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Moss enables high sensitivity single-nucleotide
variant calling from multiple bulk DNA tumor
samples
Chuanyi Zhang 1, Mohammed El-Kebir 2✉ & Idoia Ochoa 1,3✉

Intra-tumor heterogeneity renders the identification of somatic single-nucleotide variants

(SNVs) a challenging problem. In particular, low-frequency SNVs are hard to distinguish from

sequencing artifacts. While the increasing availability of multi-sample tumor DNA sequen-

cing data holds the potential for more accurate variant calling, there is a lack of high-

sensitivity multi-sample SNV callers that utilize these data. Here we report Moss, a method

to identify low-frequency SNVs that recur in multiple sequencing samples from the same

tumor. Moss provides any existing single-sample SNV caller the ability to support multiple

samples with little additional time overhead. We demonstrate that Moss improves recall

while maintaining high precision in a simulated dataset. On multi-sample hepatocellular

carcinoma, acute myeloid leukemia and colorectal cancer datasets, Moss identifies new low-

frequency variants that meet manual review criteria and are consistent with the tumor’s

mutational signature profile. In addition, Moss detects the presence of variants in more

samples of the same tumor than reported by the single-sample caller. Moss’ improved

sensitivity in SNV calling will enable more detailed downstream analyses in cancer genomics.
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Cancer results from an evolutionary process where somatic
mutations accumulate in a population of cells1. While
germline mutations are inherited, somatic mutations occur

during the lifetime of an individual. Somatic mutations vary in
genomic scale, ranging from single-nucleotide variants (SNVs)
that affect individual bases, structural variants (SVs), and copy-
number aberrations (CNAs) that affect large genomic regions such
as chromosome arms, to whole-genome duplications that affect
the entire genome. Importantly, groups of tumor cells, or clones,
vary in their complement of somatic mutations—a phenomenon
known as intra-tumor heterogeneity. To understand mechanisms
of tumorigenesis and devise personalized treatment plans, it is
important to fully characterize the extent of intra-tumor hetero-
geneity of a cancer. This begins with accurately calling the set of
somatic mutations that are present in a tumor, which is the first
step in many important downstream analyses in cancer genomics,
including identifying mutations that drive cancer progression2,
reconstructing the evolutionary history of a tumor3,4, predicting
the response to immunotherapy5, identifying (exposures to)
mutational signatures6,7 and reconstructing repeated patterns
of cancer evolution8 and metastasis9. Inaccurate or incomplete
variant calling may lead to incorrect conclusions in downstream
cancer genomics analyses.

The key challenge in variant calling arises due to limitations in
current sequencing technologies, which are unable to sequence
complete genomes from end to end. These technologies are
applied to bulk sequencing samples and yield DNA reads that
are orders of magnitudes shorter than the genome in question. To
overcome this challenge, current variant callers take as input a
mapping of the input sequence reads to a reference genome, from
which they identify variants while accounting for sequencing and
mapping errors. In germline variant calling, the used reference
genome is the reference genome of the species in question. There
are two additional challenges in the somatic variant calling of
tumor samples. First, the goal is to identify variants that do not
occur in the germline and are unique to the tumor. To accom-
plish this, a matched normal sample is sequenced in addition to
one or more samples from the tumor. Somatic variant callers use
the matched normal sample to identify germline variants and
obtain a new reference genome, which is used in turn to identify
somatic variants. Second, the presence of intra-tumor hetero-
geneity results in somatic mutations with varying variant allele
frequencies (VAFs) in the tumor samples. While germline
mutations typically have a small number of frequencies depend-
ing on their zygosity (e.g., a frequency of 0, 0.5, and 1 for diploid
organisms), somatic mutations may have VAFs that span the full
range of frequencies between 0 and 1. Somatic variant callers
must take this heterogeneity into account in addition to the

presence of sequencing and mapping errors. It is particularly
challenging to distinguish low-frequency somatic variants from
sequencing and mapping artifacts—this is especially the case for
SNVs.

Several methods have been proposed for somatic single-
nucleotide variant calling. Mutect210 from the Genome Analysis
Tool Kit (GATK) firstly performs local assembly and read-
haplotype alignment, then approximates the likelihood function
of a genotype with a Bayesian model. Strelka211, developed by
Illumina, models allele frequencies for the normal and tumor
samples as latent variables and computes posterior probabilities
by marginalizing over the frequencies. MuSE12 uses a Markov
substitution model to estimate the equilibrium frequencies of
alleles and then computes a cutoff from a sample-specific error
model. CaVEMan13 takes as input the aligned reads, copy
numbers, and contamination in the normal sample by the tumor,
and then uses expectation-maximization to calculate the prob-
ability of an SNV. Other SNV callers include Lancet14, Platypus15,
LoFreq16, and many others. Importantly, the aforementioned
variant callers take as input a single tumor sample only. However,
multi-sample datasets17 enable a more precise characterization of
the clones present in a tumor as well as the tumor’s evolutionary
history18,19. This, coupled with decreasing sequencing costs and
the availability of new profiling techniques, such as liquid biop-
sies, have led to an increasing availability of multi-sample data.
Current single-sample SNV callers are unable to unlock the
potential of these data, which enable more accurate variant calling
because the probability of the same sequencing error occurring in
all tumor samples at the same locus decreases significantly with
an increasing number of tumor samples (Fig. 1a).

Here we propose Moss, a somatic SNV caller that leverages the
additional information afforded by multi-sample tumor data to
enable improved sensitivity SNV calling compared to existing
single-sample somatic SNV callers. Moss is designed to be a light-
weight versatile tool that turns any single-sample caller of choice
into a multi-sample caller (Fig. 1b). Moss uses a Bayesian model
that accounts for multiple tumor samples to identify SNVs from a
candidate set generated by running an existing single-sample
SNV caller under lenient conditions on each tumor sample in
isolation. While the majority of somatic SNV callers support a
single tumor sample only, there are two exceptions: the most
recent version of Mutect2 (GATK version 4.1) and multisnv20.
Using simulated data we demonstrate that Moss outperforms
these two multi-sample callers as well as improves upon widely
used single-sample callers. Specifically, our simulations show that
running Moss in conjunction with Mutect2 (single-sample mode)
or Strelka2 accurately recovers variants with low VAF, thereby
increasing recall while maintaining high precision. On two multi-

Fig. 1 Moss extends current single-nucleotide variant callers by leveraging multiple samples to improve recall. a When multiple tumor samples are
analyzed simultaneously, single-nucleotide variants (SNVs, yellow stars) with low variant allele frequency (VAF) can be more easily distinguished from
sequencing errors (red dots) than when tumor samples are analyzed in isolation. b Workflow overview of Moss, taking as input BAM (or SAM) files of a
matched normal sample (subscript 0) and m tumor samples, along with m VCF (variant call format) files obtained by any existing single-sample SNV caller.
The output of Moss is an aggregate VCF file containing the called SNVs present in the m tumor samples.
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sample tumor datasets, we find that the majority of the additional
low-frequency SNVs identified by Moss are well supported by
cancer-type specific mutational signatures, as well as pass manual
review criteria21. Similarly, we improve recall in an acute myeloid
leukemia benchmark dataset with a gold list identified by high-
coverage targeted sequencing22. Finally, we find that Moss adds
little overhead in terms of running time compared to single-
sample callers. Moss’ improved sensitivity in calling low-
frequency SNVs will enable more detailed downstream analyses
in cancer genomics.

Results
Overview of the method. We consider m tumor samples and a
matched normal sample (Fig. 1a). In our proposed workflow, a
single-sample SNV caller is run independently on each of the m
tumor/normal pairs to obtain a permissive candidate call set
(Fig. 1b). Moss then extracts the set of candidate loci by taking
the union of the positions of all the SNV records in the VCF
(variant call format) files (obtained under filtering criteria that are
more permissive than the default parameters including those that
do not pass the set filters), as well as the normal alleles inferred by
the base caller. This information together with the original and
realigned BAM (or SAM) files of the m tumor samples and the
matched normal sample form the input to Moss.

Moss evaluates each candidate locus independently, and
computes the somatic SNV probability, i.e., the posterior
probability of whether a locus contains an SNV, and the
corresponding tumor allele if an SNV is present. In line with
Strelka211, we assume the presence of at most one tumor allele
per locus. Moss incorporates a Bayesian model to calculate the
somatic SNV probability, considering the normal allele, aligned
bases, and quality scores as observations and the tumor allele as
the latent variable. The output of Moss is an aggregate VCF file
containing the called SNVs present in the m tumor samples.

To increase confidence in calls, Moss may optionally discard
reads that do not meet minimum quality requirements. Then, as a
final (optional) step, Moss applies several empirical filters to the
newly identified variants to further reduce the false positive rate
(Methods). For example, variants with a strand bias that is likely
caused by a systemic error during sequencing are filtered out. To
speed up the computation and to make sure the posterior
probability does not vanish with an increased number of samples,
Moss excludes samples whose reads are identical to the normal
allele at the considered locus in the computation of the posterior
probability. In addition, if only one tumor sample contains reads
with the variant allele, we defer to the single-sample caller and call
the SNV only if it was called by the original caller.

Moss is implemented in C++ and utilizes the HTSlib library23

for accessing SAM/BAM and VCF files. Moss is also equipped
with Python scripts providing an easy configuration and running
interface. The code and scripts are available at https://github.com/
elkebir-group/Moss. See “Methods” for further detail.

Moss improves accuracy in simulated data. We first evaluate the
accuracy of Moss on a synthetic dataset, showing that Moss
increases recall without loss of precision of two widely used
single-sample SNV callers Strelka211 and Mutect210. We simulate
Illumina sequencing of m= 5 bulk DNA samples of chromosome
20 as follows (Fig. 2a). First, we generate a matched normal
sample by adding germline SNPs from dbSNP24 to chromosome
20 of the human reference genome GRCh38 p12. Next, we ran-
domly generate somatic mutations with a probability of 0.001.
Then, we split the mutations into four groups at random, forming
a simple linear phylogeny tree with four clones. After inserting
75,958 mutations in total into clones with MASCoTE25, we

generate m= 5 samples with different mixture ratios and a mean
coverage of either 30× or 60×.

We run Strelka2 and Mutect2 (with default settings) indepen-
dently on each of the 5 tumor/normal pairs. Additionally, to
assess the performance of the single-sample callers on multi-
sample data, we take the union of the SNVs that were called in the
individual samples. We then run each single-sample SNV caller
under permissive conditions to obtain the input candidate sets for
Moss. Specifically, Moss takes the resulting VCF files and the
realigned BAM files as input. We plot the precision-recall (PR)
curves obtained by each method (Fig. 2b). Here, recall refers to
the fraction of simulated SNVs that were called and precision is
the fraction of calls that correspond to simulated SNVs.
Specifically, we generate the PR curves by adjusting a method-
specific threshold for a given feature in the VCF file, i.e., “feature
EVS” for Strelka2, “TLOD” for Mutect2 and the “somatic
probability” for Moss.

We find that, compared to Mutect2 and Strelka2 run in
isolation, Moss improves recall without loss of precision (Fig. 2b).
This is also evidenced by the F1 score, which is the harmonic
mean of recall and precision. For instance, we see that the
combination of Strelka2 and Moss achieves a maximum F1 score
of 0.93 compared to a maximum F1 score of 0.89 for Strelka2 run
in isolation (Fig. 2b). We obtain similar results using m∈ {2, 3, 4}
samples and coverage of 30× (Supplementary Fig. 1). Moreover,
the run time of Moss is negligible compared to the single-sample
callers (Supplementary Fig. 2). Finally, we compare the
performance of Moss to a recently released version of Mutect2
with multi-sample capabilities. While this newer version of
Mutect2 has similar performance in terms of recall and precision
to the combination of single-sample Mutect2 and Moss
(Supplementary Fig. 1), we find that multi-sample Mutect2 takes
much longer to run (Supplementary Fig. 2). By contrast,
multisnv20 achieves worse recall than Moss (Supplementary
Fig. 1) and has the longest running time of all methods
(Supplementary Fig. 2). In summary, our simulations show that
Moss improves recall without loss of precision and has negligible
run time overhead compared to the original single-sample SNV
callers.

Evaluating Moss in a hepatocellular carcinoma dataset. We
further evaluate the performance of Moss on a hepatocellular
carcinoma (HCC) tumor26, for which 23 tumor biopsies, as well
as a tumor-adjacent, matched normal sample were sequenced at
an average depth of 74.4× (Fig. 3a). Due to the large number of
samples, we were not able to run multi-sample Mutect2 and
multisnv on this dataset. Hence, in the following, we focus on the
performance of Moss when run in conjunction with single-
sample Mutect2 and Strelka2. Specifically, we run Strelka2 and
Mutect2 in isolation and in conjunction with Moss. The com-
parison of Moss to the single-sample callers takes the union of the
called SNVs under the caller’s default criteria. As before, the input
provided to Moss consists of the union of all candidate SNVs
identified by the single-sample caller under permissive conditions
as well as aligned reads from normal and tumor samples. Due to
space constraints, we only report results for Mutect2 in the main
text and refer to Supplementary Fig. 3 for results using Strelka2.

Similarly to the simulations, we find that Moss identifies
additional SNVs when applied after Mutect2 (Fig. 3b) and
Strelka2 (Supplementary Fig. 3a). In particular, Moss calls 466
additional SNVs when run in conjunction with Mutect2,
retaining all but one variant identified by single-sample Mutect2.
For the lost variant, we observe that the base quality of the
mutated bases is significantly lower than that of the non-mutated
bases, indicating a potential sequencing and/or mapping artifact
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(Supplementary Fig. 4). After calling a variant, Moss identifies
which samples support it by evaluating the corresponding BAM
files. Moss, therefore, identifies all samples supporting a given
variant, while Mutect2 generally does not (Fig. 3c, with the

majority of entries below the diagonal line). In particular, Moss
increases the number of supporting samples for 586 (36%) of
variants identified by single-sample Mutect2, reducing the
number of SNVs that are unique to specific spatial locations of

Fig. 2 Moss improves recall without loss of precision on synthetic data. a Linear phylogenetic tree with the root representing the normal clone and four
additional tumor clones. Edge label indicates number of SNVs (single-nucleotide variants) newly introduced into each tumor clone. The table shows the
prevalence of each clone in each sample. b Precision-recall curves of the union of SNVs identified by Strelka2 (light blue) and Mutect2 (light red) when
applied independently to samples of a simulated bulk DNA sequencing dataset with 5 samples and 60× coverage, as well as when Moss is applied in
conjunction with these methods (blue and red). The dashed lines represent F1 score isolines (i.e., harmonic mean between recall and precision).

Fig. 3 Moss recovers high-quality somatic variants missed by a single-sample variant caller in a hepatocellular carcinoma (HCC) dataset26. a Ling
et al.26 performed whole-exome sequencing (WES) for 23 biopsies of an HCC tumor. b Venn diagram comparing the call set of Mutect2 when run in
isolation and when run in conjunction with Moss. Moss identifies 466 new variants while retaining all variants (but one) identified by Mutect2. c The
number of supporting samples identified by Moss (x-axis) and the single-sample caller Mutect2 (y-axis) for each variant, showing that Moss increases the
number of supporting samples for 36% of variants (586 variants, spatial distribution provided in Supplementary Fig. 5). Variants uniquely recovered by
Moss correspond to entries with y-axis equal to 0. d The number of samples identified by Moss to contain a variant as a function of the variant’s largest
frequency across all tumor samples, showing that most of the variants recovered by Moss have low VAF. Color indicates whether the variant is common to
Mutect2 and Moss (yellow), or unique to Moss (green) or Mutect2 (red). e Exposure to mutational signatures (indicated by color) of liver tumor for
different methods. Applying Moss increases the number of variants explained by the mutational signatures (951 vs 742). f Out of the 145 SNVs newly
called by Moss in exactly m= 2 samples, 102 SNVs passed the manual review (Supplementary Fig. 7). g Analyzing multiple samples simultaneously
increases the number of recovered variants significantly. h Moss adds almost no overhead in run time as compared to Mutect2. Similar results are
observed for Strelka2 (Supplementary Fig. 3).
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the tumor (Supplementary Fig. 5). We observe similar behavior
with Strelka2 (Supplementary Fig. 3b).

We further find that the variants identified uniquely by Moss
typically have low VAF. In particular, most of these variants have
a VAF no greater than 0.3 across the supporting tumor samples
(Fig. 3d). We observe similar results when Moss is run in
conjunction with Strelka2 (Supplementary Fig. 3d). These
findings support our claim that jointly analyzing multiple tumor
samples can help in recovering low-VAF variants. To ensure the
absence of germline leakage, we verify that the recovered variants
have low-VAF in the normal sample both for Moss with Strelka2
and Mutect2 (Supplementary Fig. 6). For example, the set of
called variants recovered by Moss when run in conjunction with
Mutect2 do not exhibit a VAF in the normal sample greater than
0.06. This suggests that the variants recovered by Moss are not
germline mutations.

While the simulations had ground truth, there is no ground
truth set of SNVs available for the hepatocellular carcinoma
(HCC) dataset. Hence, to partially verify that the set of variants
identified by Moss is accurate, we analyze their mutational
patterns. In particular, we calculate exposures to the 30 COSMIC
v2 mutational signatures of the mutations identified by Moss as
well as the single-sample callers27–30. We are interested in the
exposure percentages of liver cancer signatures. A higher or
identical percentage of liver cancer signature exposures in the
SNVs identified by Moss compared to those identified by
the single-sample caller indicates that the novel SNVs have the
same etiology as the original set of SNVs, which is indicative of
their validity. We perform this analysis using deconstructSig31,
normalizing the counts of the 96 types of mutations. The call set
of Moss when run in conjunction with Mutect2 contains
Signatures 5, 12, 16, and 22, which have been determined to
occur in liver cancer28 (Fig. 3e). Although the total exposure is
lower than when Mutect2 is run in isolation (59% vs 65%), more
variants are explained by liver cancer-related signatures (about
951 SNVs for Moss and 742 for Mutect2). Higher total exposure
is obtained when Strelka2 is run in conjunction with Moss rather
than in isolation (54.2 vs 52.3%) (Supplementary Fig. 3c).

For further validation, we perform manual review of the
variants called by Moss in exactly two samples but not called by
Mutect2 in any sample. We follow the procedure of Barnell
et al.21. Prior to applying Moss’ filtering criteria, there are
166 such variants (Supplementary Fig. 7a). After filtering
(described in “Methods”), Moss identifies 145 variants. Manual
review suggests that 102 of these are true SNVs (Fig. 3f,
Supplementary Fig. 7b, and Supplementary Data 1). Of the
remaining 145− 102= 43 SNVs called by Moss, 32 were

identified as ambiguous in at least one sample. As for the 166
− 145= 21 variants filtered out by Moss, 1 SNV is flagged as
tumor-in-normal (TIN), 8 SNVs as empty-strand, 10 as low-
tumor-support, and 7 as cluster (note that a SNV can have more
than one flag). Manual review of these variants results in assigned
tags that match Moss’ filtering criteria (Supplementary Data 1).
When analyzing all variants, the TIN filter flagged in total 183
SNVs, empty-strand 445 SNVs, low-tumor-support 772, and
cluster 701 SNVs. These findings demonstrate that the imple-
mented filters are capable of removing artifacts, and that the
majority of the analyzed SNVs newly called by Moss pass manual
inspection.

To showcase the benefit of analyzing multiple samples, even
when only a small number of them are available, we run the
single-sample callers Mutect2 and Strelka2 in isolation and in
conjunction with Moss on the 23 samples incrementally. For the
single-sample callers, as before, we take as the call set the union
across all the (independently) analyzed samples. We observe that
the number of called variants increases with the number of
samples, yielding a higher recall rate (Fig. 3f and Supplementary
Fig. 3e). Even with 2 or 3 samples, the number of recovered
variants by Moss increases as compared to running the single-
callers in each sample independently. In particular, Moss recovers
48 and 71 variants missed by Mutect2 with 2 and 3 samples,
respectively, which corresponds to an increase of 8.9% and 12.3%.
In order to verify Moss’ ability to work on datasets with low
coverage, we downsample the HCC dataset (original coverage
75×) to 30×, 20×, and 10×, and then rerun Mutect2 in isolation
and in conjunction with Moss incrementally on the 23 samples.
We find that Moss retains the ability to recover additional
variants on low-coverage datasets (Supplementary Fig. 8).

Mutect2 requires about 18 hours to complete SNV calling in
the 23 samples of the HCC dataset, whereas Moss needs less than
an additional 20 min (Fig. 3g). Hence, Moss increases the run
time by 1.8%. Moreover, Moss only requires 361MB of memory
whereas Mutect2 uses 2,216MB. A similar overhead is observed
when Moss is run with Strelka2 (Supplementary Fig. 9). All
experiments were run on a machine with two 64 bit x86 Intel
Xeon 2.20 GHz CPUs and 512 GB of memory.

Evaluating Moss on an acute myeloid leukemia dataset with a
manually curated list of SNVs. We test the performance of Moss
on an acute myeloid leukemia (AML) dataset22. In this dataset, a
normal sample, a primary tumor sample and a relapse sample
were sequenced with multiple sequencing strategies, including
whole-genome sequencing (WGS, median coverage of 312×),

Fig. 4 Moss increases the recall rate in an acute myeloid leukemia (AML) dataset with a manually curated “gold list“ of SNVs (single-nucleotide
variants)22. a Venn diagram comparing the candidate set of Mutect2 with the gold list, when run independently in the whole-genome sequencing (WGS)
primary tumor and relapse samples. b Venn diagram comparing the SNVs called by Moss and Mutect2 with the gold list. c Number of SNVs discovered by
Mutect2 and Moss designated as “correct” or “incorrect” based on examining the VAFs in the custom targeted capture data. Color indicates whether the
variant is common to Mutect2 and Moss (yellow), or unique to Moss (green) or Mutect2 (red).
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whole-exome sequencing (WXS, median coverage of 433×), and
custom targeted capture (median coverage of 1500×). Griffith
et al. analyzed the target capture data to produce a manually
curated set of high-quality SNVs designated as the gold list. Here,
we run Moss in conjunction with Mutect2 on the WGS data. To
enable validation, we restrict our attention to candidate SNVs
occurring in the genomic regions covered by the targeted capture
data (with a minimum coverage of 100× in each of the primary,
relapse, and normal sample). Running Mutect2 on each WGS
tumor sample in isolation yields a total of 14,343 candidates, 1480
of which occur in the gold list (Fig. 4a). While Mutect2 recalls
1342 variants from the gold list, Moss recalls 1396 variants
(Fig. 4b). The single SNV from the gold list identified by Mutect2
but not by Moss has low base quality scores of the mutated base,
and is subsequently filtered out (Supplementary Fig. 10). Moss
additionally identifies 3409 variants not present in the gold list.
To verify these SNVs, we examine their VAFs in the custom
targeted capture data. Specifically, we designate a candidate SNV
as “correct” if it has a VAF smaller than 0.05 in the normal
sample and at least 5 reads with the variant allele in either the
primary or relapse sample, otherwise the SNV is designated as
“incorrect”. 1663 out of the 3409 SNVs are correct, with a subset
of 984 uniquely identified by Moss (Fig. 4c). Moreover, 30 out of
the 31 uniquely identified by Mutect2 (that are not in the gold
list) are designated as “incorrect”. Hence, these findings further
confirm Moss’ ability to leverage multi-sample data to identify
low-frequency SNVs that lead to improved sensitivity. In addi-
tion, we find that Moss decreases the number of SNVs that are
unique to one of the (temporal) samples (Supplementary Fig. 11).

Evaluating Moss in a colorectal cancer dataset. Finally, we assess
the performance of Moss run in conjunction with Strelka211 on a
colorectal cancer (CRC) dataset32. This dataset includes data of
two patients (denoted as Patient 43 and Patient 45), and for
each of them three tumor samples and a matched normal
sample (extracted from blood) were sequenced. For Patient 43,
Moss recovers an additional 49,497 SNVs, while losing 318
variants called by Strelka2 (Fig. 5a). The number of supporting
samples is further increased by 23% of the variants (Fig. 5b),
reducing the number of SNVs unique to a single sample
(Supplementary Fig. 12). Alexandrov et al.28 determined that
Signatures 1, 5, 6, and 10 are associated with CRC. While the
fraction of exposures to liver cancer signatures dropped from 87%
for the SNVs identified by Strelka2 to 82% for Moss (Fig. 5c), it is
important to note that Moss increased the call set by more than
27%. This means that the vast majority of the newly identified
SNVs are explained by known CRC signatures. We observe
similar results for Patient 45, identifying an additional 24% SNVs

with an associated increase in the number of supporting samples
while maintaining the total exposure to CRC mutational sig-
natures (Supplementary Fig. 13).

Discussion
In this work, we introduced Moss, a light-weight versatile multi-
sample somatic SNV caller for bulk DNA sequencing tumor data.
Moss transforms any current single-sample caller into a multi-
sample caller, without having to modify the original caller’s
software. While two recent SNV callers, Mutect2 (GATK version
4.1) and multisnv20, support multiple samples, the majority of
methods are still single-sample only, such as Strelka211, MuSE12,
CaVEMan13, VarScan233, Lancet14, Platypus15, and LoFreq16. As
such, Moss can be used in conjunction with any of these methods
to improve the sensitivity of their call sets on multi-sample tumor
sequencing data.

On simulated data containing m∈ {2,…, 5} tumor samples, we
showed that Moss increases the recall rate without losing preci-
sion in all cases, as compared to the union call set of the single-
sample callers Strelka211 and Mutect210. On real data with m=
23 samples from a hepatocellular carcinoma tumor26 and m=
3 samples from two colorectal tumors32, we observed that Moss
recovers low-VAF variants (we verified a subset by manual
review21) while maintaining or increasing the overall exposure to
the tumor-type specific signatures. We demonstrated a similar
increase in recall on m= 2 samples (primary tumor and relapse)
of an acute myeloid leukemia dataset22 for which a carefully
curated set of somatic variants has been released. Further, we
showed that the benefits of Moss are tangible even with a small
number of samples or coverage as low as 10×, and come with a
negligible overhead in run time and memory consumption as
compared to the single-sample callers. We found that although
Mutect2 (GATK version 4.1) and multisnv20 have recently
included support for the joint analysis of multiple tumor samples,
Moss achieves a higher F1 score on the simulated data with a
shorter run time.

In summary, Moss’ ability to recover low-VAF single-nucleo-
tide variants from multi-sample bulk DNA sequencing tumor
data and the resulting improvement in sensitivity will enable
more detailed downstream analyses in cancer genomics. We do
note that manual review of identified variants will remain a
necessary step to obtain a high-quality set of variants. Moss will
be most useful in a hypothesis-generating context, where the low-
frequency variants identified by Moss will be excellent candidates
for targeted follow-up sequencing. Due to decreasing costs of
sequencing technologies, we expect multi-sample data to become
increasingly available. Moss is particularly suitable to analyze
liquid biopsies of tumors, which are taken at multiple time points

Fig. 5 Moss recovers high-quality somatic variants missed by Strelka2 in a colorectal cancer (CRC) dataset32. a Venn diagram comparing the call set of
Strelka2 when run in isolation and when run in conjunction with Moss. Moss identifies 49,497 new variants while retaining almost all variants identified by
Strelka2. b The number of supporting samples by Moss (x-axis) and the single-sample caller Strelka2 (y-axis) for each variant, showing that Moss
increases the number of supporting samples for 23% of variants (52,690 variants) identified by Strelka2, increasing the number of common SNVs (single-
nucleotide variants) that are present in at least two samples (Supplementary Fig. 12). c Exposure to mutational signatures of colorectal tumor for the
different methods (each signature is represented with a unique color). The identified signatures remain the same.
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and typically have SNVs with low VAFs due to the low prevalence
of circulating tumor DNA.

There are several directions for future research. First, the
concept of using multiple samples to improve variant calling
sensitivity is broadly applicable beyond single-nucleotide variants.
For instance, Zaccaria et al.25 recently demonstrated that copy-
number aberrations can be identified with greater accuracy when
considering multiple samples from an individual tumor. We
expect that the detection of small indels and larger structural
variants will benefit from a similar multi-sample analysis as
employed by Moss. Second, Moss is designed to work with bulk
DNA sequencing tumor data, where samples are composed of a
mixture of hundreds of thousands of cells. Single-cell sequencing
(SCS) has recently gained increasing attention as it directly
reveals the set of mutations in individual tumor cells, which can
be used for tumor phylogeny reconstruction34–37. We plan to
adapt Moss’ Bayesian model to support SNV calling in SCS data.
Third, as SCS data suffer from elevated error rates38, Moss could
be further extended to perform joint somatic SNV calling in
hybrid tumor datasets composed of both bulk and SCS sequen-
cing samples39–42. Joint variant calling on hybrid datasets will
directly improve the accuracy of algorithms that perform phy-
logeny reconstruction on both SCS and bulk sequencing data43,44.
Fourth, it will interesting to adapt Moss to support long-read
sequencing data with increased error rates. Finally, the set of
called variants could be further refined by incorporating infor-
mation from cancer genomics downstream analyses. For example,
Rubanova et al.45 incorporate mutational signatures to cluster
SNVs that co-occur in tumor clones. In a similar vein, the
accuracy of SNV calling may improve by taking mutational sig-
natures into account during variant calling. Another example
of incorporating downstream information is the work of
Singer et al.46 who explored simultaneous SNV calling and
phylogeny inference from single-cell DNA sequencing data of
tumors. In the future, we plan to simultaneously call SNVs and
perform cancer phylogeny inference from either hybrid datasets
or multi-sample bulk DNA data of tumors.

Methods
Moss is a multi-sample single-nucleotide variant (SNV) caller that is applied after
running a single-sample variant caller independently in each sample (Fig. 1b). In
addition to the original BAM files of the tumor and normal samples, Moss
optionally takes as input the realigned BAM files and the candidate loci. The
candidate loci are taken as the union of the reported loci in the VCF files output by
the single-sample caller under permissive conditions. The output of Moss is a VCF
file containing the set of called variants. The realigned BAM files are paired with
the original BAM files, and for each sample, the modified reads in the original
BAM file are updated with the realigned ones.

Here, we present the model of Moss, which is a Bayesian model for inferring the
posterior probability of whether a location in the genome contains a somatic SNV
(single-nucleotide variant) and the corresponding tumor allele. In the following, we
will refer to the posterior probability as the somatic probability, and we will focus
on a specific locus in the genome to describe the proposed method Moss, as the
model treats different loci independently.

Graphical model. Our algorithm Moss may be summarized as a graphical model,
which is shown in Fig. 6. For a sample i among a total of m samples, we denote by
ni the number of aligned reads that span the locus in question. We use bi ¼
½bi;1; ¼ ; bi;ni � and qi ¼ ½qi;1; ¼ ; qi;ni � to represent the set of bases and the cor-
responding quality scores of the reads, respectively. We denote the allele in the
normal sample by N , inferred by the used single-sample SNV caller and taken
from the corresponding VCF file (this is an input to Moss). In line with current
somatic SNV callers10,15, we only consider the case where the normal sample at the
considered locus is homozygous (most usual case) and ignore heterozygous loci.
For the somatic SNVs, we only allow one somatic allele, and we use T to represent
the latent mutated allele of the SNV, which is by definition different from N . For
example, if the normal sample contains nucleotide “A” in the considered locus and
the tumor sample introduces the somatic SNV “A > G”, then we have N ¼ A and
T ¼ G .

We also define the error-free bases xi ¼ ½xi;1; ¼ ; xi;ni � corresponding to the
observed bases bi, and fi as the latent variable representing the somatic variant allele

frequency in sample i. Hence, variable xij is either N or T , and it follows a
Bernoulli distribution with probability fi of being equal to T . Each base bij in bi (for
sample i) is assumed to be generated following a Categorical distribution
parameterized by the true base xij and the sequencing error rate qij, modeling
whether there was a sequencing error or not. Hence, conditioned on xi and qi, bi is
modeled as a Multinomial distribution. The distribution of the frequency fi
depends on the latent binary variable zi, which indicates whether sample i carries
the somatic SNV or not. The prior distribution of z= [z1,⋯ , zm] depends on the
parameter μ, which indicates the probability of having a somatic SNV in a given
locus. With the proposed model, the bases of each sample are generated
independently conditioned on z, N , and T .

Somatic probability. We seek to compute the somatic probability
P Z≠ 0 j N ; b; qð Þ, which indicates the probability of having at least one sample
containing a somatic variant at the considered locus given the normal allele N and
the set b of bases and quality scores q from the m samples that map to the
considered locus in the genome. To improve efficiency, we compute the comple-
ment of the somatic probability instead. That is, we compute P Z ¼ 0 j N ; b; qð Þ ¼
1� P Z≠ 0 j N ; b; qð Þ as

P Z ¼ 0 j N ; b; qð Þ ¼ P b j Z ¼ 0;N ; qð ÞP Z ¼ 0ð Þ
∑T ≠N∑z2 0;1f gmP b;Z ¼ z; T j N ; qð Þ

¼ ∑T ≠N P b j Z ¼ 0; T ;N ; qð ÞP Z ¼ 0ð Þ
∑T ≠N∑z2 0;1f gmP b j Z ¼ z; T ;N ; qð ÞP Z ¼ zð Þ ;

ð1Þ

where b ¼ b1; � � � ; bm
� �

denotes all bases that aligned to the considered locus in
all m samples, with bi representing the bases in sample i. Analogous notation is
used for q, which represents the quality scores. To derive Eq. (1), we have used the
fact that the somatic indicator z and the tumor genotype T are mutually inde-
pendent and independent of N (see also Fig. 6).

We assume the prior of z to be uniform across all cases where z ≠ 0, and equal
to 1− μ for z= 0. In particular, we have

P zð Þ ¼
1� μ; if z ¼ 0;

μ
2m�1 ; if z≠ 0:

(
ð2Þ

The likelihoods of the bases of the m samples are conditionally independent
given z; T ;N , which leads to

P b j Z ¼ z; T ;N ; qð Þ ¼
Ym
i¼1

P bi j Zi ¼ zi; T ;N ; qið Þ : ð3Þ

The sample-specific data likelihood is computed by marginalizing the allele
frequency fi as follows.

P bi j Zi ¼ zi; T ;N ; qð Þ ¼
Z 1

0
P bi; f i j zi; T ;N ; qi
� �

df i

¼
Z 1

0
P bi j f i; T ;N ; qi
� �

P f i j zi
� �

df i

ð4Þ

In Eq. (4) we have used the fact that conditioned on fi, bi is independent of zi.
Conditioned on f i; T ;N ; qi , and assuming no sequencing errors, the likelihood of

Fig. 6 Graphical model used for the computation of the likelihood of a
locus across multiple samples having a somatic SNV (single-nucleotide
variant), as well as the corresponding tumor allele T . Different loci are
analyzed independently. We consider m samples, with ni reads for each
sample mapping to the considered locus. μ is the somatic mutation rate; zi
is the latent binary indicator for sample i carrying the somatic SNV; T and
N are the tumor and normal allele, respectively; xij is the error-free base; bij
is the observed base; and qij is the sequencing error probability.
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each base bi,j of sample i being equal to the tumor allele T follows a Bernoulli
distribution with parameter fi. Hence, the likelihood P bi j f i; T ;N ; qi

� �
of observing

dt,i tumor bases out of a total of ni bases is given by
dn;i þ dt;i

dn;i

� �
ð1� f iÞ

dn;i f
dt;i
i ,

where the number of normal bases dn,i equals ni− dt,i. To take sequencing errors into
account, we introduce for each sample i variable xi ¼ ½xi1; ¼ ; xini �, with xij
representing the true base j of sample i. Hence, bij≠ xij indicates a sequencing error.
Note that in our formulation xij is either N or T . Hence, conditioned on f i; T and
N , xij follows a Bernoulli distribution.

P xij j f i; T ;N
� 	

¼
f i; if xij ¼ T ;

1� f i; if xij ¼ N :

(
ð5Þ

We further assume that a sequencing error is not biased towards a particular
base (a similar assumption is made in the derivation of Strelka211). Therefore, the
likelihood of base bij conditioned on xij and qij is given by

P bij j xij; qij
� 	

¼
1� qij; if bij ¼ xij;

qij=3; otherwise :

(
ð6Þ

Finally, combining Eqs. (5) and (6), the data likelihood of sample i can be
computed as:

P bi j f i; T ;N ; qi
� �

¼ ρi
Yni
j¼1

P bij j f i; T ;N ; qij

� 	

¼ ρi
Yni
j¼1

∑xij¼N ;T P bij j qij; xij
� 	

P xij j f i; T ;N
� 	

;

ð7Þ

where ρi ¼
dn;i þ dt;i þ de;i
dn;i; dt;i; de;i

� �
is the multinomial coefficient for sample i, de,i is

the number of error bases bij =2fN ; T g
� 	

, and dn,i+ dt,i+ de,i= ni.

Next, we specify how P f ijzi
� �

is computed. Without further prior knowledge on
the somatic SNV frequency fi, a uniform prior is used when zi= 1, i.e., when a
somatic SNV is present. Similarly to Strelka211, we assume a uniform prior on the
range [ϵ, 1] for fi where ϵ is set to 0.05 by default. If the somatic SNV is absent, i.e.,
if zi= 0, the distribution of fi should be concentrated around 0. For simplicity, we
force fi to be zero in this case. To summarize, we have:

P f i j zi ¼ 1
� �

¼
1

1�ε ; if f i 2 ½ε; 1�;
0; otherwise ;



ð8Þ

and

P f i j zi ¼ 0
� �

¼ δ f i
� �

; ð9Þ
where δ() is the Dirac delta function.

Note that if zi= 0, then fi= 0 and the likelihood can be simplified to:

P bi j Zi ¼ 0; T ;N ; qið Þ ¼ ρi
Ybij j

j¼1

1� qij

� 	1 bij¼Nf g
�

qij
3

� �1 bij≠Nf g
; ð10Þ

which is independent of T .

Estimation of the tumor allele T . To estimate the tumor allele of the somatic
SNV, we use maximum likelihood (ML) to estimate the allele T that minimizes

P Z ¼ 0 j b; T ;N ; qð Þ ¼ P b j Z ¼ 0; T ;N ; qð ÞP Z ¼ 0ð Þ
∑z2 0;1f gmP Z ¼ z; b; T j N ; qð Þ ð11Þ

In this special case, based on Eq. (10) and the definitions of priors for Z and T ,
the numerator P b j Z ¼ 0; T ;N ; qð ÞP Z ¼ 0ð Þ is a constant independent of T .
Therefore, we may estimate T as

T � ¼ argmax
T

∑
z2 0;1f gm

P b j z; T ;N ; qð ÞP zð Þ; ð12Þ

which is already calculated in the denominator of Eq. (1) for computing the
somatic probability. Note that, if only one tumor sample contains reads with T , we
defer to the single-sample caller and call the SNV only if it was called by the
original caller.

Omission of samples. By default, Moss ignores samples in which all bases aligned
to the considered locus are equal to the normal allele N (i.e., all-normal samples),
as we can show that the somatic probability diminish to 0 as the number of all-
normal samples increases. A detailed explanation can be found in the supplement.

Filters. Moss filters out reads with a mapping quality below 30 and bases with
quality below 13 from the BAM file before performing variant calling. Note that
this filtering criteria was also used in26. In order to detect possible false positive
variants, Moss supports several additional filters based on information provided
in the VCF file. In particular, Moss applies the following empirical filters described
in26: (i) low-normal-depth, for variants with depth of normal sample less than 6

(DP field), (ii) low-tumor-support, for variants whose tumor allele count is less
than 4 in all samples (TCOUNT field), and (iii) empty-strand, for variants with no
allele counts on the forward or reverse strand in all samples (SB field). Moreover,
Moss is equipped with an additional cluster filter for clustered SNV sites (at least 3
SNV sites within 100 base-pairs), as they are likely to be artefacts caused by
undetected duplicated reads. By default, Moss applies these filters only to variants
discovered by Moss that were undetected by the single-sample variant tool used
prior to Moss. Finally, we have a separate filtering criterion to detect normal
contamination that we describe in the following.

Filtering contamination. In some cases, the tumor allele T is present at a high
frequency in the normal sample. This may be due to either contamination of the
normal sample or due to an inaccurate identification of the normal allele N . To
arrive at a set of high-quality variants, one may wish to identify these variants and
subsequently filter them out. One approach could consist on applying a hard
threshold on the tumor allele counts present in the normal sample. However, a
hard threshold does not account for varying sequence samples characteristics such
as the coverage, which can have an impact on which variants are filtered out.
Hence, here we provide another score, tumor alleles in normal (TIN), which
represents the posterior of the normal sample carrying the previously inferred
tumor allele T . In particular, the TIN score is given by
�10logP Z0 ¼ 1 j b0; b; T ;N ; q

� �
. This score can be calculated alongside the

somatic SNV probability with little overhead as follows:

P Z0 ¼ 1 j b0; b; T ;N ; q
� � ¼ ∑z2 0;1f gmP b0; b j Z0 ¼ 1; z; T ;N ; q

� �
P Z0 ¼ 1; z
� �

∑z2 0;1f gm ;Z02 0;1f g P b0; b j Z0; z; T ;N ; q
� �

P Z0; z
� �� � ; ð13Þ

where subscript 0 represents the normal sample. By default, variants with TIN
score below 20 are filtered out (this threshold can be modified by the user).
Similarly to the empirical filters, the TIN score is applied only to the somatic
variants discovered by Moss that were undetected by the single-sample somatic
variant caller applied prior to Moss.

Efficient calculation of the somatic probability. Calculating the denominator of
Eq. (1) requires summing over all possible 2m combinations of z, which gives an
exponential complexity of O(2m) and hence does not scale with the number of
samples. However, given the considered prior P zð Þ (see Eq. (2)), we can rewrite it in
a simpler form with linear complexity O(m):

∑
z2 0;1f gm

P b j Z ¼ z; T ;N ; qð ÞP Z ¼ zð Þ

¼ 1� 2m

2m � 1
μ

� �Ym
i¼1

P bi j zi ¼ 0; T ;N ; q
� �

μ

2m � 1

Ym
i¼1

P bi j zi ¼ 0; T ;N ; q
� �þ P bi j zi ¼ 1; T ;N ; q

� �� �
ð14Þ

Experimental details. The analyses performed in this study included bulk DNA
sequencing data (see “Data availability”) in the form of FASTQ (for the simulated
and HCC samples) and BAM/SAM files (for the AML and CRC samples). To
obtain our simulated data, we used MASCoTE25 to generate the BAM files, which
internally uses ART (v2.5.8) for simulating sequencing reads and BWA (v0.7.17)
for alignment. For the HCC dataset, we generated the BAM files by aligning
FASTQ files to the human reference genome b37 using BWA-MEM (v0.7.17) with
parameters -t 16 -M. For the CRC dataset, we used BWA-MEM (v0.7.17) with
parameters -t 14 -M -Y to align reads in FASTQ files to the human reference
genome GRCh38. The aligned BAM files of the HCC and CRC samples were
further processed with GATK (v4.0.12) following GATK’s best practices (including
BQSR and MarkDuplicates). For the AML dataset, we directly used the BAM files
downloaded from dbGaP.

Single sample callers Mutect2 from GATK (v4.0.12) and Strelka2 (v2.9.9) were
used to identify SNVs, as well as multi-sample callers Mutect2 from GATK
(v4.1.7.) and multisnv (v2.3-14-gb86d4dc). To calculate the exposure to COSMIC
v2 mutational signatures we used deconstructSig (v1.8.0). We performed manual
review using IGV (v2.4.16) and the add-on IGVNav21 (commit 8df35a6) and
followed their recommended standard operating procedures (SOP). Specifically,
each time we examined three BAM files at the same time: the normal sample, the
original BAM file, and the realigned BAM file. We assigned tags and notes
according to the SOP and used these tags to call and classify the variant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The generated simulated data used in this study is available at figshare [https://doi.org/
10.6084/m9.figshare.14079953]. The analyzed HCC data26 is available at genome
sequence archive of Beijing Institute of Genomics under accession id PRJCA000091. The
AML data22 is available at the database of Genotypes and Phenotypes (dbGaP) under
accession id dbGaP:phs000159. The CRC data32 is available under restricted access,
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which can be obtained upon signing a Data Use Agreement by contacting Nicholas Chia
[Mayo Clinic, Rochester, MN, USA, Chia.Nicholas@mayo.edu]. Data are available within
the Article, Supplementary Information or available from the authors upon
request. Source data are provided with this paper.

Code availability
Moss is open source (MIT license) and available at https://github.com/elkebir-group/
Moss and on Zenodo https://doi.org/10.5281/zenodo.448720447. In addition, Moss is
available on conda and as a Docker image. The installation and usage guide are in the last
section of the Supplementary Information.
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