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There is increasing evidence that the hemisphere ipsilateral to a moving limb plays a role in planning and executing movements. However,
the exact relationship between cortical activity and ipsilateral limb movements is uncertain. We sought to determine whether 3D arm
movement kinematics (speed, velocity, and position) could be decoded from cortical signals recorded from the hemisphere ipsilateral to
the moving limb. By having invasively monitored patients perform unilateral reaches with each arm, we also compared the encoding of
contralateral and ipsilateral limb kinematics from a single cortical hemisphere. In four motor-intact human patients (three male, one
female) implanted with electrocorticography electrodes for localization of their epileptic foci, we decoded 3D movement kinematics of
both arms with accuracies above chance. Surprisingly, the spatial and spectral encoding of contralateral and ipsilateral limb kinematics
was similar, enabling cross-prediction of kinematics between arms. These results clarify our understanding that the ipsilateral hemi-
sphere robustly contributes to motor execution and supports that the information of complex movements is more bihemispherically
represented in humans than has been previously understood.
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Introduction
Although we traditionally understand voluntary motor move-
ments to stem from the cortex within the hemisphere contralat-
eral to a moving limb, there is increasing evidence that the
ipsilateral hemisphere also plays an active role in the execution of

voluntary motor movements. Across a variety of modalities in
both human subjects and animal models, ipsilateral cortical acti-
vations have been observed during unilateral limb movements
(Tanji et al., 1988; Aizawa et al., 1990; Wisneski et al., 2008;
Ganguly et al., 2009; Buetefisch et al., 2014; Hotson et al., 2014).
Similarly, ipsilesional motor deficits have been observed in hu-
man patients following unilateral cortical injuries (Baskett et al.,
1996; Sunderland, 2000; Schaefer et al., 2007, 2009a,b, 2012).
Although this evidence supports the idea that the ipsilateral
hemisphere may be involved in the execution of voluntary motor
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Significance Statement

Although limb movements are traditionally understood to be driven by the cortical hemisphere contralateral to a moving limb,
movement-related neural activity has also been found in the ipsilateral hemisphere. This study provides the first demonstration
that 3D arm movement kinematics can be decoded from human electrocorticographic signals ipsilateral to the moving limb.
Surprisingly, the spatial and spectral encoding of contralateral and ipsilateral limb kinematics was similar. The finding that
specific kinematics are encoded in the ipsilateral hemisphere demonstrates that the ipsilateral hemisphere contributes to the
execution of unilateral limb movements, improving our understanding of motor control. Additionally, the bihemisheric repre-
sentation of voluntary movements has implications for the development of neuroprosthetic systems for reaching and for neurore-
habilitation strategies following cortical injuries.
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movements, the exact role of the ipsilateral hemisphere remains
uncertain.

Defining how the brain encodes motor kinematics (i.e., speed,
velocity, and position) is essential to understanding the cortical
dynamics that underpin motor control in humans. With regards
to ipsilateral motor activations, previous studies have demon-
strated that some limited movement kinematics can be decoded
from the ipsilateral hemisphere (Ganguly et al., 2009; Hotson et
al., 2012, 2014). The extent and detail of the information that is
encoded ipsilateral to a moving limb, however, is currently un-
known. Additionally, how this ipsilateral kinematic information
compares to contralateral kinematic encoding also remains
largely unresolved because previous studies have reached con-
flicting conclusions. Some investigators found that ipsilateral
motor activations occur at distinct frequencies (35–50 Hz) and
locations (premotor) relative to contralateral motor activations
(Wisneski et al., 2008), whereas others have found that contralat-
eral and ipsilateral movement-related activations are similar (Fu-
jiwara et al., 2017; Haar et al., 2017). These discrepant results
underscore the need to define, to the highest level possible, how a
given hemisphere represents multidimensional ipsilateral and
contralateral kinematics. Specifically, encoding detailed mo-
vement parameters such as kinematics, joint angles, or muscle
activations is a necessary condition for a given hemisphere to play
a role in planning and executing voluntary motor movements.
Further, understanding the link between cortical physiology and
movement is essential to crafting more informed rehabilitation
strategies in the setting of brain injuries and movement disorders.

In this study, motor-intact humans implanted with unilateral
intracranial electrocorticographic (ECoG) electrodes performed
a 3D center-out reaching task with each arm (Fig. 1B–D). We
initially hypothesized that unilateral ECoG signals would enable
us to decode movement kinematics of both limbs with distinct
features distinguishing each arm. We found that ECoG signals
could be used to decode 3D kinematics of ipsilateral limb move-
ments. Additionally, we found that ECoG representations of
reaching movements are conserved between contralateral and
ipsilateral limb movements. Together, these findings support
that the ipsilateral hemisphere plays an active role in unilateral
arm movement and that kinematic information has substantial
bihemispheric representation.

Materials and Methods
Experimental design and statistical analyses. The experiments presented
used within-subject designs. As described in detail below, the statistical
significance of movement-related neural activity was tested using a one-
sample t test after z-scoring data relative to baseline periods. Multiple
comparisons across electrodes, neural features, time windows, and task
condition were controlled for using false discovery rate correction (Ben-
jamini and Yekutieli, 2001). The statistical significance of kinematic pre-
diction accuracies for individual patients as well as across patients and
cross folds was evaluated with a Wilcoxon rank sum test comparing
actual and surrogate prediction accuracies with Bonferroni correction
performed to control for multiple comparisons. Finally, the similarity of
the absolute value of activation patterns for the contralateral and ipsilat-
eral models was evaluated using Pearson’s rho.

Patient population. The study included four patients with intractable
epilepsy undergoing temporary placement of subdural ECoG electrodes
for localization of their epileptic foci. Electrodes were implanted for �1
week (7–14 d). We previously described a method to predict kinematics
of contralateral arm reaching movements in five patients (Bundy et al.,
2016). A subset of four patients (three male, one female) from our earlier
study performed a 3D reaching task both with the limb contralateral to
their electrode array as well as the limb ipsilateral to the electrode array in
separate recording sessions. ECoG electrodes were located in the hemi-

sphere contralateral to the dominant hand in all patients. One patient
(Patient 2) described feeling minor pain and fatigue in the arm contralat-
eral to the electrode array due to mass effects from the implant (i.e.,
motor weakness caused by the electrode array physically pressing against
the motor cortex), although this did not lead to any observed functional
deficits. Table 1 describes patient characteristics for each patient. The
Institutional Review Board of the Washington University School of Med-
icine approved the study protocol and all patients provided written in-
formed consent before participating in the study.

Reaching task. Each patient performed a 3D center-out reaching task.
The task has been described in detail previously (Bundy et al., 2016). In
short, hand positions for the moving limb were collected using a Flock of
Birds motion capture system (Ascension Technology, Shelburne, VT). A
single sensor was fixed to the top of the index and middle finger to track
hand position. Hand position was synchronized with ECoG signals
through a custom BCI2000 module. The center-out task consisted of
reaches to eight targets at the corners of a physical cube with 50-cm-long
edges. Patients were seated in a semirecumbent position and the center
target was placed at their midline �40 cm in front of their chest (Fig. 1B).
Each trial of the task included a cue to move their hand to a center target
position, a baseline period with their hand remaining at the central target
(Hold-A, 1 s), a planning delay period (2 s), a movement period, and
finally an outer hold (Hold-B, 0.5 s) period. All task cues were visual cues
provided by colored LED lights at the center and peripheral target loca-
tions. To compare contralateral and ipsilateral arm movements, the task
was first performed using the arm contralateral to the electrode array in
one session followed by a second session in which patients used the arm
ipsilateral to the electrode array (Fig. 1C,D). In three of the four patients
(Patient 1, Patient 3, and Patient 4), contralateral and ipsilateral move-
ment sessions were performed on different days.

Data acquisition. Each patient was implanted with subdural platinum–
iridium ECoG grid and strip electrodes (PMT or Ad-Tech) with an elec-
trode diameter of 4 mm (2.3 mm exposed) and an electrode spacing of 1
cm. The number and locations of electrodes were solely based upon the
clinical requirements for the localization of each patient’s epileptic focus;
however, each patient had some coverage of their motor cortex. A sub-
dural 1 � 4 or 1 � 6 strip of electrodes was also implanted facing the skull
for use as ground and reference signals. Signals were sampled at 1200 Hz
and recorded using g.USBamp biosignal amplifiers (g.tec) and the
BCI2000 software system (RRID:SCR_007346) (Schalk et al., 2004). No
external filters were used with the exception of the amplifier’s internal
anti-aliasing filter. The g.USB amplifiers used had an internal sampling
frequency of 38.4 kHz and an internal antialiasing filter at 5 kHz.

Electrode localization. Electrode locations were estimated from lateral
radiographs collected after electrode implantation. The getLOC package
(Miller et al., 2007) was used to localize electrodes onto an atlas brain
with an accuracy of �1 cm and are displayed in Figure 1A. To display the
topographic organization of signal features, we mapped quantitative re-
sults onto an atlas brain using a weighted spherical Gaussian kernel cen-
tered at each electrode location. Gaussian kernels from all electrodes were
linearly superimposed and the contribution from each electrode was
normalized based upon the number of nearby electrodes.

ECoG processing. A detailed description of the processing sequence is
contained in our previous study (Bundy et al., 2016). Initially, ECoG
signals were visually inspected in the time and frequency domain and
channels displaying nonphysiologic activity or pathological epileptic ac-
tivity throughout a recording were excluded (Patient 1: 7 electrodes,
Patient 2: 7 electrodes, Patient 3: 4 electrodes, Patient 4: 19 electrodes).
Additionally, ECoG data from each individual trial was examined in the
time and frequency domain and kinematic data from each trial was visu-
ally examined to exclude trials with significant artifacts or kinematic data
outside of the sampling range of the motion capture system. After this
process, the total number of trials analyzed for each patient was as fol-
lows: Patient 1: 245 contralateral, 119 ipsilateral; Patient 2: 76 contralat-
eral, 187 ipsilateral; Patient 3: 221 contralateral, 177 ipsilateral; Patient 4:
202 contralateral, 208 ipsilateral. ECoG signals were then re-referenced
to the common average of each array or amplifier, band-pass filtered
between 0.1 and 260 Hz, and notch filtered to remove all noise harmonics
�260 Hz.
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Because of their relevance in previous studies of movement decoding
(Schalk et al., 2007; Pistohl et al., 2008; Hotson et al., 2014), spectral
power changes and the local motor potential (LMP) were then calcu-
lated. The maximum entropy method, an autoregressive spectral estima-

tion method, was used to estimate the spectral power of the ECoG signals
(Marple, 1987). A model order of 75 was chosen and spectral power was
estimated in 2 Hz frequency bins with bin centers from 3 to 253 Hz. To
examine temporal changes in spectral power, spectral power was calcu-

Figure 1. Study methodology. Patients implanted with electrocorticography arrays completed a 3D center-out reaching task. A, Electrode locations were based upon the clinical requirements of
each patient and were localized to an atlas brain for display. B, Patients were seated in the semirecumbent position and completed reaching movements from the center to the corners of a 50 cm
physical cube based upon cues from LED lights located at each target while hand positions and ECoG signals were simultaneously recorded. Each patient was implanted with electrodes in a single
cortical hemisphere and performed the task with the arm contralateral (C) and ipsilateral (D) to the electrode array in separate recording sessions. E, The task incorporated a center hold period
(Hold-A), planning delay, movement period, and exterior hold period (Hold-B). To decode kinematics of contralateral and ipsilateral reaching movements, a hierarchical PLS regression that
incorporated a logistic regression classification of movement and rest periods to switch the predicted output between the output of two PLS regression models was used. The first PLS model was
trained using data from the rest periods to predict speed and velocity during rest periods and the second PLS regression model was trained using data from the movement periods to predict speed
and velocity during movement periods (F ). (E adapted from Bundy et al., 2016 under terms of the CC BY license).
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lated in 300 ms windows with shifts of 50 ms between windows. Power
spectra were normalized using a log transform and were then converted
to z-score values relative to the period from 200 ms after the beginning of
the baseline Hold-A period until the end of the Hold-A period. Spectral
power was then pooled within seven canonical frequency bands that
spanned relevant frequency bands while avoiding noise harmonics. Spe-
cifically, the bands used were as follows: theta (4 – 8 Hz), mu (8 –12 Hz),
beta 1 (12–24 Hz), beta 2 (24 –34 Hz), gamma 1 (34 –55 Hz), gamma 2
(65–95 Hz), and gamma 3 (130 –175 Hz). Finally, the band-averaged
power was once again z-scored with respect to the period from 200 ms
after the beginning of the Hold-A period until the end of the Hold-A
period. The use of two distinct z-score calculations corrected for the 1/f
fall-off in spectral power to ensure that each 2 Hz bin contributed equally
to each frequency band and that the number of 2 Hz frequency bins
averaged into the respective frequency bands did not affect the amplitude
or variance of each frequency band. The LMP was calculated by using a
second-order Savitzky–Golay smoothing filter on 300 ms time windows
shifted by 50 ms between windows. As with the spectral power features,
the LMP time series were z-scored with respect to the period from 200 ms
after the onset of the Hold-A period to the end of the Hold-A period.
Although alternative methods for spectral power estimation, such as a
wavelet convolution, may have led to improved temporal resolutions,
particularly for higher frequencies, the autoregressive method with iden-
tical time windows across frequency bands was chosen to directly com-
pare the encoding of movement parameters within each frequency band.
Additionally, theavailabilityofareal-timeMEMmodulewithinBCI2000allows
for decoding models developed here to be applied in potential future online
brain–computer interface tasks.

Kinematic data processing. A Flock of Birds motion capture system was
used to record 3D hand positions with the positive x-axis oriented toward
the patient along the anterior–posterior axis, the positive y-axis oriented
laterally toward the patient’s left, and the positive z-axis oriented down-
ward along the superior–inferior axis. In addition to hand position, the
3D position values were differentiated to calculate the velocity compo-
nents in each dimension and these velocity components were also nor-
malized to calculate hand speed. To align kinematic information with
ECoG activity, each kinematic parameter was averaged within 300 ms
time windows shifted by 50 ms between windows. The onset of move-
ment in each trial was determined as the first time that hand speed
exceeded 10% of the trial-specific maximum speed. The threshold of
10% was chosen because the peak hand speed during the premovement
planning period did not exceed this threshold in over 75% of trials,
providing good separation between movement and rest. The movement
onset time was also visually confirmed in all trials and, if needed, cor-
rected to ensure that movement onsets were not aligned to spurious
fluctuations in the measured hand positions.

Neural correlates of reaching movements. To examine the movement-
related differences in the timing, sign, and amplitude of changes in ECoG
activity during reaches of the contralateral and ipsilateral arms, time
courses of z-scored ECoG features [spectral power in 7 canonical fre-
quency bands: (theta (4 – 8 Hz), mu (8 –12 Hz), beta 1 (12–24 Hz), beta 2
(24 –34 Hz), gamma 1 (34 –55 Hz), gamma 2 (65–95 Hz), and gamma 3
(130 –175 Hz), and LMP amplitude] were aligned and stacked from 1 s
before movement onset to 2 s after movement onset for each electrode
and feature. Because z-score values were previously calculated (see
“ECoG processing” section) using the activity during the Hold-A (rest)
period, a z-score value of zero represents the average activity for the
Hold-A period. A one-sample t test was used to determine whether the
mean z-score value for a specific electrode, feature, time window, and
hand was significantly different from 0. An independent-samples t test

was used to determine whether the z-score values for a specific electrode,
feature, and time window were significantly different between hands.
The total number of comparisons across electrodes, features, time win-
dows, and hand were corrected for using the Benjamini–Hochberg–Ye-
kutieli method of false discovery rate (FDR) correction that accounts for
the correlated p-values caused by the overlapping time windows (Benja-
mini and Hochberg, 1995; Benjamini and Yekutieli, 2001). The locations
and timing of significant power changes were compared between con-
tralateral and ipsilateral arm reaches and were summarized by calculating
the percentage of electrodes with significant ( p � 0.05) amplitude
changes at each time window and frequency band for contralateral and
ipsilateral limb movements. Differences in timing between contralateral
and ipsilateral arm movements were quantified by calculating the corre-
lation (Pearson’s r) between the time courses of the percentage of active
electrodes during contralateral arm movements and the percentage of
active electrodes during ipsilateral arm movements. Correlations were
calculated using time lags ranging from �500 ms (ipsilateral leading) and
500 ms (contralateral leading) and the time lag with the peak correlation
was determined. The peak correlation and time lag were calculated sep-
arately for each frequency band examined. Additionally, we calculated
the percentage of electrodes in which the absolute value of the z-scored
feature was significantly different between contralateral and ipsilateral
hand movements for each frequency band.

Machine learning methods. Next, we investigated whether we could use
ECoG signals to decode kinematics of reaching movements of the ipsi-
lateral limb and compared the ability to decode kinematics of ipsilateral
and contralateral limb movements. All examinations of the ability to
decode kinematics were performed offline. To test the ability to decode
kinematics, the datasets for the contralateral and ipsilateral arm move-
ment conditions from each patient were each divided into separate train-
ing and testing sets. We generated a training set by randomly sampling
7/8th of the trials and the remaining trials were held out as a test set. For
each trial, the period from 2 s before the onset of movement until the end
of the trial was used. Separate contralateral and ipsilateral training and
testing sets were constructed for each patient by concatenating the time
courses of both neural data and kinematics from the randomly selected
trials.

The details of our machine learning algorithm for decoding kinemat-
ics has been described previously (Bundy et al., 2016). Because the reach-
ing task incorporated periods where patients were required to hold their
hand at the center or exterior of the workspace as well as periods where
patients made active reaching movements, we used a hierarchical partial-
least-squares (PLS) regression (Fig. 1F ) that used a logistic regression
model to distinguish movement and rest periods and to switch the model
output between the output of a movement PLS regression model and the
output of a rest PLS regression model, producing the final output.

To predict movement and rest periods, training labels were generated
using a threshold of 10% of the maximum movement speed. The model
was trained using the z-scores of eight features (seven frequencies and
LMP) at each channel. For each feature, the time lag with the maximum
absolute correlation coefficient between the ECoG activity and move-
ment speed was used. The hyperparameter weights associated with the L1
and L2 norms were optimized via sevenfold cross-validation within the
7/8th training set. After optimizing the hyperparameters, the entire train-
ing set was used to train the model.

The output from the logistic regression was used to switch between
separate movement and rest PLS regression models. The PLS regression
model estimates a lower-dimensional latent structure of the input vari-
ables that is used to fit the regression to avoid overfitting and account for
multicollinearities. For our model, the inputs were the z-scored spectral

Table 1. Patient characteristics and task performance

Patient number Electrode locations Epileptic focus Handedness Age (y) Contralateral trials Ipsilateral trials

1 Right temporal/frontal strips Right mesial temporal Left 40 288 128
2 Left frontotemporal grid and strips Left anterior/mesial Temporal Right 27 104 240
3 Left frontotemporal grid and strips Left frontal/central Right 18 256 256
4 Left frontotemporal grid and strips Left anterior sub-temporal Right 56 256 256
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power and LMP amplitude of each channel for every time lag between
�1000 and 500 ms in 50 ms steps with negative lags, indicating the
amount of time that the neural activity leads the kinematic data. The
model outputs were movement speed and 3D movement velocity (Vx,
Vy, and Vz). Finally, to enforce the constraint that the magnitude of the
predicted velocity vector equals the predicted speed, the predicted veloc-
ity vector was normalized and modulated by the predicted speed. As with
the logistic regression, 7-fold cross validation was used within the 7/8th
training set to determine the number of latent features used for the final
model that was trained using the entire training set.

To generate a distribution of movement prediction accuracies, we
repeated the process of randomly selecting 7/8ths of the trials as a training
set and using the remaining 1/8th of the trials as a test set 100 times for
each patient and hand. A separate model was trained for each of the 100
training sets for each patient and hand and accuracy of the full model was
calculated by computing the correlation coefficient between the actual
and predicted values for each of the four kinematic parameters (speed,
Vx, Vy, and Vz) in each of the held-out test sets. Additionally, the pre-
dicted velocity vectors were concatenated across time to produce pre-
dicted movement trajectories. The percentage of targets hit was then
determined by calculating the percentage of trials in which the actual and
predicted movement trajectory ended in the same quadrant.

We evaluated whether the model predictions were better than chance
using two surrogate predictions. First, we randomly adjusted the tempo-
ral relationship between ECoG signals and kinematics by randomly re-
ordering the training set trials, randomly selecting a new trial onset time
for each trial, and generating a new time course by wrapping data from
the beginning of the trial to the end of the trial. This procedure main-
tained the autocorrelation structure of the kinematics while randomizing
the relationship between ECoG signals and kinematics. For each training
and testing set, we trained one model using the original kinematic data
and a second model using the surrogate kinematics. Both models were
tested using the original test set. Second, we randomly shuffled the chan-
nel and frequency assignments of the model weights 100 times and
generated test accuracies with the reshuffled weights. The statistical sig-
nificance of the kinematic prediction models was evaluated using a Wil-
coxon rank–sum test to compare the median actual accuracy with both
median surrogate accuracies. The statistical significance was evaluated
for the entire dataset including all patients as well as for each patient’s
individual dataset. Bonferroni correction was used to correct for the total
number of prediction features tested (215 comparisons: 5 movement
parameters (speed, Vx, Vy, Vz, and percentage targets hit) � 2 hands �
2 cross-prediction conditions � 2 surrogate methods, 5 movement pa-
rameters compared between hands, 5 movement parameters � 2 hands
compared between true and cross-prediction conditions, and 4 pa-
tients � 5 movement parameters � 2 hands � 2 cross-prediction con-
ditions � 2 surrogate methods compared for individual patients) with a
critical p-value of 0.00023 representing a statistically significant result.
Importantly, to generate surrogate predictions the actual logistic regres-
sion predictions were used to switch between the movement and rest PLS
regression models and the actual speed predictions were used to modu-
late the predicted velocity vectors. Therefore, any statistical differences
between the actual and surrogate predictions were due to the ability of
the PLS model to predict the time course and direction of movements
and not from the ability of the logistic regression model to classify move-
ment and rest.

Activation patterns. Because the z-score calculation equalized the vari-
ance of each feature used within the prediction models, the model
weights could be used to evaluate the importance of each feature type and
cortical location. Because the model weights are the optimal combina-
tion of features to decode kinematics, they do not necessarily represent
the strength of the relationship between an ECoG feature and a kinematic
variable. To account for this, activation patterns describing the encoding
of kinematic parameters by each ECoG feature were calculated as follows
(Haufe et al., 2014):

A � �XW�S
�1 (1)

Where W and A are matrices of model weights and activation patterns,
respectively, �X is the ECoG covariance matrix, and �S is the kinematic

data covariance matrix. Activation patterns were calculated for the both
the logistic regression model predicting movement from rest and the
movement period PLS model predicting speed and velocity for each of
the 100 training sets. Because the knee of the skree plot representing the
absolute activation pattern weight for each patient and kinematic param-
eter occurred at a threshold of 15–25% of the individual features, the 25%
of features with the largest amplitude weights in each patient were used to
calculate the relative importance of channels and features.

The relative importance of each channel was calculated by dividing the
sum of the absolute value of activation patterns for a particular channel
by the global sum of activation patterns in the top 25% of activation
pattern magnitudes as follows:

Anorm�ch� �
�Features �Lags�a�ch, feat, lag��

�Features �Lags�Chans�a�ch, feat, lag�� (2)

The normalized activation patterns for each channel across each of the
100 training sets were then normalized between 0 and 1 and averaged
across each of the 100 training sets. Activation patterns from each patient
were mapped onto a single atlas brain using a weighted spherical Gauss-
ian kernel centered at each electrode location. Areas with overlapping
coverage across patients were combined using a weighted average based
upon the distance from each electrode. Activation patterns for the logis-
tic regression model classifying movement and rest, the PLS model pre-
dicting movement speed, and the PLS model predicting movement
velocity were plotted separately with the activation pattern weights for
the individual components of velocity averaged onto a single atlas brain.

To evaluate the importance of each ECoG feature type, the relative
importance of each feature type was calculated by dividing the sum of the
absolute value of activation pattern weights for a particular feature by the
global sum of activation patterns in the top 25% of activation pattern
magnitudes as follows:

Anorm�feat� �
�Chans �Lags�a�ch, feat, lag��

�Features �Lags�Chans�a�ch, feat, lag�� (3)

The normalized activation patterns for each feature were then normal-
ized between 0 and 1 and distributions of the normalized activation
pattern weights across cross folds and patients were plotted for each
feature for the logistic regression model, the PLS regression for speed,
and the PLS regression for the velocity components. Finally, to evaluate
the importance of each time lag, for all channels and frequencies with
activation patterns in the top 25% of activation pattern magnitudes, the
lag with the peak activation pattern magnitude was calculated and the
proportion of peak lags at each lag tested was plotted. The importance of
each location, feature type, and lag was evaluated separately for the two
hands to compare the encoding of contralateral and ipsilateral arm
movement kinematics. The similarity between the activation patterns
associated with contralateral and ipsilateral movements was quantified
by calculating the absolute value of the average activation patterns across
the 100 training sets and calculating the correlation coefficient (Pearson’s
r) between the contralateral and ipsilateral arm conditions in each
patient.

Cross-prediction
Because we observed very similar activation patterns associated with con-
tralateral and ipsilateral movement predictions, we used a cross-
prediction method to determine whether information was conserved
between the contralateral and ipsilateral arm movements. For each cross-
prediction, the model trained using each contralateral arm movement
training set was tested using the neural activity and kinematics from an
ipsilateral arm test set and vice versa. For the cross-prediction, all time
lags used in training the model were maintained when testing on the
opposite arm. Cross-prediction accuracies were calculated as the corre-
lation coefficient between the actual and predicted speed and velocity, as
well as the percentage of predicted trajectories ending in the correct
quadrant. As before, 100 temporal surrogate models were generated and
100 randomly shuffled channel and frequency assignments for each cross
fold were used to evaluate whether the cross-prediction accuracies were
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significantly better than chance. As described previously, Bonferroni cor-
rection was used to correct for the total number of predicted kinematic
variables (speed, Vx, Vy, Vz, and percentage targets hit) the number of
regular hand predictions, the number of cross-prediction conditions,
and the number of surrogate methods tested for the whole group and
each individual patient (215 comparisons).

Data and code availability
All data supporting the findings of this study and custom C		 and
MATLAB (RRID:SCR_001622) code used to collect and analyze the data
will be made available from the corresponding authors upon reasonable
request.

Results
Behavioral performance
Patient participation was determined by their stamina and clini-
cal needs, resulting in 104 –288 trials with each hand (Table 1).
Despite differences in the number of trials, all patients were able
to consistently and accurately perform reaching movements to
the target locations with similar movements for each arm. After
excluding trials with reaction times 
2 SDs from the mean, me-
dian reaction times for contralateral and ipsilateral arms differed
by �100 ms in each patient, indicating that predictions were not
driven by differences in attention or reaction speed between
arms. Additionally, the median peak movement speed for the
contralateral and ipsilateral arms differed by at most 3 cm/s in
each individual patient, indicating that predictions were not
affected by differences in movement speed between the contralat-
eral and ipsilateral arm. To verify that the task required move-
ments throughout the 3D workspace, we concatenated the
kinematic data across trials and calculated the principle compo-
nents of the seven component kinematic parameters considered:
speed, velocity (Vx, Vy, and Vz), and position (X, Y, and Z). The
first four principle components explained an average of 24%,
22%, 18%, and 13.5% for the contralateral arm and 24.75%,
21.25%, 19.25%, and 13% for the ipsilateral arm, indicating that
the eight targets used involved movements in multiple indepen-
dent directions that were not systematically correlated with each
other or movement speed.

Movement-related cortical activity
Each patient had electrodes that demonstrated significant (p �
0.05) movement-related changes in cortical activity, particularly
for the LMP, mu, beta, and high-gamma (gamma 2 and gamma
3) features. Specifically, the location of movement-related activ-
ity was centered in the primary motor cortex for both arms (Fig.
2B). Although the time and amplitude of movement speed was
similar for each arm, the time courses of power changes were
slightly different for the contralateral and ipsilateral arms (Fig.
2C), but these differences in the time course of neural activity
were not consistent across frequencies. For mu, beta 1, gamma 2,
and LMP features, correlation coefficients 
0.9 were observed
between lagged time courses of the percentage of active electrodes
during contralateral and ipsilateral arm movements. Specifically,
the peak correlation and time lag for these frequencies were as
follows: mu: r � 0.94, lag � 50 ms (contralateral leading); beta 1:
r � 0.91, lag � �100 ms (ipsilateral leading); gamma 2: r � 0.94,
lag � 50 ms (contralateral leading); LMP: r � 0.92, lag � 0 ms.
Therefore, whereas the time courses of spectral power changes
were correlated for contralateral and ipsilateral limb movements,
the small timing differences between these power changes were
not consistent across features. In contrast, when comparing the
magnitude of the gross neural correlates of contralateral and ip-
silateral arm movements, whereas 20 –30% of electrodes demon-

strated significant movement-related changes in cortical activity
for both limb movements, for a subset of electrodes (5–10%), the
amplitude of movement-related changes was greater during con-
tralateral arm reaches than during ipsilateral reaches (Fig. 2D).

Prediction of ipsilateral movement kinematics
Next, we tested whether the cortical activity observed during ip-
silateral arm reaches could be extended beyond gross movement-
related activity and used to predict specific kinematics (speed,
velocity, and position) of ipsilateral arm reaches on a time-point
by time-point basis and examined how the ECoG prediction of
ipsilateral arm reaches differed from the prediction of contralat-
eral movement kinematics. Figure 3 shows exemplar contralat-
eral and ipsilateral movement predictions for the full model
prediction and a surrogate model prediction generated by reshuf-
fling the feature weights. Predictions were made for consecutive
trials from a single test fold from Patient 4. The figure demon-
strates that 3D movement kinematics for both contralateral and
ipsilateral reaches could be predicted with very high accuracies.
Because the actual logistic regression predictions were used to
switch between the movement and rest PLS regression models
and the actual predicted speed was used to modulate velocity for
both actual and surrogate predictions, both the actual and surro-
gate predictions predict the movement and rest periods well.
Therefore, the differences between actual and surrogate kine-
matic predictions observed were driven by the ability to predict
the actual time courses of speed and velocity and not by the ability
to predict movement and rest periods. The predicted trajectories
shown in Figure 3, E and F, were made by averaging the predicted
trajectories from all trials to each target respectively. Because the
magnitude of the predicted velocity vector was set to the pre-
dicted movement speed, which often undershot the actual move-
ment speed, the predicted trajectories are often shorter than the
actual trajectories. This low predicted speed was likely caused by
the combination of relatively long temporal windows for spectral
estimation that may not have captured sharp changes in high-
frequency power, training the model to predict the entire time
course of movement speed instead of only the peak movement
speed, and the use of a linear model that allowed us to easily
interpret the model weights, but may not have perfectly fit the
relationship between neural activity and movement kinematics.
Additionally, both correct and incorrect predictions were aver-
aged together, which could cause additional decreases in the av-
erage predicted trajectory lengths relative to the actual average
trajectory lengths. To evaluate the relative contribution of these
two factors, we compared the length of the average predicted and
actual trajectories (Fig. 3E,F) with the average length of the pre-
dicted trajectories from each individual trial. From this analysis,
we found that 25–30% of the difference between the lengths of
the average trajectories could be accounted for by the average
length of the individual predicted trajectories being shorter than
the actual trajectories. This indicates that both factors contrib-
uted to the average predicted trajectories being shorter than the
average actual trajectories. Despite the difference in length of the
average actual and predicted trajectories, as the average trajectory
for each target is clearly in the same quadrant as the actual aver-
aged trajectory it is clear that, on average, the movement direc-
tions are predicted accurately.

Across patients, predicted movement kinematics (speed and
velocity) were significantly (p � 0.05) more correlated with the
actual kinematics and the percentage of targets predicted was
significantly better (p � 0.05) than two surrogate predictions,
even after Bonferroni correcting for the total number of compar-
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isons. Distributions of full model and surrogate prediction accu-
racies are shown in Figure 4 and statistical tests comparing these
accuracies are summarized in Table 2. Additionally, distributions
and statistical tests comparing full model and surrogate predic-
tion accuracies for individual patients are included in the
extended data (Fig. 4-1, available at https://doi.org/10.1523/

JNEUROSCI.0015-18.2018.f4-1, and Fig. 4-2, available at https://
doi.org/10.1523/JNEUROSCI.0015-18.2018.f4-2). Although the
prediction accuracies were impacted by the unique electrode cov-
erage, movement predictions were significantly better than
chance for each individual patient. For speed, because both orig-
inal model and surrogate predictions used the original model

Figure 2. Movement-related spectral power changes. A, After aligning to the movement onset, movement speed was averaged across trials and patients for the contralateral and ipsilateral hand
showing similar amplitudes and time courses of reaching movements. The vertical lines indicate time windows for topographical plots of spectral power changes shown in B. B, Trial-averaged
z-scores of log-transformed mu, beta, and high-gamma power changes that are significantly ( p � 0.05) different from baseline are plotted for all electrodes at time windows 300 ms before
movement onset (top), 100 ms before movement onset (middle), and 250 ms after movement onset (bottom). Movement-related decreases in mu and beta band power and movement-related
increases in high-gamma band power are observed over sensorimotor cortex for both contralateral and ipsilateral reaches but begin earlier and are greater in amplitude for contralateral arm reaches.
C, The difference in the timing of movement-related spectral power changes was quantified by calculating the percentage of electrodes with z-scores significantly ( p � 0.05) different from 0 at each
time window. Additionally, correlations between the time courses of the percentage of active electrodes during contralateral and ipsilateral arm movements were calculated at various time lags to
determine the time lag with the peak correlation. Correlations 
0.9 were observed for the mu, beta 1, and gamma 2 frequencies with peak time lags of 50 ms (contralateral leading), �100 ms
(ipsilateral leading), and 50 ms (contralateral leading). Therefore, whereas there were slight differences in the timing of gross movement-related neural activity, these time differences were not
consistent across frequencies. D, The difference in amplitude of movement-related spectral power changes was quantified by calculating the percentage of electrodes with significantly different
spectral power changes between contralateral and ipsilateral arm movements. In mu, beta, and high-gamma bands, a subset of active electrodes demonstrate significantly ( p � 0.05) greater
amplitude spectral power changes during contralateral arm movements relative to ipsilateral arm movements.
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logistic regression to switch between the movement and rest
models, both the full model and surrogate predictions have cor-
relations with the actual movement speed that are 
0. Despite
this, the full model prediction fit the time course of speed better
than the surrogate prediction, leading to significantly higher cor-
relation coefficients between predicted and actual speed for the
full model when compared with the surrogate predictions. For
velocity, because the eight targets incorporated movements in
both directions along all three axes, the correlations between full
model predictions and the actual velocity were 
0, whereas cor-
relations between the surrogate model predictions and velocity
were centered �0. For the percentage of targets predicted in our
eight target center-out task, chance prediction was 12.5%. This
chance level was confirmed by the two surrogate methods that
both clustered �12.5% targets predicted correctly for both the
contralateral and ipsilateral arm. Although lower in amplitude

than the differences between the actual and surrogate predictions
the anterior–posterior component of velocity was significantly
more accurately predicted for ipsilateral limb movements than
for contralateral limb movements. The prediction accuracies for
all other kinematic parameters were not significantly different
between the contralateral and ipsilateral limbs after multiple
comparison correction [speed (W(400,400) � 156073, z �
�1.26, p � 0.2067), Vx (W(400,400) � 132691, z � �8.42, p �
3.8 � 10�17), Vy (W(400,400) � 167894, z � 2.35, p � 0.0186),
Vz (W(400,400) � 167989, z � 2.38, p � 0.0172), targets hit
(W(400,400) � 157019.5, z � �0.97, p � 0.3303)].

As shown in Figure 5, activation patterns for movement clas-
sification, speed, and velocity were strongest in cortical areas cen-
tered over the primary motor cortex. Additionally, whereas
movement classification was encoded most within low frequen-
cies (LMP, mu, and beta), for speed and velocity decoding, the

Figure 3. Exemplar kinematic predictions. A–D, Exemplar kinematic predictions of contralateral arm movement speed (A), ipsilateral arm movement speed (B), contralateral arm movement
velocity (C), and ipsilateral arm movement velocity (D). Actual kinematic traces are shown in blue, predicted kinematic traces are shown in red, and an example surrogate prediction with reshuffled
feature weights is shown in green. The plots were generated using consecutive trials from a single contralateral and ipsilateral test set from Patient 4. Kinematic predictions were made from 2 s
before movement onset to the end of each trial and show accurate predictions of 3D kinematics for both the contralateral and ipsilateral arm. E, F, Movement trajectories were generated by
concatenating predicted velocities within each trial, normalizing the trajectory times across trials, and averaging all trajectories for each target location. Averaged trajectories were generated using
every test set from Patient 4 and end in the correct quadrant for each target for both contralateral and ipsilateral arm movements.
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strongest activation pattern weights were observed for the LMP,
followed by both low (beta and mu) and high (gamma 2 and
gamma 3) frequency spectral power changes. Furthermore,
whereas movement classification was encoded most at a time lag
of 0 ms, speed and velocity were encoded predominantly at time
lags between �500 and 0 ms with the neural activity leading the
encoded kinematic parameters. Contrary to our initial hypothe-
sis, the spatial, spectral, and temporal encoding of kinematics was
similar for contralateral and ipsilateral arm movements. Specifi-
cally, the average correlation coefficient relating the absolute
value of activation pattern weights for the contralateral and ipsi-
lateral arm movements was 0.57 for the logistic regression model

classifying movement and rest, 0.49 for the PLS model predicting
speed, and 0.36, 0.32, and 0.35 for the PLS models predicting Vx,
Vy, and Vz respectively. Correlation coefficients are summarized
in Table 3 and were significantly different from 0 for each kine-
matic component and patient, showing that similar features and
time lags were important for predicting movement kinematics of
both contralateral and ipsilateral arm movements.

Cross-prediction
Because of the similarity in the cortical locations and features
showing the strongest activation pattern weights, we used a cross-
prediction analysis to determine whether the encoding of kine-

Figure 4. Prediction accuracy. Prediction accuracy was assessed by calculating the percentage of trajectories ending in the correct quadrant as well as calculating the correlation coefficient
(Pearson’s r) between the observed and predicted kinematics (speed, Vx, Vy, and Vz). Prediction accuracies were calculated for each of the 100 random test sets for each patient and chance accuracy
was determined using two different surrogate datasets. Accuracies were combined across patients and randomly selected test sets. Boxes show the median, 25 th percentile, and 75 th percentile of
accuracy. Whiskers show the range of accuracies with outliers 
2.7 SDs indicated by a “	” symbol. Comparisons that are statistically significant ( p � 0.05) after Bonferonni correction for the total
number of comparisons are indicated by a “*” symbol. Across patients, the prediction accuracy and correlations between predicted and actual speed, Vx, Vy, and Vz were all significantly ( p � 0.05)
better than both surrogate distributions even after Bonferroni correction for the total number of true and cross-prediction comparisons. Furthermore, in addition to the comparisons across patients
shown here, the prediction accuracies and correlations between the predicted and actually kinematics were also significantly better than surrogate predictions for each individual patient (see
extended data Fig. 4-1, available at https://doi.org/10.1523/JNEUROSCI.0015-18.2018.f4-1, and Fig. 4-2, available at https://doi.org/10.1523/JNEUROSCI.0015-18.2018.f4-2).

Table 2. Full model prediction statistics

Actual Temporal surrogates Feature surrogates

Median Median Effect size p Median Effect size p

Contralateral
Speed (Pearson’s r) 0.6922 0.571 W(400,400) � 191459, z � 9.56 1.1�10 �21 0.5687 W(400,40000) � 10767018,z � 11.58 5.4�10 �31

Vx (Pearson’s r) 0.3429 �0.0257 W(400,400) � 232199, z � 22.03 1.4�10 �107 �0.0039 W(400,40000) � 15293940, z � 31.08 4.4�10 �212

Vy (Pearson’s r) 0.3523 0.0324 W(400,400) � 227553, z � 20.61 2.3�10 �94 0.0271 W(400,40000) � 14925373, z � 29.49 3.5�10 �191

Vz (Pearson’s r) 0.3609 0.0216 W(400,400) � 228663, z � 20.95 1.9�10 �97 0.007 W(400,40000) � 15135199, z � 30.40 6.0�10 �203

Targets hit (%) 32.26% 10.71% W(400,400) � 228749, z � 20.99 8.6�10 �98 11.54% W(400,40000) � 14792910, z � 28.96 1.8�10 �184

Ipsilateral
Speed (Pearson’s r) 0.6893 0.5774 W(400,400) � 187830, z � 8.45 2.8�10 �17 0.5756 W(400,40000) � 10928459, z � 12.27 1.3�10 �34

Vx (Pearson’s r) 0.4553 0.0972 W(400,400) � 230725, z � 21.58 2.8�10 �103 0.0477 W(400,40000) � 15707188, z � 32.86 7.8�10 �237

Vy (Pearson’s r) 0.2942 0.0184 W(400,400) � 223823, z � 19.47 2.0�10 �84 0.0115 W(400,40000) � 14458468, z � 27.48 2.9�10 �166

Vz (Pearson’s r) 0.3281 0.0767 W(400,400) � 225494, z � 19.98 8.3�10 �89 0.0233 W(400,40000) � 15126672, z � 30.36 1.8�10 �202

Targets hit (%) 34.78% 13.33% W(400,400) � 219293, z � 18.09 3.6�10 �73 13.04% W(400,40000) � 14316072.5, z � 26.90 2.4�10 �159

Full model predictions and surrogate predictions were compared using a rank–sum test. Median prediction accuracies, Wilcoxon rank–sum statistics (W), z-statistics, and p-values for each comparison are shown. All comparisons were
statistically significant after Bonferroni correcting for the total number of comparisons tested.
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matic information is conserved between
arms within a single hemisphere. Exem-
plar cross-predictions and surrogate
cross-predictions are shown in Figure 6
for Patient 4. Although poorer in accuracy
than the original predictions (Fig. 3), it is
clear that both cross-predictions isolate
movement from rest and accurately pre-
dict the speed and velocity of movements.
Across patients, with the exception of the
temporal surrogate series for speed, the
percentage of cross-prediction trajecto-
ries ending in the correct quadrant and
the correlations between the actual speed
and velocity and the cross-predictions
were all significantly better than chance
(p � 0.05) even after Bonferroni correct-
ing for the total number of comparisons
across all 4 true and cross-prediction con-
ditions. Distributions of actual and surro-
gate prediction accuracies are shown in
Figure 7 and statistical tests comparing
these accuracies are summarized in Table
4. Although the cross-prediction accura-
cies were significantly better than chance,
as shown in Figure 8 and summarized in
Table 5, unsurprisingly, the true predic-
tions were significantly (p � 0.05) more
accurate than the cross-predictions for the
percentage of targets hit and each of the
kinematic parameters tested.

Figure 5. Spatial, spectral, and temporal importance. The importance of individual locations, frequencies, and time lags for
predicting kinematics was determined by converting prediction model weights to activation patterns for the logistic regression
classifying movement and rest (movement classification) and movement-period PLS regression. A, Normalized activation pattern
weights for the top 25% of weights are plotted on an atlas brain using a Gaussian kernel centered at each electrode site. Activation

4

patterns across patients were combined onto a single atlas
brain and areas with overlapping coverage were combined
across patients using a weighted average based upon the dis-
tance from each electrode. Additionally, the normalized acti-
vation pattern weights were averaged across velocity
components to produce plots for velocity. For each kinematic
component, the most important cortical locations are cen-
tered over the central sulcus in primary sensorimotor cortex for
both hands. B, Normalized activation pattern weights for the
top 25% of weights across all electrodes, patients, and cross
folds were combined for each feature type. Distributions of
activation pattern weights are plotted with boxes showing the
median, 25 th percentile, and 75 th percentile and whiskers
showing the extent of weights. Outliers 
2.7 SDs from the
median are shown with a “	” symbol. Low frequencies in-
cluding the beta band and LMP had the largest normalized
activation patterns for movement classification, whereas
movement kinematics (speed and velocity) were repre-
sented most strongly within LMP features followed by beta
and high-gamma band features for both contralateral and
ipsilateral arm movements. C, For channels and frequen-
cies with activation pattern weights in the top 25% of
weights, the time lag between neural activity and kine-
matics with the peak activation weight magnitude was
determined. Histograms show the proportion of weights at
each time lag. The logistic regression weights had a peak at
a time lag of 0 s. For speed and velocity, the neural activity
led the kinematics that were predicted with the majority of
time lags falling between �500 ms and 0 s for both con-
tralateral and ipsilateral arm movements.
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Discussion
This study provides the first demonstration that human ECoG
signals can be used to decode 3D reaching kinematics of the ipsi-
lateral arm. Although gross movement-related power changes were
observed for contralateral and ipsilateral reaches, the specific re-
lationship between unilateral ECoG activity and movement kine-
matics was similar for both arms. These findings demonstrate
that movement kinematics are distributed bilaterally across cor-
tical hemispheres.

Importantly, when neural activity was related to specific kine-
matics, 3D kinematics of ipsilateral arm reaches were decoded
with similar levels of accuracy as contralateral reaches. Although
the ability to decode ipsilateral limb kinematics does not establish
a causal role of the ipsilateral hemisphere for movement execu-
tion, a representation of specific movement features, such as ki-

nematics, is a necessary condition for the ipsilateral hemisphere
to play a causal role in movement execution. Previous studies
have also found ipsilateral motor activations during a strictly
unimanual task (Buetefisch et al., 2014). Furthermore, along with
more severe contralesional deficits, stroke survivors also have
ipsilesional motor deficits following unilateral lesions (Baskett et
al., 1996; Sunderland, 2000; Schaefer et al., 2007, 2009a,b, 2012).
When combined with these previous studies, our finding that 3D
kinematics are encoded ipsilaterally strengthens the argument
that the ipsilateral hemisphere plays an active role in motor
control.

Interestingly, the cortical representations of movement speed
and velocity were conserved across arms. Although previous
studies have shown that neural patterns encoding ipsilateral limb
movements are similar to those encoding contralateral limb

Table 3. Activation pattern weight correlations

Patient

Logistic Regression Speed Vx Vy Vz

r p r p r p r p r p

1 0.4 5.2 � 10 �9 0.6 <1.0 � 10 �324 0.55 <1.0 � 10 �324 0.52 <1.0 � 10 �324 0.31 1.5 � 10 �140

2 0.46 1.1 � 10 �30 0.19 2.3 � 10 �132 0.16 5.3 � 10 �98 0.13 3.6 � 10 �64 0.16 4.5 � 10 �94

3 0.62 1.7 � 10 �51 0.46 <1.0 � 10 �324 0.25 1.4 � 10 �204 0.26 3.0 � 10 �216 0.26 3.4 � 10 �215

4 0.81 3.6 � 10 �124 0.7 <1.0 � 10 �324 0.5 <1.0 � 10 �324 0.37 <1.0 � 10 �324 0.62 <1.0 � 10 �324

Correlation coefficients (Pearson’s r) were calculated between the absolute value of activation pattern weights for contralateral and ipsilateral arm prediction models for each patient and kinematic parameter, showing good correspondence
between the contralateral and ipsilateral prediction models. All comparisons were statistically significant after Bonferroni correcting for the total number of comparisons tested.

Figure 6. Exemplar cross-prediction accuracy. A–D, Exemplar kinematic cross-predictions were generated by using ipsilateral reaching movements to train our model and predict contralateral
movement speed (A) and velocity (C) and using contralateral movements to train a model to predict ipsilateral arm speed (B) and velocity (D). Actual kinematic traces are shown in blue, predicted
kinematics traces are shown in red, and an example surrogate prediction with reshuffled feature weights is shown in green. The plots were generated using consecutive test set trials from a single
test set from Patient 4. Kinematics predictions were made from 2 s before movement onset to the end of each trial and show accurate predictions of 3D kinematics even when the prediction model
was trained using reaching movements from the opposite hand.
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movements with regard to the somatotopic organization of gross
body parts (Fujiwara et al., 2017), the somatotopic organization
of fingers (Scherer et al., 2009; Liu et al., 2010; Diedrichsen et al.,
2013, 2018), and movement direction (Haar et al., 2017), this is
the first study to show that specific kinematics of arm movements
are bihemispherically represented on a time point by time point
basis. As the encoding of specific movement parameters (i.e.,
kinematics or kinetics) is a necessary condition for the ipsilateral
hemisphere to play an active role in movement execution, this is

an important advancement and distinction. It should be noted
that patients performed reaching movements with a single arm at
a time. As neural activity during bimanual movements is not
simply a linear combination of neural activity during unimanual
movements (Tanji et al., 1988; Donchin et al., 1998; Kermadi et
al., 2000; Diedrichsen et al., 2013; Gallivan et al., 2013), it is
uncertain whether distinct cortical representations of contralat-
eral and ipsilateral movement kinematics would be observed dur-
ing bimanual tasks. Similarly, the dominant hemisphere has been

Figure 7. Cross-prediction accuracy. Cross-prediction accuracy was assessed by calculating the percentage of trajectories ending in the correct quadrant as well as calculating the correlation
coefficient (Pearson’s r) between the observed and predicted kinematics (speed, Vx, Vy, and Vz). Accuracies were combined across patients and random test sets and the boxes show the median, 25 th

percentile, and 75 th percentile of accuracy. Whiskers show the range of accuracies with outliers 
2.7 SDs indicated by a “	” symbol. Comparisons that are statistically significant ( p � 0.05) after
Bonferonni correction for the total number of comparisons are indicated by a “*” symbol. Across patients, with the exception of the comparison between the ‘ipsilateral training, contralateral testing’
prediction and the temporal surrogate prediction for speed, the cross-prediction accuracy and correlations between predicted and actual speed, Vx, Vy, and Vz were all significantly ( p � 0.05) better
than either surrogate even after Bonferroni correction for the total number of comparisons, showing that some components of the ECoG representation of kinematics are conserved within a single
cortical hemisphere for contralateral and ipsilateral arm movements.

Table 4. Cross-prediction statistics

Actual Temporal surrogates Feature surrogates

Median Median Effect Size p Median W p

Ipsilateral training, contralateral test
Speed (Pearson’s r) 0.5749 0.5056 W(400,400) � 171489, z�3.45 5.5�10 �4 0.508 W(400,40000) � 9327699, z � 5.38 7.7�10 �8

Vx (Pearson’s r) 0.2128 0.0307 W(400,400) � 208614, z � 14.81 1.2�10 �49 �0.0043 W(400,40000) � 14088014, z � 25.89 9.8�10 �148

Vy (Pearson’s r) 0.0887 �0.0224 W(400,400) � 187350, z � 8.31 9.8�10 �17 0.0218 W(400,40000) � 9970769, z � 8.15 3.8�10 �16

Vz (Pearson’s r) 0.1924 0.012 W(400,400) � 220591, z � 18.48 3.0�10 �76 0.0074 W(400,40000) � 14031911, z � 25.64 5.0�10 �145

Targets Hit (%) 20.00% 11.54% W(400,400) � 198405, z � 11.70 1.2�10 �31 11.54% W(400,40000) � 11539797, z � 14.93 2.1�10 �50

Actual Temporal surrogates Feature surrogates

Median Median W p Median W p

Contralateral training, ipsilateral test
Speed (Pearson’s r) 0.4929 0.3487 W(400,400) � 188745, z � 8.73 2.4�10 �18 0.3851 W(400,40000) � 10355356, z � 9.80 1.1�10 �22

Vx (Pearson’s r) 0.2146 �0.018 W(400,400) � 223743, z � 19.44 3.3�10 �84 0.0225 W(400,40000) � 13819858, z � 24.73 5.1�10 �135

Vy (Pearson’s r) 0.062 0.0112 W(400,400) � 175663, z � 4.73 2.2�10 �6 �0.0092 W(400,40000) � 10329137, z � 9.69 3.3�10 �22

Vz (Pearson’s r) 0.2074 0.0511 W(400,400) � 211047, z � 15.56 1.4�10 �54 0.0149 W(400,40000) � 14091735, z � 25.90 6.5�10 �148

Targets hit (%) 21.74% 15.38% W(400,400) � 191739, z � 9.66 4.5�10 �22 13.33% W(400,40000) � 11614574, z � 15.24 1.8�10 �52

Cross-predictions and surrogate cross-predictions were compared using a rank–sum test. Median prediction accuracies, Wilcoxon rank–sum statistics (W), z-statistics, and p-values for each comparison are shown. With the exception of the
temporal surrogate predictions for speed in the ’ipsilateral training, contralateral testing’ condition, all other comparisons between actual and surrogate cross-predictions were statistically significant even after Bonferroni correcting for the
total number of comparisons tested.

Bundy et al. • ECoG Prediction of Ipsilateral Reaching J. Neurosci., November 21, 2018 • 38(47):10042–10056 • 10053



associated with controlling movement dynamics, including tra-
jectory control, of both arms (Sainburg and Kalakanis, 2000;
Schaefer et al., 2007, 2009a,b, 2012). Because all electrodes were
in the dominant hemisphere, further work will be necessary to
isolate any differences in the encoding of ipsilateral limb move-
ments between the dominant and nondominant hemispheres.
Finally, ipsilateral motor activity has been posited to preferen-
tially relate to proximal muscle activity (Colebatch et al., 1991;
Jankelowitz and Colebatch, 2002). Our results appear to confirm
this because the cross-decoding accuracies were higher for the
velocity components along the superior–inferior and anterior–
posterior axes, which would likely rely on proximal musculature.
Because the task did not control for the muscles used, these re-
sults must be interpreted within the context of the activity of the
entire motor system.

This study relied on patients with electrode locations deter-
mined by clinical needs. Because the electrodes did not exten-
sively cover more medial areas of the motor or premotor areas,
the electrode coverage was suboptimal for decoding reaching.
Because the most important areas for decoding were in the most
medial areas of the motor cortex, the statistically significant de-
coding shown is likely a baseline for what could be achieved with
better coverage. Despite this suboptimal coverage, we were likely

able to decode kinematics because large-amplitude movements
are associated with greater modulation of neural activity (Wald-
vogel et al., 1999) and full arm movements involve muscles cov-
ering a greater extent of the motor homunculus than movements
constrained to a single joint (Penfield and Boldrey, 1937). Addi-
tionally, whereas the ability to decode kinematics and the cortical
locations that kinematics were encoded in were similar across
arms, it is possible that there could be differences in other motor
areas. However, because fMRI studies have found similar encod-
ing of nonkinematic movement parameters in whole-brain anal-
yses (Diedrichsen et al., 2013; Haar et al., 2017), we would
hypothesize that the cortical encoding of contralateral and ipsi-
lateral kinematics would still be similar regardless of the motor
areas covered.

The ability to use ECoG to decode kinematics of the same-
sided hand also underscores the possibility for a stroke survivor
to use signals from their unaffected hemisphere to control a
brain– computer interface (BCI). BCI systems for stroke have
received increasing attention in recent years (Soekadar et al.,
2015). Although the majority of studies have focused on using
control signals from perilesional cortex (contralateral to the im-
paired limb), because the ability to modulate perilesional cortical
activity decreases in severely affected patients (Buch et al., 2012),

Figure 8. Comparison of true and cross-prediction accuracies. True and cross-prediction accuracy were assessed by calculating the percentage of trajectories ending in the correct quadrant as well
as calculating the correlation coefficient (Pearson’s r) between the observed and predicted kinematics (speed, Vx, Vy, and Vz). Accuracies were combined across patients and random test sets and
the boxes show the median, 25 th percentile, and 75 th percentile of accuracy. Whiskers show the range of accuracies with outliers 
2.7 SDs indicated by a “	” symbol. Comparisons that are
statistically significant ( p � 0.05) after Bonferonni correction for the total number of comparisons are indicated by a “*” symbol. Across patients, whereas the accuracy and correlations between
predicted and actual speed, Vx, Vy, and Vz were all significantly ( p � 0.05) better than chance for both true and cross-predictions, true predictions were significantly ( p � 0.05) better than the
respective cross-predictions even after Bonferroni correction for the total number of comparisons.

Table 5. Comparison of true and cross-prediction results

Contralateral Ipsilateral

Actual Cross-prediction Effect size p Actual Cross-prediction Effect size p

Speed (Pearson’s r) 0.6922 0.5749 W(400,400) � 187859, z � 8.46 2.6�10 �17 0.6893 0.4929 W(400,400) � 189087, z � 8.84 9.6�10 �19

Vx (Pearson’s r) 0.3429 0.2128 W(400,400) � 199535, z � 12.04 2.3�10 �33 0.4553 0.2146 W(400,400) � 222973, z � 19.21 3.2�10 �82

Vy (Pearson’s r) 0.3523 0.0887 W(400,400) � 223799, z � 19.46 2.4�10 �84 0.2942 0.062 W(400,400) � 212251, z � 15.93 4.1�10 �57

Vz (Pearson’s r) 0.3609 0.1924 W(400,400) � 195735, z � 10.87 1.5�10 �27 0.3281 0.2074 W(400,400) � 186848, z � 8.15 3.5�10 �16

Targets hit (%) 32.26% 20.00% W(400,400) � 199140, z � 11.92 9.4�10 �33 34.78% 21.74% W(400,400) � 204855, z � 13.67 1.6�10 �42

True and cross-predictions were compared using a Wilcoxon rank–sum test. Median prediction accuracies, Wilcoxon rank–sum statistics (W), z-statistics, and p-values for each comparison are shown. Statistically significant differences after
Bonferroni correcting for the total number of comparisons tested are highlighted in bold.
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the unaffected (ipsilateral) hemisphere may provide a better
control signal in significantly impaired patients. Additionally,
whereas the role of the unaffected hemisphere in motor recovery
after stroke has been debated (Weiller et al., 1992; Johansen-Berg
et al., 2002; Ward et al., 2003a,b; Tecchio et al., 2006), training
with a BCI-controlled exoskeleton controlled from the unaf-
fected hemisphere can lead to functional improvements in
chronic stroke survivors (Bundy et al., 2017). The similarity be-
tween the neural representations of contralateral and ipsilateral
limb movements, however, creates an additional dimension for
considering more advanced neuroprosthetic strategies. For reha-
bilitation, the similarity in ipsilateral and contralateral signals
may be beneficial. Given that movement kinematics are repre-
sented in both hemispheres, there should theoretically still be
parts of the brain that are present after a hemispheric insult that
can be engaged to drive functional recovery. However, when con-
sidering an implant that is intended to perform more complex
brain-derived control, the similarity in physiology could cause
potential “cross-talk” with contralateral movement intentions.
This interference could hamper a stand-alone BCI that replaces
lost function (i.e., controls the paralyzed limb) rather than a BCI
that simply facilitates endogenous plasticity mechanisms (i.e.,
recovery of natural limb). That said, future studies could test
whether it is possible to separate ipsilateral and contralateral
movement intentions with improved anatomic resolution or ad-
ditional levels of hierarchy. Similarly, whereas this demonstra-
tion of the offline decoding of kinematics establishes the potential
feasibility of BCIs, studies of online BCI control will be required
to demonstrate that the algorithms and features used allow pa-
tients to actively adapt their neural activity to achieve online BCI
control (Cunningham et al., 2011).

Although the findings of this study are exciting, there are sev-
eral additional considerations to note. First, all of the patients had
chronic epilepsy. However, care was taken to ensure that record-
ings were at least 2 h from any seizures. Furthermore, trials with
interictal activity were removed before analysis and three of the
four patients had epileptic foci located in the temporal lobe sep-
arate from the most important areas for decoding. Therefore, we
believe that the results were not significantly affected by focal
epileptic activity. Electrophysiological correlates of movements
are also affected by a number of factors that may have been in-
volved in this study. First, increased task complexity and effort
increase movement-related cortical activations (Manganotti et
al., 1998; Slobounov et al., 2004). Although reaction time and
movement speed were similar between the two arms, all ECoG
electrodes were located contralateral to the dominant hand.
Therefore, the strong ipsilateral signals may have been related to
increased effort for nondominant hand movements. Addition-
ally, all patients performed the contralateral task before the ipsi-
lateral task. However, it is unlikely that this would have affected
the results because the number of trials was likely not large
enough to result in significant training affects and the movements
involved were natural reaching movements. Postural movements
of the hemibody contralateral to the moving arm also represent a
potential confound. However, because postural movements are
unlikely to be conserved between right and left arm movements,
the statistically significant cross-prediction of velocity across each
dimension provides evidence that the observed results were not
caused by contralateral postural movements. Furthermore, it is
unlikely that postural stabilizing movements can fully account
for the multiple degrees of freedom that were decoded. Finally,
because of the interleaved rest and movement periods, whereas
the results demonstrate the ability to predict ipsilateral move-

ment kinematics with accuracies above chance, the prediction
accuracies are affected by the ability to predict 3D movement
kinematics and the ability to predict movement from rest and not
the ability to predict movement kinematics in isolation.

Collectively, this study demonstrates that 3D kinematics of
ipsilateral arm movements are encoded in human ECoG signals.
Furthermore, the cortical representation of unilateral movement
kinematics is conserved across arms. Therefore, these results
strengthen evidence that the ipsilateral hemisphere plays a role in
planning and executing voluntary motor movements with im-
portant implications for neuroprosthetic and neurorehabilita-
tion applications.
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