%). Top row, speed of sound (SOS).
L to R: coronal, axial, sagittal. Middle row, segmentation with skin. Bottom
row, corresponding total breast volume. There is clear correlation between
the total breast volume, the segmentation, and the high-speed tissue. The seg-
mentation is based on SOS > 1489 m/s.
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volume41 Our QBD algorithm, when used in conjunction
with quantitative transmission ultrasound tomography, is
accurate regardless of the 3D heterogeneity in the fibroglan-
dular breast tissue.

We also note that our images are unique in their high reso-
lution, reduction of 2D artifact, and reduction of “volume
averaging” which may affect any segmentation yielding a
QBD score.28,42 Sak et al.43 obtained a Spearman correlation
coefficient of 0.568 between k-means segmented and 0.715
between threshold segmented volumes based on ultrasound
tomography and mammographic breast density. Our

comparison yielded a correlation of 0.96 and the value
appears to remain high over larger cohorts, as future publica-
tions will establish. It may be that the value differs due to dif-
ferences in the SOS images used in the segmentation. Our 3D
algorithm (utilizing diffraction) appears to avoid some arti-
facts and volume averaging that may arise with 2D recon-
struction algorithms,28 especially if the model is based on
refraction only, as in the case of ray-based inversions.7 Note
that Sak et al. observed better correlation when segmentation
was based on thresholding (which we use here) rather than k-
means clustering. This may be because transmission ultra-
sound tomography yields characteristic estimates of the tissue
itself, independent of the imaging system and surrounding
tissue.

In consideration of frequently used imaging modalities in
breast imaging, it becomes clear that 3D techniques are
advantageous over 2D methods. Kopans44 has argued with
respect to breast density determination: “Future investigations
need to use 3D information,” and that “Radiologists can
guesstimate the percentage of breast tissue that is dense, but
they are still using 2D information to assess a 3D phe-
nomenon.” To this end, volumetric measurement of breast
density from intrinsically 3D imaging modalities is consid-
ered more accurate due to their scientific validity. Recently,
3D-segmented magnetic resonance (MR) images have been
used45 to assess breast density and appear to be robust to
positioning issues46 and give reproducible results.47 However,
MR imaging is relatively costly and requires specialized
expertise to run and operate.

More recently developed breast imaging modalities such
as breast computed tomography (CT) have the advantage of
being intrinsically volumetric.48 Vedantham49 has analyzed
the use of dedicated breast CT to determine the mean and
range of “volumetric glandular fraction” in a related context.
They carried out a validation step and observed that their
algorithm was accurate to within � 1.9% in determining the
volume of an irregular shaped phantom. The calculation of
breast density via automated breast ultrasound (ABUS)
images50 has also been correlated with MR imaging (MRI)
— Chen et al.50 found a correlation (R2 = 0.825) for breast
percent density (similar to our QBD), as measured with
ABUS vs MRI, which are both volumetric measures.

FIG. 14. Transmission ultrasound images of a dense breast quantitative breast
density (QBD = 62.4%). Top row, speed of sound (SOS). L to R: coronal,
axial, sagittal. Middle row, segmentation with skin. Bottom row, correspond-
ing total breast volume. There is clear correlation between the total breast
volume, the segmentation, and the high-speed tissue. The segmentation is
based on SOS > 1489 m/s.

FIG. 15. Cube containing cross-shaped truncated cone (light gray). Left, top
view. Right, side view. The volume fraction of the light gray area is only
~12%, but on the side projection (right panel), the light gray area occupies
~49% of the total square.
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Digital breast tomosynthesis (DBT) also provides a 3D
image stack. Breast densities from DBT, MRI, and digital
mammography (DM— a 2D image) were pairwise correlated
in Moon et al.51 They indicated some correlation between
breast volumes for all three modalities. However, the correla-
tion between the estimate of breast density from DBT and
DM (R = 0.789) was substantially higher than that between
DBT and MRI (R = 0.482), which was the same as the corre-
lation between DM and MRI (R = 0.482).

Prior to the work in this paper, ultrasound tomography had
been explored as well for assessment of breast density
although some of these methods provide a surrogate for QBD
and not a direct percentage measure. Initial work using ultra-
sound tomography utilized images made from 2D-based
algorithms, wherein 2D images are concatenated together to
yield 3D images.43,52,53 O’Flynn et al.,54 Glide,55 and Duric
et al.53 calculated volume-averaged SOS (VASS) derived
from ray-based ultrasound tomography as a means to ascer-
tain breast density. Similarly, Sak et al.43 used median and
mean values of the SOS image and correlated with mammo-
graphic breast density as determined by Cumulus software.
However, their ray-based methods account for refraction, but
not diffraction wave phenomena. Consequently, their images
would be potentially subject to volume averaging resulting in
lower quantitative accuracy.

Glide-Hurst et al.52 used a volumetric ultrasound per-
cent density (UPD) as determined by segmenting high
sound speed areas from each image slice using a k-means
clustering routine and integrating these results over all the
slices of the breast. Hence, their comparison of the phan-
tom was based on integrated areas, whereas ours was
based on a segmented volume. They observed a moderate
Spearman correlation of 0.69 between the BIRADS assess-
ment of composition and UPD. However, their segmenta-
tion was semi-automatic and carried out slice by slice,
which is appropriate, since their ultrasound tomograms
were reconstructed in the same manner. In particular, they
manually determined the first and last levels, which bound
the segmented slices. Similarly, the segmentation methods
utilized by O’Flynn on the ultrasound tomography images
were not automatic — the posterior and anterior limiting
levels were chosen manually. In our algorithm, the seg-
mentation was totally automatic to prevent bias across
multiple breasts. This characteristic is important to insure
lack of bias and consistency in the proposed QBD score.
Also, the segmentation threshold we chose is empirical,
but universal for all breasts. We can do this because our
image gives the intrinsic tissue characteristics of a particu-
lar voxel. Ours is a model-based inversion of the govern-
ing partial differential equation and thus is independent of
the data collection apparatus (up to noise and numerical
conditioning considerations). The VASS (SOS) images in
O’Flynn show volume averaging in comparison to the
images shown here. The VASS score will, in part, com-
pensate for the volume averaging. However, the segmenta-
tion contained here geometrically isolates the
fibroglandular tissue from other breast tissue, which is not

only more intuitively appealing but also opens the possi-
bility to understand more completely, why dense breasts
are a cancer risk factor.

It is noted in literature56 that Volpara and Quantra tend to
underestimate mammographic density. This also corroborates
our findings. This can be attributed to the fact that although
the Highnam equation41 and similar formulas are useful to
estimate the total thickness of the fibroglandular tissue, it is
an ill-conditioned inversion problem and highly susceptible
to noise. The presence of multiple voids in the fibroglandular
tissue can be difficult to account for when estimating density
from projection images. These limitations can affect all auto-
mated breast density methods. However, Volpara seems to
provide a better correlation with visual assessment of breast
density as noted by Duffy et al.57 who analyzed both Volpara
and Quantra software, which helps to justify our choice of
comparison in this research. Vinnicombe also prefers Volpara
to Cumulus.35

Our results on volunteers demonstrate a correlation
between the BI-RADS breast composition category
assigned by the board-certified breast radiologists and the
QBD value. In addition, our images indicate that the QBD
value is geometrically accurate across a range of breast
densities. We also demonstrated a significant correlation
(Spearman r = 0.96) with Volpara density scores derived
from VolparaDensity software which FDA cleared to pro-
vide both volumetric breast density measurements and a
breast density category. The volume fraction of physiologi-
cally “dense” tissue is an intuitively appealing score to
use. We established here the accuracy of the segmentation
with known phantoms (validation) and showed statistical
correlation with FDA-approved breast density estimation
methods with small cohorts. This essential first step will
be followed with future research using the quantitative nat-
ure of our images to facilitate further differentiation of
glandular from connective tissue, and utilization of larger
cohorts and MR images to further substantiate the correla-
tion observed here.

In conclusion, this work demonstrates that the QBD algo-
rithm has promise as a viable method to accurately and con-
sistently quantify breast density. Additional work is required
to further define the utility of the QBD algorithm in a clinical
setting.
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SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Video S1: Video which shows a rotating segmentation of the
calibration phantom showing the high-speed rods and spheres
segmented out from the entire phantom. mp4
Video S2: Video that shows a rotating segmentation of the
fibroglandular tissue of a human breast. Wmv
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