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Dihydroquinazolinones as adaptative C(sp3)
handles in arylations and alkylations via dual
catalytic C–C bond-functionalization
Xin-Yang Lv1,2, Roman Abrams1 & Ruben Martin 1,2,3✉

C–C bond forming cross-couplings are convenient technologies for the construction of

functional molecules. Consequently, there is continual interest in approaches that can render

traditionally inert functionality as cross-coupling partners, included in this are ketones which

are widely-available commodity chemicals and easy to install synthetic handles. Herein, we

describe a dual catalytic strategy that utilizes dihydroquinazolinones derived from ketone

congeners as adaptative one-electron handles for forging C(sp3) architectures via α C–C

cleavage with aryl and alkyl bromides. Our approach is achieved by combining the flexibility

and modularity of nickel catalysis with the propensity of photoredox events for generating

open-shell reaction intermediates. This method is distinguished by its wide scope and broad

application profile––including chemical diversification of advanced intermediates––, providing

a catalytic technique complementary to existing C(sp3) cross-coupling reactions that oper-

ates within the C–C bond-functionalization arena.
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Transition-metal-catalyzed cross-coupling reactions of
nucleophilic and electrophilic components are powerful
methods for rapidly forming carbon-carbon bonds1–3.

These approaches have been widely applied to the preparation of
biologically-relevant molecules and functional materials, by aca-
demic and industrial institutions alike4–7. Consequently, great
interest exists for the development of new cross-coupling synthons
that operate under ambient conditions, as this increases the struc-
tural diversity of accessible molecules within drug discovery
programs8–12. The broad utility of ketones as chemical
precursors13,14, the plethora of methods for their preparation15–17,
and their prevalence as medicinal and commodity chemicals make
them ideal targets for chemical innovation18–21. Synthetic manip-
ulations of ketones generally rely on their latent polarity, specifically
the electrophilicity of C=O bonds and nucleophilicity of enolate
related structures (Fig. 1a, path a)22,23. In sharp contrast, the
selective and catalytic cleavage of ketone α C−C bonds as a plat-
form for installing chemical functionality still remains challenging
(Fig. 1a, path b). However, such techniques hold promise for
creating conceptually new disconnections during retrosynthetic
analysis and methods towards otherwise inaccessible compounds24.
Traditional methods for inserting a single atom into the α C–C
bond of ketones include the venerable Büchner−Curtius−Schlot-
terbeck and Baeyer−Villiger reactions (Fig. 1b)25,26. More recently,
significant interest has been directed at using transition metal cat-
alysis to achieve α C−C cleavage of ketones followed by C–C bond-
forming reactions27–37. These approaches are generally specific to
either strained motifs27–31 or 1,3-dicarbonyl substrates32,33, require
directing group activation34,35, use high-temperatures36,37, or a
combination of the preceding (Fig. 1c). This is presumably due to
the directionality and high C–C bond-strength of ketones, thus
making activation challenging. Consequently, new strategies are still
required to fully realize ketones or derivatives thereof as traceless
handles in cross-coupling reactions.

Metallaphotoredox catalysis has gained momentum as a pow-
erful synthetic tool38–40, in particular by allowing alcohols41–43,
primary amines44,45 and aldehydes46–48 to be used as adaptative
C(sp3) handles in C-C bond-formations. These approaches gen-
erally rely on the conversion of traditionally inert chemical
functionality into groups susceptible to single-electron activation.
Despite this, the α C–C bond activation of ketone derivatives has
not yet been fully realized within metallaphotoredox catalysis, but
if were so would expand the synthetic chemist´s repertoire for
forging C(sp3) linkages.

In this work we use ketone derived dihydroquinazolinones as
radical precursors in metallaphotoredox events, to formally
deliver ketone α C–C cleavage driven by the formation of aro-
maticity via single-electron-oxidation (Fig. 1d)49–53. Our strategy
allows for abundant ketones to be formally used as cross-coupling
synthons with aryl and alkyl bromide electrophiles in the con-
struction of C(sp3) architectures––currently a need in medicinal
chemistry programs54–57.

Results
Optimization of reaction conditions. We began our investigation
by evaluating the reaction of aryl bromide 1 with dihy-
droquinazolinone 2a (Table 1), accessed on large scale by the
condensation of cyclohexyl methyl ketone with 2-aminobenzamide
(2-AB). A combination of Ni(OAc)2·4H2O, 4-CzIPN photocatalyst,
terpyridine ligand L4, Na2CO3 and NaBr in NMP under blue light-
emitting diodes (LEDs) irradiation at 40 °C provided the best results,
affording cross-coupling product 3a in 93% isolated yield (entry 1).
Under the limits of detection, no methyl 4-methylbenzoate arising
from C(sp3)–Me cleavage was observed, thus tacitly indicating that
C–C cleavage is dictated by the relative stability of the resulting

radical intermediate. As expected, the nature of the ligand played a
crucial role. Lower levels of 3a productivity were attained with 2,2’-
bipyridine ligands (entries 2 and 3), while terpyridines other than
ligand L4 were deleterious, highlighting the electronic and steric
subtleties of our ligand backbone (entries 4 and 5). Similarly,
inferior results were found for nickel pre-catalysts, solvents and
bases other than Ni(OAc)2·4H2O, NMP and Na2CO3 (entries 6–9).
Although iridium photocatalysts were competent en route to cross-
coupling product 3a (entry 10), the use of photocatalyst 4-CzIPN
constituted a bonus from an accessibility standpoint58. As expected,
no cross-coupling product (3a) was found under the omittance of
nickel pre-catalyst, terpyridine ligand L4, 4-CzIPN photocatalyst or
light (entry 11).

Substrate scope. With optimal conditions in hand, we next
explored the generality of this C(sp3) arylation method of ketone
derivatives via dihydroquinazolinone activation for C–C bond-
cleavage. As shown in Fig. 2 (Left), the C(sp3) arylation could be
accomplished independently on whether dihydroquinazolinones
were decorated with primary or secondary alkyl residues. Interest-
ingly, site-selectivity can be easily dictated and modulated by an
appropriate selection of the substituents on the dihy-
droquinazolinone core. Specifically, the coupling of secondary alkyl
radicals (3a–3f), secondary oxygen-stabilized radicals (3 g, 3 h) or
oxygen- or nitrogen-stabilized primary radical congeners (3i–3l)
could all easily be within reach for Me-substituted analogues.
Additionally, it is worth noting that ethyl-substituted dihy-
droquinazolinones were applicable without deviation in cross-
coupling productivity from their methyl-congeners (3a, 3l). The
arylation of a primary butyl residue to form 3m was found to
operate with dihydroquinazolinone cores decorated with methyl
groups; note, however, that superior yields were afforded when
using aryl-substituted analogues. As such, primary alkyl residues
were simply transferred using dihydroquinazolinone cores con-
taining phenyl groups (3n-r). It is worth noting this preference for
alkyl bond scission over C(sp3)-aromatic cleavage provides an
alternative selectivity to transition-metal-catalyzed C–C activations

Fig. 1 C–C bond activation of ketone derivatives. a Reactivity of ketones.
b Traditional methods for ketone C–C cleavage. c Strategies for catalytic
C–C bond activation of ketones. d Metallaphotoredox approach for using
ketones as cross-coupling synthons.
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Table 1 Optimization of the reaction conditions.

1a (0.10 mmol), 2a a(0.12 mmol), Ni(OAc)2·4H2O (10mol%), L4 (15 mol%), 4-CzIPN (2mol%), NaBr (1.2 eq.), Na2CO3 (1.0 eq.) in NMP (0.10M) at 40 °C, for 24 h. bGC yields using dodecane as
standard. cIsolated yield.

Fig. 2 Dihydroquinazolinones as sp3 handles via a C–C cleavage. As Table 1 (entry 1), using aryl bromide (0.20mmol). Isolated yields, average of at least
two independent runs. Unless stated otherwise, R1=Me in the ketone derivative. aR1= Et in the ketone derivative. bUsing NiCl2·DME as Ni source in NMP
(0.2M). cUsing 5-CzBN (2mol%) as photocatalyst, LiBr (1.2 eq.) as additive. d 1H NMR yield using CH2Br2 as standard. eR1= Ph in the ketone derivative.
fR1= 4-methoxyphenyl in the ketone derivative. gR1= benzo[d][1,3]dioxol-5-yl in the ketone derivative. hAryl bromide (0.20mmol), ketone derivative
(0.30mmol), 4-CzIPN (2mol%), NiBr2·diglyme (10mol%), L1 (15 mol%), LiHMDS (1.5 eq.), in dioxane (0.1 M).
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of ketones, which generally give the more stable metal-aryl complex
over alkyl species59–62.

Our dual catalytic platform was found to be widely applicable for
an array of aryl bromides regardless of their electronic and steric
environment (5a–5p) (Fig. 2, Right). As evident from the results
compiled in Fig. 2, our method displays an excellent chemoselec-
tivity profile, including accommodation of structures containing
aldehyde (5a), acetal (3 h), N-aryl amines (3r), thioether (3q),
amides (3i, 3p, 3q, 3r), nitrile (5b), ketone (5c), sulfonamide (5 g)
and alkyl esters (3d, 3j, 3n). As shown for cross-coupling products
5 h and 3 g, the reaction could be extended to vinyl bromides or
acyl-type radicals with similar ease. Notably, oxygen- and nitrogen-
containing heterocycles were compatible in this cross-coupling
protocol (5i–5n), including pyridine, quinoline, oxadiazole and
dibenzofuran scaffolds. For electron-rich or sterically encumbered
aryl bromides use of terpyridine ligand L4 failed to give satisfactory
levels of product. For these examples a brief re-optimization found
that the use of 2,2’-bipyridine ligand L1 was effective in exacting the
desired transformation (5e, 5n, 5o). In addition, C(sp3) arylation
could be affected in the presence of aryl chlorides (5 f), leaving
ample room for further derivatization by other approaches63,64.
Importantly, our protocol could be employed for accessing biotin
(3q), ciprofloxacin (3r) or glucose (5p) containing cross-coupling
products, thus showing the prospective potential that this method
might have when derivatizing advanced synthetic intermediates.
While exploring the substrate scope of this cross-coupling method
certain chemical functionalities were found to be incompatible (See
Supplementary Section 5.1), including unprotected alcohols,
terminal alkynes and dihydroquinazolinones that generate tertiary
alkyl radicals. Furthermore, chloride/iodide congeners of 1 and 4 h
failed to give satisfactory cross-coupling products whereas the aryl
triflate analogue of 1 did give serviceable yields.

In the interest of providing a bonus from an operational
standpoint, we wondered whether we could telescope the
formation of dihydroquinazolinones from their corresponding
ketones. This turned out to be the case with cross-coupling
products 3a and 3 l being obtained in one-pot from ketones 6a
and 6b in synthetically useful yields via their respective
dihydroquinazolinone alkyl radical precursors (2a, 2 l) (Fig. 3).

Encouraged by the preceding results, we were interested to see
whether our protocol could be extended to the coupling of
unactivated alkyl halides. If successful, it would allow dihydro-
quinazolinones to be utilized as vehicles to forge C(sp3)–C(sp3)
bonds. Exposure of alkyl bromide 7a to dihydroquinazolinone 2e
under the Ni/L4 regime used in Fig. 2 failed to provide
satisfactory levels of C(sp3)–C(sp3) bond-formation (8a). Gratify-
ingly, after a brief re-optimization a protocol based on the Ni/L6
regime turned out to be particularly applicable for the coupling of
unactivated alkyl bromides (Fig. 4). As shown, our method was
suited not only for the formation of C(sp3)–C(sp3) linkages
arising from the coupling of primary unactivated alkyl halides
with secondary alkyl radicals (8a-k), but also the coupling of
primary alkyl halides with primary alkyl radical species (8l-8n).
As part of the latter, we used this approach to synthesize the

ethyl-ester of gemfibrozil (8n), a medication for dyslipidemia,
providing an unconventional disconnection towards this target.
In addition, the coupling of secondary alkyl halides with primary
alkyl radical intermediates could also be realized, delivering cross-
coupling products 8o and 8p. Furthermore, alkyl bromides
bearing oxygen-, sulfur- and nitrogen-containing heterocycles all
successfully participated (8g-8i) in the intended C(sp3)–C(sp3)
cross-coupling reaction. More importantly, cross-coupling pro-
ducts 8j, 8k and 8p arising from the conjoining of estrone,
cholesterol or oxaprozin containing alkyl bromide derivatives
posed no problems, thus holding promise for the application of
our protocol when coupling advanced intermediates. Although in
comparatively lower yields than those shown in Fig. 2, these
results should be benchmarked against the challenge of catalytic
C(sp3)-C(sp3) cross-coupling by offering a complementary
technique to existing approaches65–67.

Mechanistic studies. To gain insight into the possible reaction
pathway of this cross-coupling process a set of preliminary
mechanistic experiments have been carried out (Fig. 5). Firstly,
the cross-coupling of aryl bromide 1 with dihydroquinazolinone
2e was completely inhibited in the presence of a stoichiometric
amount of TEMPO radical scavenger, with only the TEMPO-
tetrahydropyran adduct (9) being observed (Fig. 5a). Subjection
of our metallaphotoredox reaction conditions to a cyclopropane
containing dihydroquinazolinone (2t) yielded only the ring-
opened cross-coupling product (10) along with quinazolin-4-one
by-product (11) (Fig. 5b, Top). Furthermore, use of dihy-
droquinazolinone 2 u gave a mixture of the linear (12) and
cyclized (13) arylation products, which presumably arise from
radical 5-exo-trig cyclisation of the intermediary primary hex-1-
enyl radical (Fig. 5b, Bottom). The oxidation potential of dihy-
droquinazolinone 2e (E1/2ox=+1.07 V vs SCE in NMP) was
measured using cyclic voltammetry and was shown to be within
the oxidizing power of 4-CzIPN (+1.43 V vs SCE) (See Supple-
mentary Fig. 21 and 22)68. Stern–Volmer fluorescence quenching
experiments verified that the excited state of 4-CzIPN was
effectively quenched by dihydroquinazolinone 2e and not by aryl
bromide 4d (See Supplementary Fig. 17). These observations
suggest a canonical reductive quenching scenario where single-
electron transfer from dihydroquinazolinone to photoexcited
4-CzIPN occurs, initiating formal C–C cleavage en route to alkyl
radical driven by the formation of an aromatic by-product.

Terpyridine ligated nickel complex (Ni-I) was obtained by
exposure of Ni(COD)2/PPh3 to aryl bromide 4d followed by
ligand exchange with terpyridine L469, with the structure of this
complex confirmed by X-ray diffraction. As anticipated, isolated
complex Ni-I was found to be catalytically competent in the
cross-coupling of dihydroquinazolinone 2 l with aryl bromide 4d
(Fig. 5c, Right). Next, we performed the stoichiometric reaction
between dihydroquinazolinone 2 l and isolated complex Ni-I
affording the cross-coupling product 5d in 25% yield. This
suggests that Ni-I and similar nickel complexes can capture
radicals and undergo reductive elimination under our established
conditions (Fig. 5c, left). A positive linear relationship between
Ni-I catalyst concentration and linear selectivity in the cross-
coupling of dihydroquinazolinone 2 u with 4d was observed
(Fig. 6). This is consistent with the formation of C(sp3)-centred
hex-1-enyl radical from dihydroquinazolinone 2 u, which is
captured by Ni-I. Higher concentrations of Ni-I shortens the
lifetime of the alkyl radical in solution resulting in diminished
cyclization product 13 formation and greater selectivity for the
linear product (12).

Based on the aforementioned mechanistic experiments and
literature precedent70, a plausible mechanism was proposed

Fig. 3 Telescoping the formation of dihydroquinazolinones from ketone
congeners. Using ketone (0.63mmol) and 2- aminobenzamide (0.6 mmol)
to form dihydroquinazolinone, then as Table 1 entry 7 using aryl bromide
(0.20mmol). Yields denote isolated material.
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(Fig. 7). Oxidative single-electron transfer from dihydroquinazo-
linone (I) to excited photocatalyst triggers a C–C scission driven
by the formation of aromatic by-product, forming alkyl radical II
and reduced photocatalyst. Ni(II) pre-catalyst III can be reduced
to the Ni(I) form IV and then to the catalytically active Ni(0)
state V by consecutive single electron transfer events with the
photocatalyst using dihydroquinazolinone (I) as a sacrificial
reductant in a catalytic quantity. Oxidative addition of an aryl or
alkyl bromide to Ni(0)Ln (V) generates Ni(II) species (VI).
Radical recombination of Ni(II) species (VI) with alkyl radical II
generates discrete Ni(III) species VII, which upon reductive
elimination forms the targeted cross-coupling product (VIII) and
LnNi(I)Br IX. The two catalytic cycles are then simultaneously
closed with a final single-electron transfer between the radical
anion of the photocatalyst and LnNi(I)Br IX, recovering both
Ni(0)Ln V and ground-state photoredox catalyst.

Discussion
In summary, we have developed a catalytic blueprint for forging
C(sp3)-C(sp2) and C(sp3)-C(sp3) bonds by using ketone derived
dihydroquinazolinones as one-electron C(sp3) handles via α C–C
bond cleavage. This technology offers an unconventional dis-
connection within the retrosynthetic planning phase of synthesis
by enabling C(sp3)-arylations and C(sp3)-alkylations with an
excellent chemoselectivity profile while operating under ambient
temperature. In addition, a judicious choice of the starting pre-
cursor allows to control the site-selectivity of C–C bond-cleavage.
Mechanistic experiments were conducted, all of which are con-
sistent with the operation of a reductive quenching photoredox
cycle, beginning with oxidative single-electron transfer of

dihydroquinazolinone radical precursor by excited-state photo-
catalyst resulting in radical fragmentation driven by formation of
an aromatic by-product. Further extensions to other related
processes are underway in our laboratories.

Methods
General procedure for nickel-catalyzed coupling with aryl bromides. An oven-
dried 8 mL screw-cap test tube containing a stirring bar was charged with 4-CzIPN
(3.2 mg, 2 mol%), Ni(OAc)2·4H2O (5.0 mg, 10 mol%), 4,4’,4”-tri-tert-butyl-
2,2’:6'2”- terpyridine (12.1 mg, 15 mol%), NaBr (24.7 mg, 1.2 eq.), aryl bromide 1
(if solid, 1.0 eq., 0.2 mmol) and ketone derivative 2 (1.2 eq.). The test tube was
introduced in a nitrogen-filled glovebox where Na2CO3 (21.2 mg, 1.0 eq.) was
added. The reaction vessel was sealed with a screw cap and removed from the
glovebox. Afterwards, aryl bromide 1 (if liquid) and NMP (2 mL, 0.1 M) were
added by syringe. Parafilm was used to reseal the pierced cap. The reaction mixture
was stirred at rt for 1 min, then exposed to blue LED irradiation at 40 °C for
24 hours. The reaction mixture was quenched with water/brine (10 mL) and
extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were dried
(Na2SO4), concentrated under reduced pressure and purified by silica gel chro-
matography to afford the desired product 3 or 5.

General procedure for nickel-catalyzed coupling with alkyl bromides. An oven-
dried 8 mL screw-cap test tube containing a stirring bar was charged with Ir(Fp-
py)2(bpy)PF6 (1.6 mg, 1 mol%), 2,6-di(1-pyrazolyl)pyridine (12.1 mg, 15 mol%),
NaBr (30.9 mg, 1.5 eq.), alkyl bromide 6 (if solid, 1.0 eq., 0.2 mmol) and ketone
derivative 2 (1.5 eq.). The test tube was introduced in a nitrogen-filled glovebox
where NiBr2·diglyme (7.1 mg, 10 mol%) and NaHCO3 (16.8 mg, 1.0 eq.) were
added to the reaction vessel. The reaction tube was sealed with a screw cap and
removed from the glovebox. Afterwards, alkyl bromide 6 (if liquid) and DMF
(2 mL, 0.1 M) were added by syringe. Parafilm was used to reseal the pierced cap.
The reaction mixture was stirred at rt for 1 min, then exposed to blue LED irra-
diation at 40 °C for 24 hours. The reaction mixture was quenched with water/brine
(10 mL) and extracted with ethyl acetate (3 × 10 mL). The combined organic
extracts were dried (Na2SO4), concentrated under reduced pressure and purified by
silica gel chromatography to afford the desired product 8.

Fig. 4 Scope of sp3 alkylation. Alkyl bromide (0.20mmol), dihydroquinazolinone (0.30mmol), NiBr2·diglyme (10mol%), L6 (15 mol%), NaBr (1.5 eq.),
NaHCO3 (1.0 eq.) in DMF (0.1 M) at 40 °C for 24 h. Isolated yields, average of two independent runs. Unless stated otherwise, R2=Me in the ketone
derivative. aDMF (0.2M). bR2= Ph in the ketone derivative.
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Data availability
The data supporting the findings of this study are available within the article and its
Supplementary Information file. CCDC 2102869 (Ni-1) contain the supplementary
crystallographic data for this paper. These data can be obtained free of charge from The

Cambridge Crystallographic Data Centre. Any further relevant data are available from
the authors on request.
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Fig. 5 Preliminary mechanistic experiments. a TEMPO radical trapping
studies. b Radical clock experiments. c Mechanistic experiments with well-
defined nickel species.

y = 2.30x + 18.84
R² = 0.99

25

30

35

40

45

50

55

4 6 8 10 12 14 16

12
:1

3
Se
le
ct
iv
i t y

(%
)

Ni-I loading (%)

Fig. 6 Radical cyclization as a function of catalyst loading.
2 u (0.12 mmol), 4d (0.10 mmol), Ni(OAc)2·4H2O (10mol%), L4 (15 mol
%), 4-CzIPN (2mol%), NaBr (1.2 eq.), Na2CO3 (1.0 eq.) in NMP (0.10M)
at 40 °C, for 24 h.

Fig. 7 Proposed mechanism. Proposed reaction pathway involves a
reductive quenching photoredox cycle for the generation of alkyl radical
from dihydroquinazolinone, which is captured by Ni(II) oxidative addition
complexes to form Ni(III) species for subsequent cross-coupling by
reductive elimination. The photoredox and nickel catalytic cycles are
simultaneously closed by electron transfer from reduced photocatalyst to
Ni(I) species generated post-reductive elimination.
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