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Abstract

Background: Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and
breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from
mushroom Ganoderma lucidum (GLT). The aim of the present study was to evaluate whether GLT prevents colitis-associated
carcinogenesis in mice.

Methods/Principal Findings: Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-
phenylimidazol[4,5-b]pyridine [PhIP]) and inflammation (dextran sodium sulfate [DSS]) in mice. Mice were treated with 0,
100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and
COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR
was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon
tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt
foci (ACF) formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further
confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated
by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the
shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-
regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue.

Conclusions: Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-
associated cancer.

Citation: Sliva D, Loganathan J, Jiang J, Jedinak A, Lamb JG, et al. (2012) Mushroom Ganoderma lucidum Prevents Colitis-Associated Carcinogenesis in Mice. PLoS
ONE 7(10): e47873. doi:10.1371/journal.pone.0047873

Editor: Yick-Pang Ching, The University of Hong Kong, Hong Kong

Received February 22, 2012; Accepted September 24, 2012; Published October 30, 2012

Copyright: � 2012 Sliva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the pilot grant to D.S. and J.A. from the Purdue-UAB Botanicals Research Center for age-related diseases (P50 AT00477,
Connie M. Weaver, PI) from the National Center for Complementary and Alternative Medicine and the National Institutes of Health Office of Dietary Supplements.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dsliva@iuhealth.org

Introduction

The Western diet consists of large amounts of consumed

hamburgers, well done steaks, grilled chicken and fish. In spite of

the fact that poultry and fish are generally healthier than red meat,

during the cooking process, heterocyclic amine (HCA) compounds

are formed [1]. One of them, 2-Amino-1-methyl-6-phenylimida-

zol[4,5-b]pyridine (PhIP) is one of the most abundant HCAs in

heated meat, poultry and fish. Intake of well-done red meat,

containing PhIP, was associated with increased risk of colon

adenomas [2,3]. Inflammation plays a crucial role in the cancer

development [4], and chronic inflammation leading to inflamma-

tory bowel disease (Crohn’s disease and ulcerative colitis) is

associated with colorectal cancer risk [5].

Although the importance of food, nutrition, physical activity in

the prevention of cancer has been recently acknowledged [6],

some food or nutritional products with healthy potential are

largely ignored. Among these overlooked or sparsely used natural

products are mushrooms. However, four recent epidemiological

studies from Asia demonstrated inverse correlation between

mushroom intake and gastric, gastrointestinal and breast cancer,

respectively [7–10]. The anticancer activities of mushrooms were

usually associated with the stimulation of the immune system by

polysaccharides, predominantly b-glucans [11]. On the other

hand, mushrooms contain minerals, vitamins (e.g. thiamin,

riboflavin, ascorbic acid, and vitamin D), amino acids, and other

organic compounds [12].

The mushroom Ganoderma lucidum was used in the traditional

Chinese medicine (TCM) and is commonly used in the forms of

tea, and dietary supplements to promote health. The major

biologically active components identified in G. lucidum are

polysaccharides, which stimulate the immune system, and
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lanostane-type triterpenes, which directly target cancer cells [13].

Animal studies with G. lucidum extracts demonstrated that

triterpene fractions, containing ganoderic and lucidenic acids,

inhibited growth and metastasis of Lewis lung carcinoma and

human hepatoma cells in mice [14,15], whereas a water soluble

extract from G. lucidum mycelia inhibited formation of ACF and

reduced the size of colonic tumors induced by azoxymethane and

N,N9-dimethylhydrazine in rats and mice, respectively [16,17].

In the present study we evaluated G. lucidum triterpene extract

(GLT) in the animal model of the food-borne carcinogen (PhIP)

and inflammation (DSS) induced colon carcinogenesis mice. Here,

we show that GLT prevented formation of colonic tumors,

inhibited focal hyperplasia and reduced the amount of ACF.

Moreover, GLT also prevented colon inflammation and reduced

the amount of colon infiltrating macrophages. Finally, we have

also shown that GLT significantly down-regulated PhIP/DSS-

dependent expression of CYP1A2 and CYP3A4 in colon tissue.

Results

Ganoderma lucidum triterpene extract (GLT) inhibits
colon carcinogenesis

In order to evaluate whether GLT suppresses colon carcino-

genesis induced by PhIP, we have modified an animal model

where the carcinogenic effect of PhIP is further induced by the

inflammation with DSS [18]. The mice treated with PhIP, DSS or

their combination with GLT (Fig. 1A) did not demonstrate any

sign of toxicity as shown by the even increase of body weight

among the groups (Fig. 1B). Although our experiments started

with 10 animals per group, some of the animals died during the

experiment. Thus, we observed slightly increased mortality in the

control group (1 dead animal), groups in animals treated with DSS

(2 deaths), and PhIP/DSS (1 death), whereas GLT treatment

further increased mortality of experimental animals (PhIP/

DSS+100 mg GLT/kg of body weight - 3 deaths, PhIP/

DSS+500 mg GLT/kg of body weight - 4 deaths). However, this

increased mortality was not statistically significant, and the

pathological analysis did not show any changes among the dead

animals. Although DSS induced slight diarrhea and bloody stool

after 5–7 days in mice exposed to 2% DSS in the drinking water,

this effect was only transient and all animals produced normal

stool during the experiment.

The presence of colonic neoplasm was evaluated macroscopi-

cally in all treatment groups and nodular, polypoid, or flat-type

colonic tumors were observed in proximal, middle, and distal

colon. As seen in Table 1, we were not able to detect any tumors in

control or DSS groups and only one tumor in the PhIP group,

whereas the combination treatment of PhIP and DSS markedly

induced the tumor incidence and tumor multiplicity. However, the

treatment with GLT reduced the tumor incidence and the tumor

multiplicity at 100 mg GLT/kg of body weight and at 500 mg

GLT/kg of body weight, respectively (Table 1). Neoplastic index

was calculated by evaluating the severity of neoplastic lesions as

described in Materials and Methods. Although PhIP itself significantly

induced median value for the neoplastic index to 1, this effect was

further increased when DSS was added to the drinking water

(Table 1). However, GLT treatment only moderately decreased

the neoplastic index in the treated animals to 2 at the dose 100 mg

GLT/kg and 1.5 at the dose 500 mg GLT/kg, respectively

(Table 1).

GLT suppresses focal hyperplasia and aberrant crypt foci
(ACF) formation

The earliest phases of colorectal oncogenesis occur in the

normal mucosa, with a disorder of cell replication and further

induction of epithelial hyperplasia [19]. The focal hyperplasia was

evaluated in colonic tissues after H&E staining. Histological

analysis (Fig. 1C) demonstrated that PhIP and DSS induced

hyperplasia of focal colonic crypt, adenomas and adenocarcino-

mas in the mucosa layer of the colon with some residual parts of

normal colonic architecture. GLT treatment (100 mg/kg) partially

restored the normal colonic architecture. At the higher concen-

tration of GLT (500 mg/kg), no visible areas of colon adenocar-

cinomas were detected and only distinct areas of focal colonic

epithelial hyperplasia were identified with visible areas of normal

colonic architecture. As seen in Figure 1C and D, PhIP (1.561.07)

and DSS (3.061.20) alone only moderately increased colonic focal

hyperplasia, whereas the combination of PhIP and DSS signifi-

cantly (5.761.80, p,0.05) induced focal hyperplasia. This PhIP

and DSS dependent focal hyperplasia was suppressed by the GLT

treatment in a dose response manner at 100 mg GLT/kg

(3.761.11) and at 500 mg GLT/kg (2.560.84, p,0.05)

(Fig. 1D). The aberrant crypt foci (ACF) formation is a putative

precursor to colorectal adenomas and a potential biomarker for

colorectal carcinoma [20]. As recently demonstrated, whereas

PhIP itself did not induce the number of ACF, the combination of

PhIP and DSS markedly stimulated formation of ACF in male

C57BL/6J mice [21,22]. Interestingly, we observed a slight

induction of ACF by PhIP (23612.5) or DSS (2269.9) only,

whereas the combination of PhIP and DSS significantly

(151624.1, p,0.05) induced formation of ACF (Fig. 1E). Notably,

the amount of ACF was suppressed by GLT in a dose response

manner at 100 mg GLT/kg (76619.5, p,0.05) and at 500 mg

GLT/kg (4862.9, p,0.05).

Increased proliferation of colon epithelial cell, characterized as

hyperplasia, can be detected with the Ki-67 proliferation marker

[23]. Therefore, we evaluated whether GLT suppresses the

amount Ki-67 positive cells in colon tissue in our experimental

conditions. As seen in Figure 2A, PhIP and DSS induced the

amount of Ki-67 positive cells, whereas the treatment with GLT

decreased Ki-67 cells in a dose response manner.

GLT suppresses colon inflammation
DSS is a widely used inducer of colonic inflammation in

experimental models of colitis and previous studies demonstrated

that DSS further accelerate colon carcinogenesis induced by PhIP

[18,24]. The major characteristics of DSS induced inflammation/

colitis are the weight loss and the shortening of the large intestine

in DSS treated animals [25]. In our experiments, repeated

applications of 2% DSS in water for one week at days 7–14 and

36–42 (Fig. 1) significantly shortened the colon length in DSS and

in PhIP/DSS treated animals, respectively (Table 1). In contrast,

GLT treatment prevented the shortening of colon lengths to the

levels comparable to the control group, and this effect was dose

dependent (Table 1). Nevertheless, DSS alone, combination of

PhIP and DSS or the treatment with GLT did not affect the body

weight of experimental animals (Fig. 1B).

DSS-dependent colon inflammation is associated with the

increased infiltration of macrophages [26]. To evaluate whether

the amount of macrophages is increased in the PhIP/DSS induced

colon cancer model and whether GLT affects the amount of

macrophages in these animals, colon tissues were stained with F4/

80 antibodies. As seen in Figure 2B, DSS and PhIP induced

infiltration of macrophages was significantly reduced in colon

tissue in animals treated with 500 mg GLT/kg.

Mushroom Prevents Colon Cancer
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GLT is not toxic and prevents colon carcinogenesis and
inflammation

Smina et al [27] recently demonstrated that a single dose

(5000 mg/kg of body weight) or daily dose for 30 days (500 mg/kg

of body weight) of total triterpenes isolated from Ganoderma lucidum

are not toxic, To confirm that GLT is not toxic, GLT (0, 125, 250

and 500 mg/kg of body weight) was administered orally for 5 days

and the effects on the liver, kidney and glucose and lipids levels

evaluated after one week. As seen in Table 2, 3 and 4, GLT did

not affect the activity of liver enzymes, glucose levels, kidney

function or the lipid metabolism. In addition, H&E staining of

liver, kidney and spleen did not show any pathological changes in

these organs (not shown).

To evaluate if GLT possesses preventative activity against colon

carcinogenesis and inflammation, we started an oral application of

GLT (0, 100, 300 mg/kg of body weight) 2 weeks before the

initiation of colon carcinogenesis (Fig. 3A). Although some animals

died during the time of experiment (2 in the control group, 4 in the

Figure 1. GLT suppresses PhIP/DSS induced formation of colon tumors and inhibits focal hyperplasia and ACF formation. (A)
Schematic of the animal treatment. The details of the treatment are described in Materials and Methods. (B) Body weight of control animals (black
circle), animals treated with PhIP (white square), DSS (black square), PhIP/DSS (white circle), PhIP/DSS+GLT 100 mg/kg of body weight (black triangle),
and PhIP/DSS+GLT 500 mg/kg of body weight (white traingle) during the experiment. (C) H&E staining of representative samples from animal
experiments described in Figure 1A. (D) Focal hyperplasia was evaluated by the histological analysis after H&E staining in colon tissue samples as
described in Materials and Methods. Results are means 6 SD (n = 6–9 mice/per group). (E) ACF formation was evaluated after methylene blue staining
as described in Materials and Methods. Results are means 6 SD (n = 10 foci/3 mice/per group), *p,0.05 by ANOVA.
doi:10.1371/journal.pone.0047873.g001

Mushroom Prevents Colon Cancer

PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e47873



PhIP/DSS group, 6 in the PhIP/DSS+100 GLT group, and 3 in

the PhIP/DSS+300 GLT group) this mortality is not associated

with GLT as demonstrated by the same increase in body weight in

all experimental groups (not shown) and the low mortality in the

high dose GLT group, further confirming that GLT is not toxic As

in our pilot study (Table 1), PhIP/DSS increased tumor formation

which was prevented by the oral application of GLT before the

tumor initiation (Fig. 3B, Table 5). Moreover, both low (100 mg

GLT) and high (300 mg GLT) doses significantly prevented tumor

incidence and tumor multiplicity (Table 5). In addition, the

Table 1. Effect of GLT on the PhIP/DSS induced colon carcinogenesis and inflammation.

Treatment
Tumor incidence
(animals with tumors)

Tumor multiplicity
(tumors per animal) Neoplastic index Colon length (cm)

Control 0/9 (0%) 0 0 (0,0) 14.161.2

PhIP 1/10 (10%) 0.160.32 1 (0,1)a 14.561.1

DSS 0/8 (0%) 0 0 (1,0) 11.661.8a

PhIP/DSS 9/9 (100%)a 5.662.01a 3 (1,4)b 11.262.0a

PhIP/DSS+100 GLT 5/7 (71%) 2.162.12 2 (1,3) 13.460.8b

PhIP/DSS+500 GLT 2/6 (33%)b 0.761.21b 1.5 (0,3) 14.661.3b

Tumor incidence are summarized using percentage of animals with tumors and compared across groups using Fisher’s exact test and the Bonferonni correction for
multiple comparisons: a p,0.001 PhIP/DSS vs control, PhIP, DSS; b p,0.02 PhIP/DSS+500 GLT vs PhIP/DSS.
Tumor multiplicity are summarized using mean 6 SD and compared across all group using Kruskal-Wallis one way analysis of variance on ranks and the Dunn’s method
for the multiple comparisons: a p,0.05 PhIP/DSS vs control PhIP, DSS; b p,0.05 PhIP/DSS+500 GLT vs PhIP/DSS.
Neoplastic index is summarized using median (min, max) and compared across groups using the Kruskal-Wallis test. Comparisons of each group to control performed
using Mann-Whitney U tests with significance levels adjusted using the Bonferroni correction: a p,0.001 control vs PhIP; b p,0.001 control vs PhIP/DSS.
Data for colon length summarized using mean 6 SD and compared across all group using ANOVA and Dunnett’s post hoc test: ap,0.001 control vs DSS, control vs
PhIP/DSS; bp,0.001 PhIP/DSS vs PhIP/DSS+100 GLT, PhIP/DSS vs PhIP/DSS+500 GLT.
doi:10.1371/journal.pone.0047873.t001

Figure 2. GLT down-regulates expression of Ki-67 and suppresses the amount of infiltrated macrophages. Immunohistochemistry and
quantification of (A) Ki-67 and (B) F4/80 positive cells were performed as described in Materials and Methods. Results are means 6 SD (n = 4–5 mice/
per group), *p,0.05 by ANOVA. Representative pictures from (A) Ki-67 and (B) F4/80 staining in the PhIP/DSS group and the PhIP/DSS group treated
with GLT (500 mg/kg of body weight) 3 times/week for 120 days.
doi:10.1371/journal.pone.0047873.g002
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amount of tumors was significantly increased in the distal part of

the colon, and GLT prevented formation of these tumors (Table 6).

As expected, pretreatment with GLT, before the initiation of

inflammation with DSS, significantly suppressed colon inflamma-

tion as demonstrated by the prevention of the shortening of colon

length (Table 5).

GLT inhibits PhIP/DSS-dependent expression of cyclin D1
and COX-2 in colon tissue

Overexpression of cell cycle regulatory protein, cyclin D1, was

detected in patients with adenomatous polyps and adenocarcino-

mas demonstrating its importance in colon carcinogenesis [28].

Moreover, PhIP induced expression of cyclin D1 in rat mammary

gland carcinomas [29]. Therefore, we evaluated whether the

PhIP/DSS will increase the expression of cyclin D1 in colon tissue

and whether GLT can reverse this effect. As seen in Figure 4,

cyclin D1 expression was markedly increased in mice which

received PhIP and DSS, whereas in PhIP/DSS mice treated with

100 and 300 mg GLT/kg the expression of cyclin D1 was

decreased.

Up-regulation of expression of COX-2, an enzyme converting

arachidonic acid to prostaglandins, has been associated with

human intestinal inflammation and colorectal cancer [30]. In

contrast to the cardiovascular and gastrointestinal effects of COX

inhibitors, their use for cancer prevention and treatment of

selected patients was recently reevaluated [30]. In agreement with

Tanaka et al. [18], PhIP/DSS treatment significantly increased

the amount of COX-2 positive cells, whereas GLT treatment (100

and 300 mg GLT/kg) decreased the expression of COX-2 (Fig. 5).

GLT affects activity of transcription regulators of
metabolic enzymes in vitro and modulates expression of
CYP1A2, CYP3A4 and CYP3A1 in vivo

Metabolism of PhIP is mediated by the cytochrome P450 1A2

(CYP1A2) enzyme, leading to the activation or detoxification of

PhIP [31]. To determine if GLT has the potential to activate

transcription of metabolic enzymes, we have utilized stable cells

lines, with reporter luciferase gene constructs containing following

promoter regions: (1) XRE (xenobiotic DNA response element)

and AhR (Aryl hydrocarbon receptor) coding sequence (human

CYP1A2 gene promoter), (2) PXR (human pregnane X receptor

DNA response element) coding sequence (human CYP3A4 gene

promoter region), and (3) rPXR (rat pregnane X receptor) coding

sequence (rat CYP3A1 gene promoter), as described in Materials

and Methods. The use of the cells containing PXR and rPXR allows

for the comparison of induction through human and rat PXR as

their response is species specific [32]. The cells containing XRE/

AhR, PXR and rPXR were treated with GLT (0–500 mg/ml) for

24 hours, and then assayed for viability and luciferase activity. As

seen in Figure 6, GLT significantly activated human XRE/AhR

(Fig. 6A) as well as human PXR (Fig. 6B) and rat rPXR (Fig. 6C),

without any effect on cell viability. GLT bound rodent PXR with a

higher affinity (calculated half maximal effective concentration,

EC50 of 65.8 mg/ml) than human PXR (calculated EC50 of

731.7 mg/ml, which is outside the highest concentration tested),

however, GLT was a more potent inducer of human PXR that

rodent PXR (eight fold maximum induction at 500 mg/ml vs.

three fold maximum induction at 125 mg/ml). GLT had a slightly

higher affinity for Ah receptor (calculated EC50 of 187.1 mg/ml,

eleven fold maximum induction at 500 mg/ml).

In addition, we evaluated if GLT treatment affected expression

of CYP1A2, CYP3A4 and CYP3A1 in vivo, in colonic tissues in

mice exposed to PhIP/DSS and GLT treatment. Immunohisto-

chemical analysis demonstrated that PhIP/DSS treatment mark-

edly induced expression of CYP1A2, CYP3A4 and CYP3A1,

whereas GLT treatment at 100 and 300 mg/kg decreased

expression of CYP1A2 and CYP3A4 to the normal levels

(Fig. 7A, B), whereas CYP3A1 expression was not markedly

affected (Fig. 7C).

Table 2. Effect of GLT on the liver function and serum glucose.

Treatment
(mg/kg b. wt.) Albumin (g/dL)

Bilirubin Total
(mg/dL) ALP (IU/L) ALT (IU/L) AST (IU/L) Glucose (mg/dL)

Control 1.360.2 0.4460.15 37614 54621 115637 142654

GLT 125 1.460.2 0.4260.08 48619 1706175 1616116 145634

GLT 250 1.360.2 0.3060.07 38617 78630 105629 119630

GLT 500 1.360.1 0.3760.10 53616 1516262 1236121 144632

Values are Mean 6 S.D. (n = 6), ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase. No significant difference from the control group.
doi:10.1371/journal.pone.0047873.t002

Table 3. Effect of GLT on the renal function.

Treatment (mg/kg b.
wt.) Creatinine (mg/dL) BUN (mg/dL) Sodium (mg/dL) Potassium (mmol/L) Chloride (mmol/L)

Control 0.3160.05 26.063.0 15460.8 8.361.1 11461.6

GLT 125 0.3160.02 26.262.9 15461.0 8.460.8 11261.6

GLT 250 0.2760.05 26.767.7 15561.6 8.260.9 11361.8

GLT 500 0.2960.03 23.562.6 15460.5 8.561.2 11361.5

Values are Mean 6 S.D. (n = 6), BUN, blood urea nitrogen. No significant difference from the control group.
doi:10.1371/journal.pone.0047873.t003
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Discussion

Regardless of the significant global consumption of dietary or

medicinal mushrooms, only four epidemiological studies suggested

chemopreventive effects of mushrooms against gastric, gastroin-

testinal and breast cancer, respectively [7–10]. In the present

study, we evaluated anti-cancer and anti-inflammatory activities of

a triterpene extract from medicinal mushroom Ganoderma lucidum

(GLT) in an animal model of the food-borne carcinogen (PhIP)

and inflammation (DSS) induced colon carcinogenesis. Our data

Table 4. Effect of GLT on the lipid metabolism.

Treatment (mg/kg b. w.) Cholesterol (mg/dL) Triglyceride (mg/dL) HDL (mg/dL)

Control 90626 164658 89621

GLT 125 8464 225671 7869

GLT 250 97625 174690 91628

GLT 500 94621 245644 93619

Values are Mean 6 S.D. (n = 6), HDL, high-density lipoprotein. No significant difference from the control group.
doi:10.1371/journal.pone.0047873.t004

Figure 3. GLT prevents PhIP/DSS induced formation of colon tumors. (A) Schematic of the preventive experimental protocol. The details of
the treatment are described in Materials and Methods. (B) H&E staining of representative samples from animal experiments.
doi:10.1371/journal.pone.0047873.g003
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clearly supports our hypothesis that GLT prevents and suppresses

both colon carcinogenesis and colon inflammation in ICR mice

exposed to PhIP and DSS. Previous study using uncharacterized

water soluble extract from cultured medium of G. lucidum mycelia

(MAK), demonstrated that MAK in the diet reduced the size but

not the amount of colon tumors induced by N,N9-dimethylhydra-

zine (DMH) in ICR mice [16]. Therefore, our study is the first to

demonstrate that chemically characterized extract from mush-

room G. lucidum, GLT, suppresses the number of colon tumors

induced by the food-borne carcinogen and inflammation.

As recently demonstrated, an induction of preneoplastic lesions

in rat colon by PhIP was not preceded or accompanied by an

inflammatory process [33], whereas the incidence and multiplicity

of dysplastic lesions were promoted by the addition of DSS [18].

Indeed, here we demonstrate that focal hyperplasia induced by

PhIP was further accelerated by DSS. Most importantly, GLT

suppressed colonic hyperplasia induced by the combination of

PhIP and DSS in a dose response manner, further confirming the

role of GLT in the prevention of colon carcinogenesis. The

inhibition of hyperplasia was also confirmed by the suppression of

the proliferative marker Ki-67 in colonic tissue in mice treated

with GLT. In addition, we have found that although PhIP induced

ACF, DSS-initiated inflammation further increased the amount of

ACF in mice treated with PhIP and DSS. In agreement with the

study using an extract from G. lucidum mycelia MAK [16], GLT

inhibited ACF formation in ICR mice in a dose-responsive

manner.

Increased mortality, in our pilot and preventive studies, could

be caused by the toxicity of DSS and by the additional effect of

GLT. Because DSS (inflammation) itself induces mice mortality

[34], and all death animals (but 1 in the pilot and 2 in the

preventive control groups) were exposed to DSS, inflammation

could be responsible for this increased mortality. Moreover, COX-

2 knock-out mice, specifically in myeloid and endothelial cells but

not epithelial cells, are more sensitive to DSS [35,36], and GLT

treatment markedly decreased expression of COX-2 in mice

treated with DSS and PhIP in our study. Therefore, it is possible

that GLT inhibition of COX-2 further sensitize mice to DSS,

resulting in the increased mortality in the PhIP/DSS and PhIP/

DSS+GLT treatment groups. In addition, as in our both studies,

we have observed an increased aggressive behavior in the gavaged

mice.

Here, we also demonstrate anti-inflammatory effects of GLT in

the PhIP/DSS-model of colon carcinogenesis. DSS-induced

inflammation/colitis is associated with the shortening of the large

intestine in DSS treated animals [25], and we observed the same

effect in the PhIP/DSS treated animals. However, GLT prevented

the shortening of colon in PhIP/DSS treated animals to the colon

length comparable to control animals, suggesting anti-inflamma-

tory effect of GLT in the PhIP/DSS model of colon carcinogen-

esis.

The tumor microenvironment contains stromal cells such as

fibroblasts, endothelial cells, and macrophages. An association of

chronic inflammation, which involves macrophages, with cancer

initiation and promotion and the reduction of cancer risk by

treatment with anti-inflammatory drugs was recently described

[37]. As mentioned above, increased infiltration of macrophages

was previously detected in the DSS-dependent colon inflammation

[26]. Our data demonstrate that PhIP/DSS induce the amount of

infiltrating macrophages whereas GLT treatment significantly

reduced their amount. Therefore, in addition to the inhibition of

colon carcinogenesis, our data suggest that GLT exerts its effect

through the inhibition of inflammation and by the depletion of

infiltrating macrophages from colon tissue. Moreover, we have

recently demonstrated direct anti-inflammatory activity of GLT in

LPS-stimulated macrophages in vitro and in LPS-challenged mice

in vivo [38]. Hence, our data are in agreement with previous study

by Loddenkemper et al. demonstrating that ursodeoxycholic acid,

another triterpene with anti-inflammatory properties, prevented

colitis-associated carcinogenesis in mice [33].

Table 5. Chemopreventive effect of GLT on the PhIP/DSS induced colon carcinogenesis and inflammation.

Treatment
Tumor incidence
(animals with tumors)

Tumor multiplicity (tumors per
animal) Neoplastic index Colon length (cm)

Control 0/12 (0%) 0 0 (0,0) 14.061.5

PhIP/DSS 26/26 (100%)a 4.562.2a 2 (0,4)a 12.161.5a

PhIP/DSS+100 GLT 12/24 (50%)b 0.660.7b 1 (0,4) 13.261.2b

PhIP/DSS+300 GLT 7/27 (26%)b 0.360.6b 0 (0,4)b 13.561.1b

Tumor incidence are summarized using percentage of animals with tumors and compared across groups using Fisher’s exact test and the Bonferonni correction for
multiple comparisons: a p,0.001 PhIP/DSS vs control, b p,0.001 PhIP/DSS+100 GLT vs PhIP/DSS, PhIP/DSS+300 GLT vs PhIP/DSS.
Tumor multiplicity are summarized using mean 6 SD and compared across all group using ANOVA on ranks and the Dunn’s method for the multiple comparisons: a

p,0.05 PhIP/DSS vs control, b p,0.05 PhIP/DSS+100 GLT vs PhIP/DSS, PhIP/DSS+300 GLT vs PhIP/DSS.
Neoplastic index is summarized using median (min, max) and compared across groups using the Kruskal-Wallis test. Comparisons of each group to control performed
using Mann-Whitney U tests with significance levels adjusted using the Bonferroni correction: a p,0.001 control vs PhIP/DSS; b p,0.001 PhIP/DSS vs PhIP/DSS+300 GLT.
Data for colon length summarized using mean 6 SD and compared across all group using ANOVA and Dunnett’s post hoc test: ap,0.05 control vs PhIP/DSS; bp,0.05
PhIP/DSS vs PhIP/DSS+100 GLT, PhIP/DSS vs PhIP/DSS+300 GLT.
doi:10.1371/journal.pone.0047873.t005

Table 6. Tumor localization.

Tumor localization in colon

Treatment proximal middle distal

Control 0 0 0

PhIP/DSS 0.260.7 0.761.0 3.661.6a,b,c

PhIP DSS+100 GLT 0 0.260.4 0.460.6

PhIP/DSS+300 GLT 0 0.060.2 0.360.6

Tumor localization are summarized using mean 6 SD and compared across all
group using ANOVA on ranks and the Tukey Test (PhIP/DSS group) and the
Dunn’s method (distal tumors) for the multiple comparisons:
ap,0.05 distal vs proximal, distal vs middle;
bp,0.05 PhIP/DSS vs control;
cp,0.05 PhIP/DSS vs PhIP/DSS+100 GLT, PhIP/DSS vs PhIP/DSS+300 GLT.
doi:10.1371/journal.pone.0047873.t006
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The overexpression of cyclin D1 and COX-2 in colon tissues in

animals treated with PhIP/DSS was markedly reduced by the

GLT treatment. We have previously demonstrated that an extract

of mushroom G. lucidum, which contains 6% of GLT, suppressed

cyclin D1 expression and NF-kB activity in human breast cancer

cells [39]. Moreover, GLT down-regulated expression of COX-2

and suppressed activation of AP-1 and NF-kB in stimulated

macrophages [38]. Therefore, it is plausible to hypothesize that

GLT down-regulates the expression of cyclin D-1 and COX-2 in

vivo by inhibiting AP-1 and NF-kB activity. Indeed, recent study

demonstrated that euphol, a natural triterpene from the Euphorbia

tirucalli plant, inhibits NF-kB activity in colon tissue from mice the

DSS-induced colitis [40].

As previously demonstrated, polysaccharides isolated from G.

lucidum, induced total P450 levels in rat liver, whereas suppressed

the activity of CYP1A2, CYP3A and CYP2E1 in hepatic

Figure 4. GLT down-regulates expression of cyclin D1 in colon tissue. (A) Immunohistochemistry and (B) quantification of cyclin D1 positive
cells were performed as described in Materials and Methods. Box plots represent 5th/10th percentiles, horizontal bars represent median values, and
whiskers indicate minimum to maximum values. Significant differences (*p,0.05) were observed among PhIP/DSS vs. control, PhIP/DSS vs PhIP/
DSS+GLT 100, and PhIP/DSS vs. PhIP/DSS+GLT 100.
doi:10.1371/journal.pone.0047873.g004
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microsomes [41]. Our results indicate that GLT is able to induce

XRE/AhR and PXR which regulate expression of CYP1A2 and

CYP3A, respectively. Because CYP1A2 is involved in the

metabolism of PhIP [30], it is possible that GLT-induced increase

in the expression of CYP1A2, could contribute to the elimination

of this carcinogen. Moreover, PXR can be also responsible for the

GLT-induced down-regulation of expression of cyclin D1. Since

the ligand bound PXR heterodimerizes with the retinoid X

receptor (RXR) and this interaction is required for an induction of

the gene expression [42], the depletion of the RXR resulted in a

decrease in cyclin D1 expression [43]. Therefore, the decrease in

cyclin D1 expression by GLT treatment could be caused by the

Figure 5. GLT down-regulates expression of COX-2 in colon tissue. (A) Immunohistochemistry and (B) quantification of COX-2 positive cells
were performed as described in Materials and Methods. Box plots represent 5th/10th percentiles, horizontal bars represent median values, and
whiskers indicate minimum to maximum values. Significant differences (*p,0.05) were observed among PhIP/DSS vs. control, PhIP/DSS vs PhIP/
DSS+GLT 100, and PhIP/DSS vs. PhIP/DSS+GLT 100.
doi:10.1371/journal.pone.0047873.g005
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interaction between PXR, GLT and RXR. Moreover, the

expression of PXR regulated genes are decreased in inflammatory

bowel disease [44], suggesting that GLT induced PXR could

account of decreased inflammation seen in our study. It is not

unusual that GLT is able to activate both PXR and AhR mediated

gene expression since Omeprazole (a dyspeptic drug) is able to

activate both PXR and AhR (J. Lamb, personal communication),

and a ‘‘cross-talk’’ between PXR and AhR has been described

[44]. The PhIP/DSS-induced expression of CYP1A2 in mice is an

agreement with previous study demonstrating increased expression

of this enzyme by PhIP in rat [45]. Although the metabolism of

PhIP by CYP1A2 differs between human and rodents, the

inhibition of a PhIP/DSS-dependent expression of CYP1A2 by

GLT can reduce the amount of carcinogenic PhIP metabolite N-

hydroxy-PhIP in colon tissue [31]. Since, Curcuma drugs

suppressed activity and expression of CYP3A4 in intestinal

epithelial cells [46], our observation that GLT down-regulates

PhiP/DSS-dependent expression of CYP3A4 in vivo, further

confirms cancer preventative activities of GLT.

In our studies we used GLT concentrations up to 500 mg/kg of

body weight 3 times per week, which would correspond 90–120 g

of GLT for 60–80 kg per person per week (12.9–17.1 g/day).

Since the amount of biologically active mushroom triterpenes

(GLT) depends on the source and extraction procedures, the

consumption of 1–2 servings (100–200 grams) of fresh or dried

mushrooms could be sufficient to reach these concentrations. In

addition, daily intake of fresh ($10 g) or dried ($4 g) mushrooms

significantly decreased the risk of breast cancer [9]. In summary,

our data demonstrate, for the first time, that GLT prevented and

inhibited colon carcinogenesis in mice which was induced by the

food-borne carcinogen and inflammation. Moreover, GLT also

suppressed colon inflammation, reduced the amount of infiltrating

macrophages and down-regulated expression of cyclin D1 and

COX-2, and suppressed PhIP/DSS-induced expression of CYP1A

and CYP3A in colon tissue. Taken together, GLT could be

considered as potential natural agent for the prevention and

suppression of colitis-associated colon carcinogenesis.

Materials and Methods

Ganoderma lucidum extract and reagents
Ganoderma lucidum triterpene extract (GLT) was obtained from

Pharmanex (Provo, UT, USA, batch number: 050607, Shanghai

R&D, Pharmanex). GLT contains a mixture of lanostanoid

triterpenes which we previously characterized and quantified:

ganoderic acid A, F, H, Mh, S1, ganosporeric acid, lucidenic acid

B, D, D1, E1, H, L, and methyl lucidenate G [47]. GLT was

dissolved in drinking water at the concentration 10 and 50 mg/ml

for animal experiments and in DMSO (Sigma, St. Louis, MO,

USA) at the concentration 40 mg/ml for cell culture experiments

and stored at 4uC, respectively. PhIP was purchased from Toronto

Research Chemicals, Inc. (Toronto, Ontario, Canada). DSS was

obtained from MP Biomedicals (Solon, OH, USA).

Animal experiments
Male Crj: CD-1 (ICR) mice (Harlan, Indianapolis, USA) 5

weeks old were maintained at Methodist Research Institute

Animal Facility according to the Institutional Animal Care

Figure 6. GLT activates XRE/AhR, PXR and rPXR. in vitro. Induction of (A) XRE/AhR, (B) PXR and (C) rPXR was evaluated as described in Materials
and Methods. Results are means 6 SD (n = 4), *p,0.05 by ANOVA.
doi:10.1371/journal.pone.0047873.g006
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Guidelines. All animals were housed in plastic cages (4 mice/cage)

with free access to drinking water and a pellet diet (LabDiet 5001,

Southern Agriculture, Tulsa, OK, USA), under controlled

conditions of humidity (50610%), light (12/12 h light/dark cycle)

and temperature (2362uC). After 7 days quarantine, they were

randomized by body weight into control and experimental groups.

To establish a food-borne- and inflammation- model of colon

carcinogenesis, ICR mice (10 animals/group) received an intra-

gastric dose of PhIP (100 mg/kg of body weight) [day 0 and 28],

and 1 week after the PhIP applications, they received 2% (w/v)

DSS in drinking water for 7 days [days 7–14 and 36–42]. The

control groups received water or PhIP (100 mg/kg of body weight)

[day 0 and 28] or DSS in drinking water for 7 days [days 7–14 and

36–42], respectively. The experimental groups were gavaged with

GLT dissolved in drinking water (0, 100 mg, 500 mg/kg of body

weight) three times per week starting at the day 1 until the end of

the experiment (Fig. 1A). In the prevention study, ICR mice were

gavaged with corn oil (control group, n = 14; PhIP/DSS group,

n = 30) or GLT (PhIP/DSS+100 mg GLT, n = 30; and PhIP/

DSS+300 mg/kg GLT, n = 30; of body weight in corn oil) for 2

weeks before the first application of PhIP as described above

(Fig. 3A). The mice were sacrificed at day 120 and colon tissue was

collected. The large bowels were flushed with saline and excised;

the length was measured (from ileocecal junction to the anal verge)

and cut open longitudinally along the main axis, and then washed

with saline. Macroscopic inspection was carried out and the large

bowels were then cut and fixed in 10% buffered formalin for

24 hours followed by tissue processing overnight, and then

embedded in paraffin. Five-micrometer sections were stained for

routine H&E for the histological analysis.

Toxicity of GLT was evaluated in male ICR mice with GLT (0,

125, 250 and 500 mg/kg) via the p.o. route of administration, and

dissolved in corn oil (n = 6). 7 days after the administration

initiation of the dosing (56, daily dosing), a full necropsy was

performed and liver, kidney and spleen collected for the

histological analysis as described above (H&E staining). Blood

was collected and levels of albumin, bilirubin, ALP, ALT, AST,

glucose, creatinine, BUN, sodium, potassium, chloride, cholester-

ol, triglyceride and HDL determined at the IU Health Pathology

Laboratory (Indianapolis, Indiana, USA)

The protocols for animal experiments were approved by the

Animal Research Committee at the Methodist Hospital (protocol

number 2006-22, 2012-07) according to the NIH guidelines for

the Care and Use of Laboratory Animals.

Figure 7. Effect of GLT on PhIP/DSS-induced expression of CYP1A2, CYP3A4 and CYP3A1 in colon tissue. Quantification of (A) CY1A2,
(B) CYP3A4, and (C) CYP 3A1 positive cells as described in Materials and Methods. Box plots represent 5th/10th percentiles, horizontal bars represent
median values, and whiskers indicate minimum to maximum values. Significant differences (*p,0.05) were observed among (A) CYP1A2: PhIP/DSS vs.
control, PhIP/DSS vs PhIP/DSS+GLT 100 (B) CYP3A4: PhIP/DSS vs. control, PhIP/DSS vs PhIP/DSS+GLT 100, and PhIP/DSS vs. PhIP/DSS+GLT 100, and (C)
CYP3A1: PhIP/DSS vs. control.
doi:10.1371/journal.pone.0047873.g007
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Immunohistochemistry
Immunohistochemistry for Ki-67, F4/80, cyclin D1 and COX-

2 (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA),

CYP1A2 (Abcam Inc., Cambridge, MA, USA), CYP 3A1 (Biorbyt

Ltd., Cambridge, UK), CYP3A4 (Proteintech Group Inc.,

Chicago, IL, USA) was performed on 5-mm-thick paraffin-

embedded sections from the colons of mice. For each case,

negative controls were performed on serial sections. For the Ki-67

positive nuclei, (focal hyperplasia/adenoma/tumor areas) nuclei

were measured in one colon section per mouse and expressed as

the number of positive cells per 166 power field (1606) in the

colon cross-sectional area. For the immunohistochemical quanti-

fication, three randomly selected images (166 power fields) each

(total area, 7.3 mm2) were analyzed in each animal per group. The

macrophage infiltration in the colonic tissues was evaluated by the

immunostaining detection of macrophage/monocyte marker (F4/

80) monoclonal primary antibody and the number of macrophages

were counted in three 166 fields and averaged. Cyclin D1,COX-

2, CYP1A2, CYP3A1 and CYP3A4 expression were evaluated in

colon tissues in all survived animals (one slide per animal) from

each group in the prevention study (control, n = 12; PhIP/DSS,

n = 26; PhIP/DSS+100 GLT, n = 24; PhIP/DSS+300 GLT,

n = 27) by ImageJ [48]. Intensity and localization of immunore-

activities against all primary antibodies used were examined on all

sections using a light microscope (Leica DMR type 020-525-024

fluorescence microscope, Wetzlar, Germany).

Scoring of Aberrant Crypts
For the counting of aberrant crypts unstained slides with

paraffin embedded tissues were selected as described [49]. Total

three slides corresponding to three different animals (one slide per

animal) from each group were used. First the slides were treated

with xylene and different concentration of ethanol for different

timings to remove paraffin from tissues. After removal of paraffin,

tissues were stained with 0.2% methylene blue for 3 minutes in

distilled water, and viewed under a light microscope to determine

aberrant crypts (AC). The AC were distinguished from surround-

ing non-aberrant crypts by their increased size, thickened

epithelial cell lining, and enlarged pericryptal area relative to

surrounding normal crypts. 10 different foci (fields) were selected

from each slide to count the aberrant crypts. The AC from all 10

foci were added together for each slide. Lastly, average number of

aberrant crypts from all 30 foci was determined together.

Neoplastic Index
Histological examination was performed on paraffin-embedded

sections after hematoxylin and eosin (H&E) staining for the

histological alterations, such as mucosal ulceration, dysplasia, and

colonic neoplasms according to the description by Ward [50].

Neoplastic index was based on the evaluation of neoplastic lesions

which were scored in the following manner: mildly/poorly

developed = 1, moderately developed = 2, highly/well devel-

oped = 3, very highly/well developed = 4, as described by

Nakagama [51]. After complete scoring the average score was

determined as neoplastic index.

In vitro Assays
1A2DRE (human CYP1A2 XRE), DPX2 (human CYP3A4

PXR), and RPXR (rat CYP3A1) cells, obtained from Puracyp Inc.

(Carlsbad, CA, USA), were exposed to GLT in a 96 well plate for

24 hours. Viability was determined by MultiTox (Promega,

Madison, WI, USA) at 405ex/530em nm and induction was

determined by luminescent activity using BrightGlo (Promega), in

a BioTek Synergy2 plate reader. EC50s and calculated maximum

induction were determined using Sigma Plot software.

Statistical analysis
Tumor incidences were summarized using percentage of

animals with tumors and compared across groups using Fisher’s

exact test and the Bonferonni correction for multiple comparisons.

Tumor multiplicity were summarized using mean 6 SD and

compared across all group using Kruskal-Wallis one way analysis

of variance on ranks and the Dunn’s method for the multiple

comparisons. Neoplasia data were summarized using median (min,

max) and compared across groups using the Kruskal-Wallis test.

Comparisons of each group to control was performed using Mann-

Whitney U tests with significance levels adjusted using the

Bonferroni correction. Colon length data were summarized using

mean (SD) and compared across all groups using ANOVA and

Dunnett’s post hoc test. All other data were summarized using

mean 6 SD and compared across groups using ANOVA.
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