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Abstract

Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of
immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new
subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete
transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often
compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound
data interpretation.

Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared
21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines,
simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate,
library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher
mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods
have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the
concordance of single-cell profiles to immune bulk RNA-seq signatures.

Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which can guide
selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity
usually found in vivo.
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Background
Understanding the cellular diversity underlying immune
responses is an important component of immunological
research. Although techniques such as FACS and mass
cytometry [1] are useful for studying cellular diversity
according to well-characterized cell-surface-protein
markers, the advent of single-cell RNA sequencing

(RNA-seq) has expanded the power to characterize indi-
vidual immune cells from a defined set of cell-surface
markers to the entire transcriptome for last few years.
These single-cell technologies have enabled immunolo-
gists to characterize inflammation [2] and immune re-
sponses to cancer [3–7], uncovering previously
uncharacterized cellular diversity and cell-type specific
transcriptional responses. As recent advances have in-
creased cell throughput and lowered per-cell costs, the
number of high-throughput single-cell RNA-
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seq techniques that can process more than a thousand
cells per experiment has increased.
Several key factors, such as variable capture and amplifi-

cation efficiencies during library preparation, impact the
ability of single-cell RNA-seq techniques to accurately and
comprehensively characterize immune-cell diversity. Mix-
tures of different cell sizes are particularly complex as
small cells contain low total number of transcripts and
therefore, are difficult to distinguish from ambient noise.
The relatively small size and low mRNA content of im-
mune cells may impact the performance of single-cell
RNA-seq methods differently than was previously de-
scribed using larger cells [8–13]. Immune cells constitute
a broad range of cell types across various lineages, activa-
tion states, and cell sizes. Efficient recovery across these
diverse cell types impacts the fidelity of cell-composition
analyses. Methods that recover a larger fraction of cells in
a cost-efficient manner benefit studies that sample tissues
containing few immune cells. Also, increased sensitivity in
detecting individual mRNA transcripts results in more
comprehensive cellular profiles, which greatly advances
the characterization of immune sub-types. A more
complete picture of cellular transcriptional activity facili-
tates the identification of differentially-expressed (DE)
marker genes and positively impacts the mapping of cells
against reference immune cell signatures.
Previous benchmarking studies using somatic cell lines or

peripheral blood mononuclear cells (PBMCs) reported that
high-throughput single-cell RNA-seq methods generally
enabled broader sampling of diverse populations at a lower
per-cell cost. However, larger sample sizes come at the ex-
pense of lower mRNA detection sensitivity [8–13]. In this
work, we extend previous findings with a focus on the ap-
plication of high-throughput methods to immune-cell pro-
filing. By using a defined mixture of four lymphocyte cell
lines, we assess the performance of seven high-throughput
methods using four commercially-available systems to ad-
dress common concerns in immune-cell profiling. First, we
examine library efficiency in terms of cell recovery and cell-
assignable reads. Next, we assess mRNA detection sensitiv-
ity and the correlation of cellular profiles to immune cell
signatures from bulk RNA-seq. Finally, we compare results
across the lymphocyte cell lines and explore in-vivo vari-
ation of mRNA detection across peripheral blood mono-
nuclear cells (PBMCs) in consideration of varying cell sizes
and cellular mRNA contents. This study serves as useful
guidelines for the selection of a suitable single-cell RNA-
seq method to study immune cells.

Results
Design of single-cell RNA-seq benchmarking experiments
We benchmarked four commercially-available high-
throughput single-cell systems: the Chromium [14] (10x
Genomics), the ddSEQ (Illumina and Bio-Rad), the

scRNA-Seq System running Drop-seq (Dolomite Bio)
[15], and the ICELL8 cx (Takara Bio) [16] (Fig. 1). We
tested three methods available for the Chromium (3′ v3,
3′ v2 and 5′ v1) as well as two methods for the ICELL8
(the official 3′ DE protocol and an alternate 3′ DE-UMI
protocol). All methods tested perform mRNA end
counting by tagging mRNA sequences with a barcode
containing a cell identifier (CID) and a unique molecular
identifier (UMI) with lengths that vary by method
(Supplement Table 1).
All techniques, apart from ddSEQ, amplify full-length

cDNA (Supplement Table 1) using a modified Smart-seq
protocol [17, 18], which incorporates a 5′ PCR handle
by employing a reverse transcriptase’s ability to switch
templates at the end of a transcript. Full-length cDNA
can be amplified with primers in the 5′ template-switch
and 3′ poly-T oligonucleotides. Barcoded cDNA ends
are further amplified after direct ligation or tagmenta-
tion to incorporate Illumina sequencing adapters. ddSEQ
contains a single amplification step during adapter
incorporation after second strand synthesis without
amplification of full-length cDNA. Amplification bias
introduced in the multiple rounds of PCR in these pro-
tocols, is mitigated by the incorporation of UMIs [19].
However, UMI counts are unreliable in the ICELL8 3′
DE protocol because cDNA is amplified in the presence
of barcoding primers, potentially inflating UMI counts.
The alternative ICELL8 3′ DE-UMI protocol is more ro-
bust for UMI counting since reverse transcription and
cDNA amplification are uncoupled by an exonuclease
digestion of barcoding primers.
We used a 1:1:1:1 mixture of four lymphocyte cell

lines from two species (Fig. 1; Supplement Table 2): EL4
(mouse CD4+ T cells), IVA12 (mouse B cells), Jurkat
(human CD4+ T cells), and TALL-104 (human CD8+ T
cells). These cells also vary in morphology: TALL-104
cells (~ 5 μm diameter) are considerably smaller than the
other cell types (~ 10 μm diameter). These cell lines are
expected to have distinct expression profiles enabling
the classification of each cell type. Usage of cells from
two species allowed us to clearly identify cross-species
doublet contamination to calculate capture rates of cell
multiplets. To mirror typical single-cell sequencing runs
and to ensure a comparison independent of sequencing
limitations, we normalized the read depth of our librar-
ies to ~ 50,000 reads per cell (Fig. 1; Supplement Figs. 1
and 2). Cells were identified and classified by correlating
single-cell expression profiles to bulk RNA-seq.

Evaluation of cell capture and library efficiency
One important consideration for single-cell RNA-seq is
the capture rate, or the fraction of cells recovered in the
data relative to input. This is especially critical when
working with precious samples with few cells. To
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identify recovered cells, we used the curve of the log-
total count against the log-rank of each CID, which is
equivalent to the transposed log-log empirical cumula-
tive density plot of the total counts of each CID. The
knee and inflection points in this curve typically define
the transition between the cell-containing component
and the ambient RNA component of the total count dis-
tribution. Here, we defined a recovered cell as a CID lo-
cated above the inflection point (Supplement Fig. 2a). In
our tests, we found that capture rates were slightly lower
than, but tracked with theoretical rates (Fig. 2a; Table 1).
As expected, we observed the highest rates with 10x
Genomics methods, ranging from ~ 30 to ~ 80%, while
ddSEQ and Drop-seq methods recovered < 2% of cells.
In addition to the capture rate, we also quantified

events capturing multiple cells in a single partition. This
technical artifact impairs downstream data analysis, as
artificial mixtures of transcriptomes may be interpreted
wrongly as single cells. The extent of this issue is influ-
enced by the quality of the single-cell suspension, cell
health, and cell loading concentration. By counting CIDs
with a significant fraction of both human and mouse
transcripts, for all methods, we observed multiplet rates
around the 5% we had targeted with our cell-loading
concentrations (Table 1; Supplement Fig. 3a).

Another significant factor in efficiency is the fraction
of reads that can be assigned to individual cells. In-
creased background noise in sequencing libraries results
in wasted reads and unnecessarily increased sequencing
costs. We observed the highest fraction of cell-
associated reads for our ICELL8 experiments (> 90%),
intermediate rates for 10x experiments (~ 50–75%) and
the lowest rates for ddSEQ and Drop-seq (< 25%) (Fig.
2b; Supplement Tables 3 and 4). We also examined the
genomic locations of aligned reads. About 75% of
aligned bases of each library were mapped to exons and
UTRs. Notably, the intergenic fraction was lowest in 10x
samples, suggesting lower genomic contamination in
these methods. (Supplement Fig. 3b). The ddSEQ
method exhibited the greatest UTR bias. This is likely
due to the longest read-length (150 bases) for ddSEQ of
each tested technology.

10x 5′ v1 and 3′ v3 methods demonstrate the highest
mRNA detection sensitivity
Because immune cells tend to have low levels of mRNA,
the mRNA detection sensitivity, or the fraction of a cell’s
transcriptome detectable, critically impacts downstream
analyses. Single-cell RNA-seq methods are inherently
prone to dropouts due to inefficiencies during library

Fig. 1 Overview of high-throughput single-cell benchmarking experiments. Experiments were performed using four immune cell lines to
benchmark cell recovery, transcript detection sensitivity, concordance to bulk RNA-seq and differentially-expressed gene identification
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preparation resulting in false-negative gene-expression
signals [15]. Although we performed library
normalization to obtain a consistent read depth across
all cells, we found that read distributions of individual
cell types varied. Since EL4 cells demonstrated the
highest consistency between read distributions across
experiments (Supplement Fig. 1c), we focused our initial
analysis on EL4 cells to minimize batch effects due to
differential sequencing depths. We observed the highest
detection of both transcripts and genes with at least one
read count using 10x Genomics methods, with the high-
est levels seen in the 3′ v3 experiments (median 28,006
UMIs/4776 genes across all samples) followed by the 5′
v1 and 3′ v2 kits (25,988 UMIs/4470 genes and 21,570
UMIs/3882 genes, respectively) (Fig. 3a, b; Supplement
Table 4). ddSEQ and Drop-seq experiments demon-
strated similar detection rates (10,466 UMIs/3644 genes
and 8,791 UMIs/3255 genes, respectively). UMI counts

generated by the ICELL8 3′ DE method are unreliable
due to residual barcoding primers during cDNA amplifi-
cation, so we focused on gene detection sensitivity in-
stead. We observed a significant drop in gene detection
between the 3′ DE and 3′ DE-UMI methods (2849 and
1288 genes, respectively) and a low number of UMIs
counted in the 3′ DE-UMI method ((2792 UMIs). This
suggests that many transcripts are lost in the additional
primer digestion and cleanup steps. Cross-
contamination due to ambient RNA minimally impacted
these UMI detection rates with average estimates of con-
tamination calculated with DecontX [20] falling under
1% for UMI-based methods (Supplement Table 4). For
the other three cell types, rankings of methods by abso-
lute UMI- and gene-count distributions slightly differed
from EL4 cells, likely due to greater variation in read
depth across samples for these cell types (Supplement
Figs. 1c and 4a).

Table 1 Summary of average mRNA/gene detection sensitivities and capture rates for each single-cell RNA-seq method

Method Avg
Multiplet
Rate

Avg Cell
Capture
Efficiency

Avg Library
Pool
Efficiency

Median
nUMIs
(EL4)

Median
nGenes
(EL4)

GD50
EL4
(FPKM)

Avg
nDE
genes

Avg nDE
genes (> 1.5
FC in bulk)

Recall
(mean ± sd)

Precision
(mean ± sd)

10x 3’ v2 0.46% 29.50% 57.90% 21,570 3,882 20.2 3,314 2,711 0.462 ± 0.005 0.818± 0.003

10x 3’ v3 1.75% 61.90%* 75.90% 28,006* 4,776* 13.6* 4,005 3,388 0.577 ± 0.007 0.846 ± 0.004

10x 5’ v1 0.49% 50.70% 76.50% 25,988 4,470 16.8 4,797* 3,491* 0.595 ± 0.006* 0.728 ± 0.008

ddSEQ 0.45%* 1.01% 18.10% 10,466 3,644 25 2,740 2,397 0.501 ± 0.002 0.875 ± 0.003

Drop-seq 0.55% 0.36% 17.80% 8,791 3,255 26.7 2,824 2,504 0.453 ± 0.004 0.887 ± 0.003*

ICELL8 3' DE 2.18% 8.63% 93.00%* 16,909 2,849 37.9 1,815 1,528 0.260 ± 0.004 0.842 ± 0.008

ICELL8 3' DE-UMI 0.98% 7.20% 92.90% 2,792 1,288 112.1 985 861 0.147 ± 0.005 0.873 ± 0.00

*: The value with the best performance for each parameter is highlighted in bold

Fig. 2 Library-pool and cell-capture efficiencies: a Cell capture efficiency was measured by the number of cell identifiers (CIDs) above the
inflection point of the rank ordered reads/CID plot (knee plot) relative to the number of cells loaded on the instrument. Horizontal lines indicate
theoretical capture efficiency based on bead/cell loading concentrations or manufacturer’s guidelines. b Library pool efficiency was measured by
the number of reads in CIDs above the inflection point
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To account for varying read distributions across the
four cell types, we compared the number of detected
UMIs and genes relative to the total number of reads
per cell. For EL4, IVA12 and Jurkat cells, we observed a
similar trend across methods with regards to efficiency
of transcript and gene detection (Fig. 3c, d). Again, 10x
3′ v3 (mean ± sd reads/UMI = 2.07 ± 0.52, reads/gene =
9.04 ± 2.65) and 5′ v1 chemistries (mean ± sd reads/
UMI = 1.98 ± 0.19, reads/gene = 9.51 ± 2.68) were the
most efficient, requiring fewer reads to detect a single
UMI or gene. These methods are followed by 10x 3′ v2
(reads/UMI = 2.35 ± 0.33, reads/gene = 11.17 ± 3.03),
ddSEQ (reads/UMI = 5.25 ± 1.14, reads/gene = 13.42 ±

3.89), Drop-seq (reads/UMI = 6.40 ± 1.42, reads/gene =
15.97 ± 5.62) and ICELL8 methods (3′ DE: reads/gene =
29.68 ± 41.48, 3’ DE-UMI: reads/UMI = 21.77 ± 5.50,
reads/gene = 47.5 ± 17.91). This trend is largely mir-
rored in TALL-104 cells, albeit less distinct due to the
low read depth obtained for those cells (Fig. 3c, d; Sup-
plement Fig. 1c).
We further examined the number of genes with at

least one sequenced read in pseudo-bulk populations.
For this purpose, cells form each cell type were pooled
and gene-expression measurements were merged. We
observed similar trends with higher numbers of detected
genes with the 10x 3′ v3, and 5′ v1 method for EL4,

Fig. 3 Transcript detection sensitivity: a Distributions of unique molecular identifiers (UMIs) and b genes detected in EL4 cells by sample are
plotted. c Numbers of UMIs or d genes detected versus numbers of reads per cell for each cell type are plotted. e Accumulated average numbers
of genes detected from aggregated data of subsamples up to 50 cells are plotted. f Dropout modeling (dropout rate versus FPKM of bulk
sequencing) for EL4 cells by method are shown. A left-shifted curve indicates higher sensitivity, that is, fewer dropouts at lower expression levels.
Sensitivity of methods for EL4 cells ranked in the following order: 10x 3′ v3 > 10x 5′ v1 > 10x 3′ v2 > ddSEQ > Drop-seq > ICELL8 3′ DE > ICELL8 3′
DE-UMI. Cells with high mitochondrial expression rates were excluded from this calculation
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IVA12 and Jurkat cells (Fig. 3e). Although the ICELL8
3′ DE method had a low per-cell gene detection rate,
when pooling more than 30 cells this method exhibited
comparable levels of gene detection to 10x 3′ v2, ddSEQ
and Drop-seq methods. This is likely due to the high
false-negative rate of genes with overall low expression
levels in the ICELL8 3′ DE method. The cumulative
number of genes for TALL-104 cells was lower than the
other cell types and the relative detection rates across
methods did match trends seen in other cell types, pos-
sibly due to the low read depth and cell recovery for this
cell type.
We also examined the ability of each method to detect

genes at various expression levels by calculating the
dropout rate, the conditional probability that a gene is
not detected in a given cell. The dropout rate was mod-
eled as a function of the expression level in bulk RNA-
seq (FPKM) for each cell type. We used a nonlinear least
square fit of the data that accounted for the activity of
reverse transcriptase described by Michaelis-Menten
kinetics [21–23]. Here, higher gene detection sensitivity
as a function of fewer dropouts at lower expression
levels, was indicated by left-shifted curves and lower
Gene Detection 50 (GD50) value, the point at which this
curve reached a detection probability of 0.5. The GD50

metric represented the expression level of a gene we
would expect to be detected in half of the cells, and
could help guide expectations of detection rates for
genes of interest based on their expression in bulk RNA-
seq. For EL4 cells, 10x Genomics methods were the
most sensitive with 10x 3′ v3 having the lowest GD50 at
13.6 FPKM, followed by the 5′ v1 and 3′ v2 chemistries
(16.8 FPKM and 20.2 FPKM, respectively). The ddSEQ
and Drop-seq methods had comparable dropout rates
(25.0 FPKM and 26.7 FPKM, respectively), while ICELL8
methods had the lowest sensitivity (37.9 FPKM/3′ DE
and 112.1 FPKM/3′ DE-UMI) (Fig. 3f; Table 1). We ob-
served similar trends across methods with the other
three cell types, which had greater variance in read
depth and transcript detection (Supplement Figs. 4b-d).

mRNA detection affects the fidelity of single-cell and
pseudo-bulk transcriptomes
We next investigated how well single-cell expression re-
capitulates immune signatures from bulk RNA-seq. For
this purpose, we correlated expression of a set of marker
genes (defined using bulk RNA-seq data; see Methods)
between bulk RNA-seq and single cells. In general, cells
with more genes detected had a better concordance to
bulk RNA-seq immune signatures (Supplement Fig. 5).
We observed higher Pearson correlation coefficients for
10x 3′ v3, 5′ v1 and ddSEQ methods against EL4, IVA12
and Jurkat bulk RNA-seq expression signatures (Fig. 4a).
ICELL8 3′ methods, with generally fewer genes detected,

demonstrated the lowest correlation values. Overall,
poorer correlation to TALL-104 bulk RNA-seq was in
line with fewer transcripts and genes detected for this
cell type in the single-cell data.
We further examined the correlation between pooled

single-cell RNA-seq pseudo-bulk transcriptomes and
bulk RNA-seq data using all genes. Averaging gene-
expression profiles across single cells is commonly per-
formed to compare data across experiments and is
thought to resemble bulk data. For EL4, IVA12 and Jur-
kat, most methods began to plateau around a correlation
value of r = 0.9 with a pool of 10–20 cells (Fig. 4b). The
maximum correlation values were lower for ICELL8 3′
DE (r = 0.90 and 3′ DE-UMI methods (r = 0.81–0.90)
compared to other methods (r=0.92–0.95), and correl-
ation was generally lower for TALL-104 cells in all
methods, suggesting that lower mRNA detection sensi-
tivity not only affects data fidelity at a per-cell level but
also impacts aggregated single-cell data. Although sam-
ples were prepared under identical conditions, we can-
not rule out any effects of biological differences between
samples. However, it is likely that higher variance in the
detection of lowly expressed transcripts drives much of
the difference in expression observed in single-cell and
bulk RNA-seq, and aggregation across individual cells
may not increase the correlation of expression for these
lowly-expressed genes. Notably, our data indicates that
detection sensitivity is not necessarily improved by pool-
ing across single cells and results from such analyses
should be interpreted cautiously.

Higher mRNA detection sensitivity improves identification
of differentially-expressed genes
To assess the performance of differential expression ana-
lysis for each method, we focused on the two mouse cell
types (EL4 and IVA12) because these cells had more
similar sequencing depths compared to the two human
cell types. We used the hurdle model proposed by Finak
et al. [24] to identify differentially-expressed (DE) genes
with an FDR < 10− 4 (Fig. 5a). For each DE analysis we
sampled 199 cells, the lowest number of recovered cells
by any method. Gene expression data was normalized by
each cell’s library size (see Methods), which correlated
highly to scaling factors derived by deconvolution from
cell pools (mean +/− sd r =0.99 +/− 0.016) (Supplement
Table 4) [25]. Over 3000 DE genes were identified in
10x Genomics methods, the highest among the methods
tested, followed by Drop-seq (avg ~ 2700 genes) and
ddSEQ (avg ~ 2800 genes), while the two ICELL8
methods had the fewest numbers of DE genes (avg ~
1800 and ~ 1000 genes) (Fig. 5b; Table 1). We observed
similar trends with two alternative commonly-used tests
for differential expression, a Mann-Whitney-Wilcoxon
test [26] and a likelihood ratio test with an negative
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binomial generalized linear model [26, 27] (Supplement
Fig. 6a). Performing DE analysis using all the cells ob-
tained in each method increased the number of genes
passing the significance threshold due to the increased
statistical power (Supplement Fig. 6b). When we consid-
ered the 5,868 genes that had more than a 1.5-fold

difference in bulk RNA-seq data as a proxy for ground-
truth expression differences, the trend remained the
same (Fig. 5b; Supplement Figs. 6a, 6b; Table 1). To fur-
ther evaluate the effectiveness of calling DE genes in
terms of quantity and quality, we assessed recall and
precision of each technology. Recall was calculated as

Fig. 4 Correlation to bulk RNA-seq: a Pearson correlation (r) of cell identifiers (CIDs) to bulk RNA-seq data using highly-expressed variable genes.
Only r values above 0.2 were included in plot. b Average Pearson correlation using all genes for aggregated data of 50 subsamples of up to 50
cells are plotted

Fig. 5 Differentially-expressed (DE) gene detection: a Fold change (FC) versus false discovery rate (FDR) calculated using a hurdle model (MAST)
for mouse genes in EL4 vs IVA12 cells. Shown is a representative subsample of mouse cells (n=199) using the 10x 3′ v2 method demonstrating
the criteria for declaring DE genes (FDR < 10− 4); DE genes are highlighted in red. b Number of significant DE genes calculated using MAST
between EL4 and IVA12 cells by method. Error bars represent the 95% confidence interval. The total number of significant DE genes are plotted
in red, the number of DE genes with > 1.5-fold difference in expression in bulk RNA-seq (5868 genes) are plotted in cyan. c Median bulk RNA-seq
expression (FPKM) of all significant DE genes (red) or DE genes with > 1.5-fold difference (cyan). Error bars represent 95% confidence interval
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the fraction of DE genes in bulk RNA-seq data that was
identified as differentially expressed in the single-cell
data. Precision was defined by the fraction of DE genes
from single-cell data that were also differentially
expressed in bulk RNA-seq data. We observed the high-
est recall rates for 10x Genomics methods (0.595 - 10x
5′ v1; 0.577 - 10x 3′ v3) (Table 1) indicating lower type
II error rates for these methods with higher mRNA de-
tection sensitivity. Precision was reasonably high across
all methods (0.728–0.887) (Table 1), implying a moder-
ately low number of falsely called DE genes overall.
In general, we observed that fold changes in single-cell

data correlated well with gene expression differences in
bulk RNA-seq data, especially for genes with higher ex-
pression levels (Supplement Fig. 6c). In contrast, genes
with low expression correlated poorly with smaller fold
changes observed in the single-cell data, consistent with
higher dropout probabilities for lowly-expressed tran-
scripts. Also, the distribution of FPKM values was gener-
ally higher for DE genes from single-cell data compared
to genes with at least 1.5-fold changes in bulk RNA-seq
(Supplement Figs. 6d, e), indicating that all methods ex-
hibit a considerable type II error rate with respect to
lowly-expressed genes. Furthermore, we found the low-
est median FPKM in bulk RNA-seq for DE genes from
the methods with the highest detection sensitivity, 10x
3′ v3 (median = 3.43 FPKM) and 10x 5′ v1 (median =
3.45 FPKM), and the highest median FPKM for the
ICELL8 3′ DE-UMI method (median = 4.91 FPKM),
which had the lowest transcript detection sensitivity
(Fig. 5c; Supplement Figs. 6d, e).

Recovery of low-mRNA-content cells
Many immune single-cell experiments profile an un-
defined mixture of cell types that potentially vary in
mRNA content. Efficient cell recovery across diverse cell
types is important to accurately characterize the diversity
of these populations. We next compared the differences
in cell recovery between the four cell types included in
our sample mixture. In particular, TALL-104 cells are
smaller (5 μm diameter) than the other three cell-types
(EL4/IVA12 - 11 μm, Jurkat - 10 μm diameter) and, in
our hands, more difficult to culture, with viability rates
under 80% and slow growth. Across all experiments,
TALL-104 cells had the lowest distribution of reads,
UMIs, and genes recovered (Supplement Figs. 1c and
4a), such that they were more susceptible to exclusion
based on read or UMI thresholding of CIDs to distin-
guish cells from ambient noise.
We classified cells by correlating their expression pro-

file to gene signatures from bulk RNA-seq. This enabled
us to examine the recovery of each cell type with com-
mon thresholding points on the log-log curve of total
reads or UMIs vs rank ordered CIDs. In droplet-based

methods, thresholding removes a large fraction of CIDs
that are derived from droplets containing a barcoded
bead, but no cell. Two points are commonly used as
thresholds: the knee point where the signed curvature is
minimized and the inflection point where first derivative
is minimized [28] within a given range of total reads or
UMIs (Fig. 6a; Supplement Fig. 2a). While the fraction
of classifiable cells on each side of these two thresholds
varied across experiments, both thresholds were able to
capture EL4, IVA12 and Jurkat cells (Fig. 6a). Notably,
most TALL-104 cells would be removed by thresholding
using the stringent knee point, with only one experiment
having any TALL-104 cells above this threshold. While
the more permissive inflection point performed better at
capturing TALL-104 cells, all TALL-104 cells would be
considered ambient noise using this threshold in sam-
ples (Fig. 6b).
As low mRNA recovery might reflect poor cell health,

e.g., due to mechanical stress in cell preparation, we also
examined the fraction of cells below each threshold that
had a high rate of mitochondrially encoded UMIs or
reads, an indication of broken or poor-quality cells (Fig.
6c). Accordingly, a large fraction of cells removed by the
knee point cutoff had a high mitochondrial rate.
However, significant numbers of cells had reasonable
mitochondrial rates, including many TALL-104 cells.
This suggests that lower transcript recovery in TALL-
104 cells is related, at least in part, to lower overall
mRNA content and not cellular damage, although we
cannot completely rule out other cell-quality issues that
do not affect the mitochondrial rate. Overall, some cell
populations could be lost when thresholding based on
total UMI or read count is too stringent. It would be
beneficial to include more cells at the initial CID selec-
tion step and filter cells more stringently in downstream
analyses with other cell-quality criteria to avoid loss of
cell populations with low mRNA content. Of note, this
issue does not affect ICELL8 methods as all cell-related
barcodes are known a priori when cell-containing wells
are selected for processing.

mRNA detection sensitivity varies across heterogenous
cell types
In heterogeneous populations, mRNA capture rates and
read depths may vary across subpopulations. We ex-
plored differences in mRNA detection sensitivity across
the four cell types in our samples. As it is common in
single-cell profiling of mixed populations, we observed
differences in read and UMI recovery across cell types in
each method (Fig. 7a). When the entire data was used to
model dropout rates, we found that cell types with the
lowest read distributions, such as TALL-104 cells, had
increased dropout probabilities and GD50 levels across
all seven methods tested (Fig. 7b; Supplement Figs. 4b,
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d). We hypothesized that differences in dropout rates
were predominantly driven by differences in mRNA de-
tection rates and compared cells from each cell type
with similar numbers of UMIs. Cells were separated into
six quantile bins based on the number of UMIs (Fig. 7c)
and dropout rates for each cell type were modeled. Be-
cause there were few TALL-104 cells recovered in many

samples (Supplement Table 4), we focused on data from
the 10x 3′ v3 method which had sufficient numbers of
cells available for analysis. We found that with increas-
ing number of total UMIs, GD50 values and dropout
rates decreased. Notably, GD50 levels were similar across
cell-types within a bin (Fig. 7d). Slight differences in
GD50 were related to variation in mean number of UMIs

Fig. 6 Cell recovery by cell identifier (CID) thresholding: a Example of using the transposed log-log empirical cumulative density plot of the total
counts of each CID to identify cell-containing droplets . Common thresholding points, the ‘knee’ and the ‘inflection’ are indicated with arrows.
The knee is the point at which the signed curvature is minimized, the inflection is the point at which the first derivative is minimized. b The
fraction of cells above the knee or inflection are plotted. c Fraction of cells below mitochondrial rate threshold (listed in Supplement Table 4)
relative to knee point. Samples are colored by cell sample mixture listed in Supplement Table 2
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for a particular cell type. TALL-104 cells, which fell into
the two lowest bins due to the low numbers of tran-
scripts detected, had similar dropout rates as other cell
types in the same bin (Fig. 7d, e).
To explore the range of mRNA capture rates across lym-

phocytes in vivo, we profiled a single PBMC sample using
the 10x 3′ v3 and 5′ v1 methods. Cells were classified by
mapping gene expression to a reference PBMC CITE-Seq
dataset [27, 29] (Fig. 8a). We recovered 9,450 and 7,780
classified cells for the 10x 3′ v3 and 10x 5′ v1 methods, re-
spectively. Of the classified cells, we identified a variety of
cell types comprising PBMC cells including cells from the
lymphoid (e.g. B and T cells) and myeloid lineages (e.g.
dendritic cells and monocytes). We observed similar frac-
tions of cell types in data from both methods (Supplement
Figs. 7a, b). Cell classes were found to express expected
cell-type-marker genes (Fig. 8b) and had distinct expression

of DE genes (Supplement Fig. 7c). For instance, we ob-
served enrichment of CD19, which encodes part of the
BCR co-receptor, in B cells and CD3E, which encodes part
of the TCR co-receptor in T cells (Fig. 8b). The median
numbers of genes and UMIs detected across various cell
types ranged from under 500 genes and 1,000 UMIs de-
tected in platelets (3′ v3–333 genes/773 UMIs; 5′ v1–450
genes/941 UMIs) to over 3,500 genes and 18,000 UMIs in
proliferating CD4 T cells (3’ v3–4,156 genes/ 18,469 UMIs;
5′ v1–3,737 genes/18,877 UMIs) (Fig. 8c, d). Similar to our
mixed cell line benchmarking experiments, we observed a
variation in read depth across cell types related to gene and
UMI detection statistics (Supplement Fig. 7d).

Discussion
In this paper we explored several important quality met-
rics of single-cell RNA-seq methods: efficiency of cell

Fig. 7 Dropout rates by cell type: a Distribution of reads across cell types is plotted by method. b Dropout rate models for cell types are shown.
c 10x 3′ v3 cells were binned by number of unique molecular identifiers (UMIs) and distributions of nUMIs for each cell type in each bin are
plotted. d Gene Detection 50 (GD50) rates, expression level at 0.5 probability of the dropout model, are plotted for each cell type in 10x 3′ v3
experiments by bin. e Dropout models in each bin for EL4, IVA12 and Jurkat cells are plotted along with the model for TALL-104 cells in bin 1

Yamawaki et al. BMC Genomics           (2021) 22:66 Page 10 of 18



recovery, library efficiency and mRNA detection sensitiv-
ity. High recovery of cells put into a system and minimal
loss of reads due to noise are important, especially for
limited samples with few cells. The differences in per-
formance we observed across these methods are directly
related to the design of cell and mRNA capture. To par-
tition cells, the methods we tested either use microflui-
dics to generate nanoliter sized droplets or to partition
cells on microwell chips. Ideally, those microreactors
contain exactly one bead and one cell. In practice, how-
ever, the number of cells per microreactor approximately
follows a Poisson distribution. While the loading prob-
ability of cells is similar across these methods, the distri-
bution of barcoding oligonucleotides varies. The loading
statistics of Drop-seq and ddSEQ follow a Poisson

distribution, while 10x Chromium chips load beads in a
sub-Poissonian fashion. The latter enables an increased
theoretical capture rate of ~ 60%. Sparser loading of bar-
coding beads in ddSEQ and Drop-seq minimizes the oc-
currence of bead doublets, but at the expense of lower
maximum recovery rates of ~ 3% and ~ 5% respectively.
Oligonucleotide loading is tightly controlled on ICELL8
chips with the pre-printing of oligonucleotides, provid-
ing a priori knowledge of cell-related CIDs when
coupled with cell imaging. The ability of the ICELL8 to
selectively process a subset of wells, those containing
cells identified by fluorescence imaging, greatly improves
this method’s library efficiency compared to techniques
that process all partitions. Accordingly, we observed the
highest fraction of cell-related reads in ICELL8 libraries,

Fig. 8 mRNA capture variation across peripheral blood mononuclear cells (PBMCs). a Single-cell data generated with the 10x 3′ v3 and 10x 5′ v1
chemistries were projected onto an annotated PBMC CITE-Seq reference dataset. b Violin plots of log normalized expression of common
immune-cell markers. c nGenes and d nUMIs detected for each cell class from each method. CTL-cytotoxic, TCM – T central memory, TEM – T
effector memory, Treg – T regulatory cells, dnT – double negative T, gdT – gamma delta T, MAIT - Mucosal associated invariant T, pDC -
Plasmacytoid dendritic cell, ASDC - AXL+ dendritic cell, cDC – classical dendritic cell, MC – monocyte, Eryth-Erythrocyte, ILC - Innate lymphoid cell,
HSPC - Hematopoietic stem and progenitor cell
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especially compared to ddSEQ and Drop-seq methods
with a large fraction of bead containing droplets lacking
a cell and increased potential for ambient RNA. Quality
of single-cell suspensions are also important factors to
these metrics. Variable cell viability and inefficient cell
quantification of our samples may negatively impact
cell-capture and multiplet rates and explain the discrep-
ancy between expected and observed rates.
In our experiments, we observed the highest mRNA-

detection sensitivity in the 10x 3′ v3 and 5′ v1 methods,
with the highest numbers of transcripts and genes de-
tected and lower probabilities of gene dropouts at lower
expression levels. Our results corroborated previous re-
ports about the performance of some of the methods
assessed in our work [10–13]. Here, we extended these
findings by demonstrating an increased sensitivity of the
more recent 5′ v1 and 3′ v3 methods, which also vali-
dated claims made by 10x Genomics. Further, we found
ICELL8 methods had the lowest mRNA detection sensi-
tivity of the methods tested for the assayed immune cell
types. Of note, this is partly in disagreement with two
papers reporting better performance of the ICELL8 3′
DE method relative to 10x 3′ v2 and Drop-seq [10, 30].
Differences to the performance we have observed may
be related to cell types used in each study. For example,
ICELL8 3′ DE detected significantly fewer genes per cell
compared to 10x 3′ v2, ddSEQ and Drop-seq in B-cells
in Mereu et al. [10], which is on par with our findings.
Gene detection rates may be increased by greater se-

quencing depths, particularly for lowly-expressed genes
(Supplement Fig. 2b; Supplement Table 3). However,
high-throughput methods aim to sequence many cells
concurrently for a broad exploration of populations, at
the expense of the completeness of individual transcrip-
tional profiles. Here, libraries are not routinely se-
quenced to full saturation due to high sequencing costs.
To be able properly assess mRNA detection sensitivity,
we normalized samples to a common sequencing depth
of ~ 50,000 reads per cell by downsampling raw reads.
Additional iterations of this stochastic process showed
little variation in the resulting analysis (Supplement
Table 5), suggesting our normalization step did not
introduce any technical bias. Notably, the resulting se-
quencing depth is typical for common high-throughput
single-cell RNA-seq experiments. Therefore, our data
can provide expectations for mRNA and gene detection
rates in experiments with a similar sequencing depth
using other immune cells.
Multiple aspects of single-cell RNA-seq protocols such

as efficiencies in mRNA capture, reverse transcription,
and cDNA amplification can affect the overall mRNA
detection sensitivity. Efficient mRNA capture may be
impacted by the template switch mechanism, as only
first strand cDNAs which have successfully switched

templates can be amplified. ddSEQ, the sole method we
have tested that does not utilize template switching, is
not as sensitive as the 10x Genomics methods, possibly
due to other technical differences. Another source of in-
efficiency may arise in the reverse transcription cleanup
step prior to cDNA amplification. We found that the
addition of a primer digestion step to the ICELL8 3′ DE
protocol in the 3′ DE-UMI method decreased the
mRNA detection sensitivity. Additional improvements to
mRNA capture such as improving oligonucleotide chem-
istry for mRNA capture and cDNA amplification may
enhance mRNA detection sensitivity and improve single-
cell RNA-seq techniques in the future.
Increasing the sensitivity of mRNA detection greatly

benefits downstream analyses of immune profiling data-
sets. Sampling transcriptomes with high fidelity results
in a greater likelihood of detecting rare transcripts for
identifying DE genes at lower expression levels. In gen-
eral, our results showed that expression profiles of cells
with high mRNA content generated by methods with a
high mRNA detection rate correlated well to bulk-RNA-
seq data. Also, the number of DE genes as well as the
overall correlation in fold-change differences to bulk
RNA-seq improved with higher mRNA detection sensi-
tivity. Here, all 10x Genomics methods, which had the
highest mRNA detection sensitivity, exhibited a high
correlation to bulk RNA-seq data as well as more DE
genes with a lower range of expression levels in bulk
data. Notably, our results reveal that the higher variance
in the detection of lowly expressed transcripts com-
monly observed in techniques with lower sensitivity is
not necessarily overcome by pooling across single cells
when performing pseudo-bulk analyses. Strengthening
the underlying mRNA detection sensitivity can improve
downstream analyses to identify marker genes as well as
classify subtle immune subtypes and cell states with
small, but significant differences in gene expression, and
can facilitate the identification of novel immune subpop-
ulations [31].
Importantly, our data also provides insight into the per-

formance of single-cell techniques across heterogenous
populations of immune cells. Although the immune cell
lines used in this study may differ from lymphocytes
found in vivo, the standardized cell culture conditions for
these cells helps reduce expression variability compared to
primary cells and facilitated data analysis. Nonetheless,
our results provide better guidance for immune profiling
in contrast to the higher mRNA content cell lines such as
carcinoma or stem cells commonly used in previous com-
parison papers [8, 11, 12]. The inclusion of small TALL-
104 cells can allow us to assess the sensitivity of these
methods in subpopulations with comparatively low
mRNA levels. Relaxing CID filtering criteria based on total
UMI or total read counts can improve recovery of TALL-
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104 cells for downstream analyses. Notably, smaller im-
mune cells such as TALL-104 cells have a higher gene
dropout rate that is related to the number of transcripts
captured from a cell. Thus, additional quality metrics also
need to be calibrated carefully for the identification of
small immune cell types. Cell imaging on the ICELL8 cx
to identify otherwise challenging cells of interest such as
TALL-104, can also be used to recover populations of
small cells. In general, TALL-104 cells exhibit lower
mRNA detection rates and higher dropout rates. Thus, we
can expect that other immune cell types with low mRNA
content exhibit similar dropout rates as other immune
cells with a comparable rate of transcript detection.
Cell-compositional bias may also arise during sample

preparation. For example, density gradient purification
of PBMCs may selectively reduce the number of granu-
locytes, or cell populations may be lost due to greater
sensitivity to dissociation and purification induced stress.
Furthermore, large cells are filtered from single-cell sus-
pensions to avoid clogging narrow microfluidic channels.
10x Chromium microfluidics are ~ 50–60 μm in diam-
eter, while Drop-seq channels are typically ~ 125 μm
[15] and ICELL8 nozzles have a 125 μm bore size, and
these systems can theoretically process cells up to that
diameter in size. However, most immune cells are
smaller than the 40 μm filter size commonly used during
single-cell sample preparation and can be captured by a
variety of systems.
We can translate the observation in our data in vi-

tro that dropout rates and gene detection sensitivity is
related to the total number of transcripts captured from
a cell (Fig. 7) to the variety of immune cells found in vivo.
In our 10x Genomics PBMC datasets, we observed a
range of mRNA detection rates across various cell types
with proliferating cells and hematopoietic stem cells
(HSPCs) displaying the highest rates of UMIs and genes
detected. Additionally, dendritic cells (DCs) and mono-
cytes (MCs) displayed elevated UMI and gene detection
rates relative to most T and B cells (Fig. 8c, d), similar to
observations in other PBMC datasets [10]. Taken to-
gether, this suggests that these cells would have a lower
dropout rate and more robust DE gene detection. These
results can be further extended to immune cell popula-
tions, such as granulocytes, which have been excluded
currently during sample preparation. It would be inter-
esting to further explore the capabilities of various
single-cell RNA-seq and sample preparation methods to
assay other immune populations that are particularly dif-
ficult to survey.

Conclusions
Our comparison of data from seven high-throughput
single-cell methods can help guide method selection for
immune profiling experiments. Our data can provide

reasonable predictions of transcript and gene detection
rates for lymphocytes, as well as insight into perform-
ance across heterogenous immune cell populations with
varying mRNA content. Our results suggest looser
thresholding of CIDs in droplet-based methods can be
beneficial to retain cell populations with low-mRNA
content. Additionally, smaller cells such as TALL-104
cells have a higher gene-dropout rate that is related to
the number of transcripts captured from a cell.
Each method we tested showed advantages that could

benefit immune cell profiling. In this study, 10x Genom-
ics methods had the highest cell recovery and mRNA
detection sensitivity, making these techniques particu-
larly suited to experiments with limited samples and ex-
periments that require detection of genes with lower
expression levels. Here, the performance was comparable
between the 10x 5′ v1 chemistry and 3′ v3 methods,
making the 5′ v1 chemistry an appropriate substitute
when pairing gene expression analysis with TCR/BCR
clonotyping. 10x Genomics and Illumina/Bio-Rad
(ddSEQ) sell reagents in kits, facilitating adoption of
these methods, but limiting customization of protocols.
Takara Bio also sells reagent kits for the ICELL8, how-
ever, protocols on the instrument are customizable
allowing for greater flexibility. Drop-seq is also an open
system that is fully customizable and custom reagents
such as target-capture oligonucleotide beads [32, 33] can
be easily integrated into the protocol. The fluorescent
imaging capabilities of the ICELL8 cx enable the pairing
of sequencing and imaging data in downstream analysis.
Our ICELL8 experiments demonstrated high library effi-
ciencies with a large fraction of reads assignable to cells
and potential utility to recover low-mRNA-content cells,
such as TALL-104 cells, that are more susceptible to
stringent read and UMI thresholding. Overall, our data
shows that all methods exhibit specific strengths which
can be aligned with experimental goals, sample limita-
tions, and budgetary constraints.

Methods
Cell culture
All cell lines were acquired from ATCC. EL4 (ATCC
TIB-39) cells were cultured in RPMI-1640 + 2mML-
glutamine + 10% FBS + 1.7 ul 2-mercaptoethanol per
500 ml media. IVA12 (ATCC HB-145) cells were cul-
tured in DMEM + 10% FBS + 1x P/S. Jurkat (ATCC
TIB-152) cells were cultured in RPMI-1640 + 10% FBS +
1x P/S. TALL-104 (ATCC CRL-11386) cells were cul-
tured in IMDM + 15% FBS + 1x L-Glu + 200 U/ml IL-2.
Prior to processing cells, cells were washed in 1x PBS
and cell concentration and viability were determined
using a Countess (Invitrogen). Cells were mixed at a 1:1:
1:1 ratio based on viable counts and resuspended in PBS
+ BSA solution according to manufacturer’s guidelines.
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Chromium
Cells were resuspended in PBS with 0.04% BSA at a
stock concentration within the recommended range
(typically ~1e6 cells/mL) and loaded at a volume to tar-
get between 2000 and 6000 cells depending on sample.
Libraries were prepared according to manufacturer’s
instructions for each chemistry. Libraries were se-
quenced on a NextSeq500 or NovaSeq (Illumina)
according to manufacturer’s guidelines: 3′ v3 -
28x8x0x91, 3′ v2 - 26x8x0x98, and 5′ v1 - 26x8x0x110
[read1xindex1xindex2xread2].

ddSEQ
Cells were resuspended in PBS + 0.1% BSA and loaded
at a concentration of either 2000 or 2500 cells/ul. Librar-
ies were prepared according to manufacturer’s instruc-
tions. Libraries were sequenced on an Illumina
NextSeq500 (68x8x0x150) at a 3pM concentration with
provided custom read 1 primers.

Drop-seq
Libraries were prepared following the McCarroll Lab Drop-
seq protocol (http://mccarrolllab.org/Drop-seq/) [15], with
cells and beads encapsulated using the Dolomite scRNA-
Seq system. Oligo beads (ChemGenes) contained the ori-
ginal Drop-seq polyT primer with a VN anchor at the 3′
end (TTTTTTTAAGCAGTGGTATCAACGCAGAGTAC
JJJJJJJJJJJJNNNNNNNNVTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTTVN). Cells were resuspended in PBS
+ 0.01% BSA and loaded at a concentration of either
150 or 300 cells/ul. For encapsulation, cell and bead
solutions were loaded at 30 ul/min and encapsulation
oil was loaded at 200 ul/min. Libraries were se-
quenced on a NextSeq 500 (Illumina) (21x8x0x138) at
a 3pM concentration with custom Read1 Drop-seq
primers (GCCTGTCCGCGGAAGCAGTGGTATCA
ACGCAGAGTAC).

ICELL8 cx
Cells were resuspended in 1X PBS and loaded at a final
concentration of 2800 cells/ml. Only wells containing
single cells as determined by the Cell-Select software
using default settings were processed. Libraries were
prepared using the Takara Bio SMARTER ICELL8 cx 3′
DE user manual or an alternate protocol that separates
the initial reverse transcription reaction from cDNA
amplification. In short, after RT, cDNA was removed
from the chip and cleaned and concentrated with a
Zymo Clean & Concentrator-5 kit. cDNA was then
treated with 20 U of Exonuclease for 30 min at 37 °C and
the enzyme was deactivated with 20 min at 80 °C. cDNA
was then amplified and tagmented using the Illumina
Nextera XT kit for the final sequencing libraries. Librar-
ies were sequenced at 25x8x0x131.

Peripheral blood mononuclear cells (PBMC) chromium
libraries
Blood samples were collected into sodium-heparin tubes
(Beckton Dickinson) from a healthy adult donor through
an internal blood donation program. Consent was kindly
provided by the donor, and the sample was de-identified
upon receipt of the sample. Blood was diluted 1:1 with
PBS without Ca2+ and Mg2+ and centrifuged at 800 g ×
30min x room temperature without braking in Accuspin
tubes (Sigma-Aldrich) containing 15ml of Ficoll-Paque
PLUS density gradient media (GE Healthcare). Leuko-
cytes were carefully removed after centrifugation and
placed in a new 50 ml tube pre-filled with chilled PBS
without Ca2+and Mg2+ and centrifuged again at 800 g ×
7min × 4 degrees C. After centrifugation, the cell pellet
was counted and resuspended in PBS with 0.04% BSA at
1000 cells/uL.
10x 5′ v1 and 10x 3′ v3 methods (10x Genomics) were

performed in succession on the same day using the same
PBMC preparation. Libraries were prepared according to
the manufacturer’s protocol for each method to capture
10,000 cells per sample. For the 10x 5′ v1 preparation,
13 cycles were used for cDNA amplification, and 16 cy-
cles were used for sample-index PCR amplification. For
the 10x 3′ v3 prep, 11 cycles were used for cDNA ampli-
fication, and 14 cycles were used for sample-index PCR
amplification. Libraries were sequenced on an Illumina
NovaSeq6000 instrument using an S4 flow cell at
28x8x0x91.

Bulk RNA sequencing
RNA was isolated from cells using the RNeasy kit (Qia-
gen). Libraries were generated using 1μg of total RNA
using a modified Illumina TruSeq Stranded mRNA
protocol. Reverse transcription was performed with the
addition of RNaseOut (Invitrogen) and actinomycin-D
(MP Biomedicals). The resulting product was cleaned
using AMPure RNAClean beads. Additionally, second-
strand synthesis was performed using dUTP instead of
dTTP and an additional USER (New England Biolabs)
digestion step was incorporated after size-selection.
Libraries were sequenced at 101x6x0x101 on a HiSeq
(Illumina) to a minimum depth of 30 million reads per
sample.

Read alignment and transcript counting
Cell-line data was aligned to a combined human/mouse
reference genome obtained from 10x Genomics: refer-
ence “cellRanger_1.2.0” composed of hg19 with Ensembl
82 and mm10 with Ensembl 84. PBMC data was aligned
to the human reference only. Bulk data was aligned
using STAR v2.5.1b and quantified using featureCounts
v1.6.3 [34].
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For normalizing single-cell libraries, we considered the
fact that cell types with low mRNA content are more
prone to dropouts and thus, may compromise proper
normalization based on the mean read count per CID.
Thus, robust library scaling factors were derived by
using only cells with sufficiently high mRNA content.
For this purpose, we calculated Gaussian kernel density
estimates with a smoothing bandwidth determined via
the Normal Reference Distribution method as provided
by R v4.0.2. Local maxima of the density function were
sorted in decreasing order. The first significant mode, di,
was considered the sequencing depth of the cell popula-
tion with the highest mRNA content for sample i
(Supplement Fig. 1a). Scaling factors were then derived
by si =mini(di)/di. FASTQ files were downsampled by
factor si using seqtk v1.3-r106. This resulted in libraries
with around 50,000 reads per cell. Downsampling was
repeated three times for four representative samples for
an assement of the margin of error. Alignment statistics
for normalized data were generated using PicardTools
CollectRNA-seqMetrics using the aligned (and filtered)
BAM files from each pipeline. Cell mixture (EL4, IVA12,
Jurkat, and Tall) and PBMC experiments were scaled in-
dependently to the lowest local maxima value in each
group.
Downsampled FASTQ files were further processed

using method-specific pipelines with parameters set as
recommended. All pipelines employ STAR [35] for the
alignment step, but are tailored to identify method-
specific barcodes and count transcripts. Chromium data
was processed using Cellranger v3.0.2 (with STAR
v2.5.1b); ddSEQ, Drop-seq and ICELL8 data were proc-
essed using the Drop-seq_Tools pipeline v2.3.0 (with
PicardTools v2.18.14 and STAR v2.4.2a). ddSEQ CIDs
and UMIs were extracted using ddSeeker v0.9.0 [36].
ICELL8 read count matrices were generated using
mappa v0.9 software (with STAR v2.7.0b).
To assess step-wise quality metrics of each method’s

original data we applied a uniform pipeline (Supplement
Table 3). First, we demultiplexed and aligned sequenced
reads using STAR as recommended by each scRNA-seq
method. Here, ddSEQ data was processed using SureCell
RNA Single-Cell v1.1.0 (with STAR v2.5.2b). Then, high-
quality reads were filtered by MAPQ scores (MAPQ =
255 for 10x, Drop-Seq, and ICELL8; MAPQ = 50 for
ddSEQ) using samtools 1.9 [37] and mapped against
mouse (Ensembl 84) and human (Ensembl 82) gene an-
notations using featureCounts from the subreadpackage
2.0.1 with parameters “-t exon -g gene_id -C -p --pri-
mary”. We wrote custom Java code (v JDK 11.0.1) to
generate read and UMI count matrices. Here, we consid-
ered potential sequencing errors in UMIs and corrected
these as follows: reads got grouped by <barcode, gene,
UMI> tuples. If two groups had the same <barcode,

gene> pair, but their UMIs differed by a single base, the
UMI of the smaller group was corrected to the UMI of
the larger group.

Cell mixture cell type classification.
Cells were assigned to one of four input cell classes by
their similarity to cell type signatures from bulk RNA-
seq data. First, we selected highly expressed genes with
FPKM > 50 in any bulk RNA-seq sample. Next, gene ex-
pression was contrasted between bulk RNA-seq samples
from the same species (EL4 vs IVA12 and Jurkat vs
TALL-104) and we filtered 184 highly variable genes (93
murine, 91 human) with a ln fold difference > 3 between
the two cell types. Pearson correlation, r, was calculated
between each gene expression vector of each cell xi ∈
ℝ184 and each gene expression vector of each bulk RNA-
seq sample yj ∈ℝ

184: fi( yj) = r(ln(xi + 1), ln(yj + 1)). A cell
type was assigned using the following four classification
rules derived from the correlation coefficient
distributions:

1. f i yEL4ð Þ > 0:60& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

< 0:05& f i yTALL − 104ð Þ < 0:20→EL4

2. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ > 0:60& f i yJurkat
� �

< 0:05& f i yTALL − 104

� �
< 0:20→IVA12

3. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

> 0:40& f i yTALL − 104ð Þ < 0:20→Jurkat

4. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

< 0:05& f i yTALL − 104ð Þ > 0:40→TALL − 104

We relaxed these rules for ICELL8 data to account for
overall lower CID numbers and method-specific distri-
bution differences:

5. f i yEL4ð Þ > 0:40& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

< 0:05& f i yTALL − 104ð Þ < 0:20→EL4

6. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ > 0:40& f i yJurkat
� �

< 0:05& f i yTALL − 104ð Þ < 0:20→IVA12

7. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

> 0:35& f i yTALL − 104ð Þ < 0:20→Jurkat

8. f i yEL4ð Þ < 0:05& f i yIVA12ð Þ < 0:05& f i yJurkat
� �

< 0:05& f i yTALL − 104ð Þ > 0:25→TALL − 104

Cells with two or more assigned cell types, were re-
moved. For each sample, we classified the top n CIDs
ranked by total read count with n = 2 × number of ex-
pected cells.
To analyze the thresholding method using the trans-

posed log-log empirical cumulative density plot of the
total read counts of each CID, we calculated the knee
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and inflection points as described in Lun et al. [28].
Briefly, the knee and inflection points are interpreted as
determinants of the range in which the curve transitions
between cell-containing droplets/wells with high mRNA
content and empty droplets/wells with ambient RNA.
The total count per CID is modeled as a function of de-
creasing CID rank by fitting cubic smooth splines with
20 degrees of freedom. The knee point is defined as the
point on the curve where the signed curvature is mini-
mized, the inflection point is defined as the point where
the first derivative of the spline basis functions is mini-
mized. We defined a lower bound for fitting the smooth
splines as the minimum number of total reads of all clas-
sified CIDs. Calculations were performed using the R
package DropletUtils v1.6.1. For the analysis of the ori-
ginal (i.e., not down-sampled) data described in Supple-
ment Fig. 2, CIDs above the inflection point were
considered genuine cells.

PBMC cell type classification
PBMC data was projected onto an annotated PBMC
CITE-Seq reference dataset [29] using Seurat (v3.9.9.9003)
[27]. Each cell received an assignment and prediction
score to a cell class in the reference. For analysis, we in-
cluded CIDs with reads greater than the inflection point
calculated as described above using the top 12,000 CIDs
by read count and more than 200 genes detected. Data
was normalized using SCTransform [38]. Cells with a pre-
diction score > 0.5 and a mitochondrial rate < 20% were
retained for further analysis. Marker genes were identified
using the FindMarkers() function using the Wilcoxon-
rank-sum test comparing cells in each cell population with
more than 10 cells to all other cells in the dataset.

Doublet rate estimation
CIDs were classified as multi-species multiplets if the
number of total counts from each species exceeded the
10th percentile of the distribution for that species. The
total count distributions were calculated using cells
assigned in the step described above. Multiplet rates were
calculated by taking CIDs above the inflection point and
dividing the number of multi-species multiplets by the
total number of cells. To obtain the true multiplet rate
that considers non-detectable intraspecies multiplets and
accounts for differing proportions of human and mouse
cells, this fraction was divided by an adjustment factor λ:

9. λ ¼ 2
nhumannmouse

nhuman þ nmouse − nhmð Þ2

where nhuman is the number of human cells, nmouse is the
number of mouse cells, and nhm is the number of inter-
species multiplets.

Cell recovery rates
Cell recovery rates were calculated as the number of
CIDs above the inflection point divided by the total
number of cells loaded onto a system. Theoretical cap-
ture rates for 10x Genomics and ddSEQ methods are
based on expected recovery numbers given in the user
manual. Theoretical capture rates for Drop-seq were
based on a 5% droplet occupancy of oligo beads. Theor-
etical capture rates for iCELL8 protocols were calculated
based on a Poisson distribution of wells with single cells
based on an average cell occupancy of 1 cell per well.

Estimation of ambient-RNA contamination
For each sample, UMI count matrices of filtered cells
were analyzed using the decontX() function in the celda
package (v1.2.4) [20] using cell classifications as cluster
labels. Estimates of contamination were generated by
calculating the difference in UMI counts after decon-
tamination relative to the total number of UMIs de-
tected for species-specific genes of a cell.

Pseudo-bulk analyses
Pseudo-bulk analyses analyzing correlation to bulk
RNA-seq data and gene detection rates were performed
by summing UMI counts across multiple cells. A sub-
sample with at least 100 classified cells or the maximum
number of classified cells recovered that meet the mito-
chondrial rate threshold were selected from each
method. Mitochondrial rate thresholds were determined
on a per-sample basis based on distribution of rates
(Supplement Table 4). Various numbers of cells (1–50)
were randomly sampled from this pool and expression
values were averaged. The aggregated expression matrix
was used for analyzing its correlation to bulk RNA-seq
and for quantifying the number of detected genes. Mean
values across 50 iterations for these metrics were used
for visualization.

Dropout modeling
Dropout rates denote the fraction of missing values in a
gene’s expression vector. We estimated the dropout rate
for each gene from the species of the cell type consid-
ered. Cells included in the analysis were filtered by frac-
tion of mitochondrial counts to remove poor quality
cells. Dropout rate of bulk RNA-seq data was modeled
by fitting the function f(x) = a ∗ exp(−b ∗ x) where x is the
expression level using nonlinear least squares. GD50

FPKM numbers were calculated as 0.5 = a ∗ exp(−b ∗ x)
using the fitted coefficients a and b. Dropout rates were
similarly calculated for single-cell RNA-seq data by bin-
ning cells by mRNA detection rates. 10x 3′ v3 cells were
placed into six bins based on distribution percentiles
resulting equivalent numbers of cells in each bin. Drop-
out models were calculated for a random subset of 50
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cells for each cell type with at least 50 cells in each bin
and results were averaged across 50 iterations.

Differentially expressed gene identification
Statistical differences between gene expression of EL4
and IVA12 cells were identified using the hurdle model
provided in the MAST R package v1.12.0 [24], a
Wilcoxon rank-sum test, or the negative binomial
generalized linear model available in the MASS R pack-
age v7.3–51.5. Genes that had an FDR-adjusted p-value
< 1e-4 were declared differentially expressed. Cells from
multiple replicates from each method were pooled in
order to maximize sample sizes. Downsampling of cells
was performed to the smallest number of observed cells
from a single cell type (n = 199); this step was repeated
10 times to assess the error margin. UMI count data was
used for 10x, ddSEQ, Drop-seq, and ICELL8 3′ DE-UMI
samples, read count data was used for ICELL8 3′ DE
samples. Expression count matrices were normalized by
library size factors (i.e., total counts per cell), multiplied
by 104, and log-transformed by log2(x + 1). Log-
normalized count matrices were subjected to MAST,
normalized count matrices were used for the Wilcoxon-
rank sum test, and raw count data was input to the
negative binomial generalized linear model.
Library size estimates were also determined using the

computeSumFactors() function in the scran (v1.14.6)
package [25] using cell classifications as cluster iden-
tities. These estimates were then correlated to total
counts per cell.
Recall and precision of each method were calculated

based on true-positive (TP), false-positive (FP) and false-
negative DE genes (FN) as follows:

Recall ¼ TP
TP þ FN

;Precision ¼ TP
TP þ FP

;

where TP are significant DE genes as calculated with
MAST with a 1.5 fold change in bulk RNA-seq data, FN
are not differentially expressed in single-cell data, but
had a 1.5 fold change in bulk data, and FP are significant
DE genes with less than a 1.5 fold change in bulk data.
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