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,e rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long
noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers andmay contribute to cancer
progression and chemoresistance. ,ey are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an
open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating
cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer.,is review was
aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and che-
moresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules
involved, together with a brief presentation on its diagnostic and prognostic values. ,e regulatory roles of lncRNA UCA1 are
implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared
similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most
intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with
various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target
for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic
and prognostic marker for GI cancer patients.
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1. Introduction

Gastrointestinal (GI) cancer has become one of the major
challenges in the health sector in recent decades. GI cancer is
a group of cancers that affect the GI tract, such as esophagus,
stomach, gallbladder, liver, biliary tract, small intestine, and
large intestine [1, 2]. In 2018, GI cancer contributed 26%
among all cancer cases and 35% of cancer-causing death
worldwide [3]. ,ere are five major GI cancers, namely,
gastric cancer (GC), hepatobiliary cancer, esophageal cancer
(EC), pancreatic cancer (PC), and colorectal cancer (CRC),
accounting for approximately 1 million, 840,000, 570,000,
460,000, and 1.7 million new cases were reported in 2018,
respectively [4]. Comparatively, EC, GC, and liver cancer
(LC) are predominant in Asian population, whereas CRC
shows more incidence in Europe and North America [3].
Apart from that, GI cancer shows a reduced 5-year survival
rate and a poor prognosis at the late stage of cancer [5].
Generally, several factors have been reported to be the
contributing risk factors for GI cancer, including tobacco
smoking, alcohol consumption, diet, and obesity and in-
fections, such asHelicobacter pylori in GC and hepatitis virus
in LC [3, 6, 7].

With the recent advancement in RNA sequencing
technology transcriptome knowledge, there are increased
interests in long noncoding RNAs (lncRNAs) as they play
an important role in tumorigenesis, particularly gene
regulation [8, 9]. LncRNA is characterized by possessing
more than 200 nucleotides that would not be translated
into protein [10]. It can be found in both nucleus and
cytoplasm where the chromatin remodeling, transcrip-
tional regulation, and RNA processing take place in the
nucleus, while its interaction with mRNA and signaling
pathway occurs in the cytoplasm [11, 12]. One of the re-
ported cancer-related lncRNAs is urothelial carcinoma-
associated 1 (UCA1) that was first discovered in 2006 as it
was found to be overexpressed in bladder cancer (BC) cells,
a cancer close to but not belonged to GI cancer [13]. It
belongs to human endogenous retrovirus H family and is
located at 19p13.12 of the chromosomes positive-strand
with three exons and two introns [13]. To date, three
lncRNA UCA1 isoforms produced by RNA splicing have
been discovered, and each of them with different sizes,
including 1.4, 2.2, and 2.7 kb [14, 15]. Among them, 1.4 kb
lncRNA UCA1 is the most assessed and abundant isoform,
while 2.2 kb isoform is relatively more participated in
chemoresistance [14]. For instance, Wang et al. showed
that lncRNA UCA1 significantly associated with cancer
chemoresistance toward cisplatin, gemcitabine, 5-fluoro-
uracil, tamoxifen, and imatinib. Interestingly, the che-
mosensitivity of these drugs was significantly increased
when lncRNA UCA1 was silenced [16].

Apart from these, lncRNAUCA1 has been detected to be
overexpressed in various cancers, particularly GI cancers,
such as CRC, esophageal squamous cell carcinoma (ESCC),
hepatocellular carcinoma (HCC), and GC [17–19]. Among
lncRNAs, lncRNA UCA1 has been demonstrated to have
significant regulatory roles in cancer progression, including
cell proliferation, invasion, migration and metastasis, and

chemoresistance in BLS-211 BC cells [13]. In the last decade,
the regulatory roles of lncRNAs have been intensively in-
vestigated in which most studies have suggested that the
mechanistic pathways underlying the regulatory roles of
lncRNA UCA1. In this context, its interaction with the key
genes or proteins is the key causative factor that leads to the
development of GI cancer.

,erefore, this review aims to provide a detailed insight into
the regulatory roles of lncRNA UCA1 in GI cancer progression
and chemoresistance, as evidenced in preclinical and clinical
studies. In addition, it also discusses various molecular
mechanisms underlie and the keymolecules involved, intending
to present its potential as a novel molecular target, as well as a
diagnostic and prognostic marker for GI cancer.

2. LncRNA UCA1

Over the past few years, there is a bloom of transcriptome
studies associated with the advancement in RNA sequencing
technology, which enables the view of the complexity of
eukaryotic gene expression [20]. ,is advanced technology
leads to the discovery of lncRNAs [21]. More than 98% of the
genomes transcribed into ncRNAs are categorized, either as
structural RNAs or regulatory RNAs, where lncRNA is
classified under regulatory RNAs [22]. LncRNAs are dis-
covered as an important new player in cell differentiation
and development, as well as organogenesis and genomic
imprinting [23, 24]. Additionally, most lncRNAs, including
lncRNA UCA1, are much like mRNAs where they are
transcribed by RNA polymerase II with similar chromatin
states to mRNAs, and they usually 5′capped, spliced, and
polyadenylated [25, 26]. ,e biogenesis of lncRNA UCA1 is
illustrated in Figure 1.

It has been reported that several lncRNAs participate in
the special processing events, including DNA organization.
In this event, genomic DNA is packed in the nucleus with a
special genomic organization, depending on both histone
and chromatin modifications that are regulated by epige-
netic complexes and affect the transcriptional activity
[27, 28]. For instance, lncRNA metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) and lncRNA nu-
clear enriched abundant transcript 1 (NEAT1) are localized
at the nuclear speckles and nuclear paraspeckles, respec-
tively, after processing at 3′ ends by RNA polymerase II to
form tRNA-like small RNA products and mature lncRNAs
[25, 29, 30]. However, the exact DNA organization for
lncRNA UCA1 remains to be confirmed. Functionally,
lncRNAs are involved in chromatin and epigenetic modi-
fications [31, 32]. LncRNA UCA1 also acts as an miRNA
decoy and miRNA sponge, which sequester miRNA intra-
cellularly and compete with other genes for miRNA binding,
leading to an increased level of miRNA target gene ex-
pression [1, 33].

Furthermore, lncRNA has also shown to play an im-
portant role in embryogenesis where it has been identified to
be upregulated after 28 weeks of gestational in the tissue of
heart, urinary bladder, and uterus, but downregulation is
detected in liver, kidney, lung, spleen, intestine, stomach,
skin, and cervix. In adult tissues, lncRNA UCA1 expression
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is relatively conserved at a low expression level, except for
heart, spleen, and placenta [34]. In short, the ideal ex-
pression of lncRNA UCA1 is remarkably essential for cell
growth and development, particularly in embryogenesis
stage.

3. Molecular Regulatory Roles, Patterns,
Mechanisms, and Interactions of LncRNA
UCA1 in Different Gastrointestinal Cancers

It has been reported that high expression levels of lncRNA
UCA1 are detected in GI cancer cells [35, 36].,us, lncRNAs
may play an important role for GI tumorigenesis. ,e
positive association of lncRNA UCA1 with the overall
survival of GI cancer patients was revealed in ameta-analysis
[35]. ,e pooled result of 14 studies indicated that poor
overall survival in patients with digestive malignancies was
associated with lncRNA UCA1 overexpression [35]. Since
then, different studies were conducted to further discover
the association between GI cancer and lncRNAUCA1 as well
as identify the possible mechanisms responsible for GI
cancer progression. In this review, the expression pattern,
regulatory roles and patterns, mechanistic pathways, and
interactions of key molecules that are associated with
lncRNA UCA1 in GI cancer progression and chemo-
resistance, including EC, GC, hepatobiliary cancer, PC, and
CRC, are summarized (Table 1). A brief insight of the po-
tential role of lncRNA UCA1 as a diagnostic and prognostic
marker, wherever applicable in different GI cancers, is also
presented. ,e interaction of lncRNA UCA1 that affects the
target gene expression of miRNAs and activation of pivotal
signaling pathway are illustrated in Figures 2 and 3,
respectively.

3.1. Esophageal Cancer. In ESCC patients, the most pre-
dominant deadly types of EC, lncRNAUCA1 has been reported
to be overexpressed and contributed to poor prognosis [37].
Jiao et al. showed that lncRNA UCA1 was strongly associated
with EC cell proliferation by functioning as a competing en-
dogenous RNA (ceRNA) to regulate the expression of Sry-
related high-mobility group box 4 (Sox4), a target protein of
lncRNA UCA1 [38]. Additionally, lncRNA UCA1 also can
directly interact with miR-204 to reduce miR-204-mediated
Sox4 degradation; thus, Sox4 can exert its biological role as a
tumor-promoting protein to stimulate EC progression [38].
Apart from that, overexpressed lncRNA UCA1 could also
promote cell proliferation andmetastasis by enhancing aerobic
glycolysis through Warburg effect [39]. ,ese happened when
lncRNAUCA1 sequestered miR-203, which then increased the
levels of hexokinase 2 (HXK2) [39].

Despite several studies have reported a positive corre-
lation between overexpressed lncRNA UCA1 and tumor
progression; however, contradictory findings were reported.
For instance, Wang et al. discovered that overexpression of
lncRNA UCA1 suppressed ESCC cell growth via the inhi-
bition of Wnt signaling pathway by suppressing β-catenin
activity [40]. ,ey claimed that lncRNA UCA1 could reduce
the expression of active β-catenin protein expression in the

cell nucleus and myelocytomatosis proto-oncogene (C-
myc), which is a target protein of Wnt signaling pathway in
regulating cell cycle. ,is action ultimately reduced cancer
cell proliferation, migration, and invasion [40]. Similarly,
Zhu et al. also demonstrated that lncRNA UCA1 was lowly
expressed in EC tissues and plasma exosomes, which is a
lipid-bilayer extracellular vesicle used as a cargo system for
various molecules, including lncRNAs, for implicating in the
pathogenesis of many diseases, including cancer, by regu-
lating intercellular communication. ,ey specifically found
that exosomal lncRNAUCA1 could act as a growth inhibitor
in EC as its overexpression inhibited cell proliferation,
migration, invasion, and colony formation significantly, as
well as tumor growth in vivo via direct targeting of high
levels of miR-613 [41]. It also acts as a potent diagnostic
biomarker for EC, with great sensitivity (86.7%) and spec-
ificity (70.2%) [41]. However, these findings need to be
further assessed as there is increasing evidence showing that
lncRNA UCA1 acts as an oncogenic lncRNA instead of
having tumor-suppressing function. Taken together, further
molecular studies of lncRNA UCA1 should be conducted to
elucidate its associated molecular mechanisms of regulatory
roles in EC clearly.

3.2. Gastric Cancer. GC is one of GI cancers that contribute
to high mortality due to late diagnosis [3, 77]. Intriguingly,
Gao et al. suggested that lncRNA UCA1 could be a potential
diagnostic and biomarker target in the early stage of GC,
owing to the fact that highly expressed lncRNAUCA1 can be
easily found in the plasma of GC patients and therefore
provides simplicity for sample extraction [42]. Similarly, it
has also been discovered that lncRNA UCA1 is overex-
pressed in both GC tumor and cell lines [43]. Moreover, it
was also reported to play a role in GC cell migration and
invasion via the induction of epithelial-mesenchymal
transition (EMT) by competitively binding to miR-203,
increasing the expression of its target protein, Zinc Finger
E-Box Binding Homeobox 2 (ZEB2) [44].

In addition to miR-203, lncRNA UCA1 also interacts
with miR-495-3p, supporting the role of UCA1 acting as a
ceRNA [45]. Sun et al. reported that lncRNA UCA1 ex-
pression could be regulated by special AT-rich-binding
protein 1 (SATB1), which was involved in chromatin
modification in both MKN-45 and BGC-823 GC cells [45].
However, lncRNA UCA1 only regulated the protein levels
of SATB1 in MKN-45 GC cells but not in BGC-823 cells
[45]. ,us, further investigation is required to discover the
rationale for obtaining such findings.

Similarly, lncRNA UCA1 has also found to regulate
miR-590-3p expression that results in the activation of
cAMP-responsive element-binding protein 1 (CREB1),
which is an oncogenic protein [46]. In addition, it plays a
role in suppressing the immune system of GC cells by
elevating the expression of programmed death-1 ligand-1
(PDL1) via sponging miR-193a and miR-214 [47]. In
addition, Wang et al. also reported that lncRNA UCA1
could sponge other miRNAs, for instance, miR-26a and
miR-26b, thereby reducing their expression levels [47].
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,is finding indicated that lncRNA UCA1 could function
as an miRNA sponge to reduce miRNA expression in the
cells, subsequently reducing its inhibitory effects on the
target protein. On the other hand, reduced ki-67 protein
levels and increased levels of cleaved poly [ADP-ribose]
polymerase 1 (PARP1) and cleaved caspase 3 were ob-
served in GC cells after lncRNA UCA1 silencing [47].
However, the exact mechanism of lncRNA UCA1 in
regulating ki-67, PARP1, and caspase 3 is unknown, and
further confirmation is required, particularly in identi-
fying miRNAs or proteins associated with the regulation
of lncRNA UCA1.

In addition, Zuo et al. demonstrated that the induction
of high lncRNA UCA1 expression in GC cells was mediated
by transforming growth factor β1 (TGF-β1) [48]. ,e
overexpressed lncRNA UCA1 consequently promoted EMT
by regulating the expression levels of EMT-related proteins,
such as E-cadherin, vimentin, snail, and zonula occludens-1
(ZO-1) [48]. For instance, the mRNA levels of epithelial cell
markers, such as E-cadherin and ZO-1, were reduced, while
an elevation was observed for mesenchymal cell markers,
namely vimentin and snail [48]. ,is finding indicated that
apart from regulating other genes or proteins, lncRNA
UCA1 also can be regulated by other genes or proteins.

Meanwhile, lncRNA UCA1 has also been reported to
regulate phosphatidylinositol-3-kinase (PI3K)/AKT/mamma-
lian target of rapamycin (mTOR) signaling pathway and their
downstreammediators [49].,e overexpressed lncRNAUCA1
increased the expression levels of key molecules in the PI3K/
AKT/mTOR signaling pathway, including AKT serine/threo-
nine kinase 3 (AKT3), phosphorylated mammalian target of

rapamycin (p-mTOR), and ribosomal protein S6 kinase (S6K),
while reducing the eukaryotic translation initiation factor 4E
(EIF4E) protein levels in GC cells [49]. Consequently, the
regulation of these proteins promoted GC cell growth and
proliferation [49]. ,is finding showed that lncRNA UCA1
could regulate multiple proteins involved in a signaling
pathway.

On the other hand, Wang et al. reported that specificity
protein 1 (SP1) promoted the expression of lncRNA UCA1
in GC cells by binding to the core promoter of UCA1 [50].
,e expressed lncRNA UCA1 was then activated AKT/GSK-
3 B/cyclin D1 axis by interacting with enhancer of zeste
homolog 2 (EZH2), a histone methyltransferase [50].
Meanwhile, the interaction of lncRNA UCA1 enhanced
EZH2 expression, which subsequently elevated the expres-
sion of cyclin D1 to promote cell cycle [50]. ,ese findings
supported the previous hypothesis that the association of
lncRNA UCA1 in regulating other genes via epigenetic
modification, which is histone modification in this case. ,e
association of lncRNA UCA1 with AKT/GSK-3B/cyclin D1
was also identified in HCC [60].

In addition to EMT, lncRNA UCA1 can induce GC
metastasis by regulating G protein-coupled receptor kinase 2
(GRK2) degradation and Casitas B-lineage Lymphoma (Cbl-
c)-mediated ubiquitination, resulting in the activation of
extracellular-signal-regulated kinase (ERK)/matrix metal-
loproteinase-9 (MMP-9) signaling pathway [51]. Wang et al.
demonstrated that lncRNAUCA1 interacted with GRK2 and
led to the exposure of GRK2 ubiquitination sites toward Cbl-
c for its degradation [51]. Consequently, the degraded GRK2
activated ERK/MMP-9 signaling pathway, which increased
MMP-9 protein levels, to promote cell membrane degra-
dation, facilitating cancer cell migration and invasion [51].
,is finding showed that lncRNA UCA1 could regulate the
level of another protein by direct binding for degradation.

LncRNA UCA1 also plays a prominent role in chemo-
resistance via miRNA signaling. For instance, the silenced
lncRNA UCA1 could upregulate the mRNA levels of miR-
27b and lead to reduced IC50 of doxorubicin, cisplatin, and
5-fluorouracil, as well as promoting doxorubicin-induced
apoptosis in doxorubicin-resistance SGC-7901 GC cells [52].
In other words, the reduction of lncRNA UCA1 expression
could improve the chemosensitivity of chemotherapeutic
agents, at least for doxorubicin, cisplatin, and 5-fluorouracil
in GC therapy. Correspondingly, Cheng et al. reported that
lncRNA UCA1 silencing enhanced GC chemosensitivity
toward cisplatin by regulating the expression of miR-513a-
3p and Cytochrome P450 1B1 (CYP1B1) [53].

Chemoresistance is also affected by cancer microenvi-
ronment, such as hypoxic microenvironment, that claims to
block the exposure of chemotherapeutic agents to cancer
cells [54]. Yang et al. reported that GC cells could survive in
the hypoxic environment via the interaction of lncRNA
UCA1 with miR-7-5p, elevating the expression of epidermal
growth factor receptor (EGFR) in hypoxia-resistant GC cells
[54]. Nonetheless, chronic hypoxia environment with a
slight increment in the protein levels of hypoxia-inducible
factor-1alpha (HIF-1α) could reduce lncRNA UCA1 ex-
pression [54]. Taken together, these findings demonstrated

DNA

Transcription

RNA polymerase II

Mature lncRNA UCAl

AAAAAA

Post-transcriptional
processing

RNA polymerase II

Figure 1: Biogenesis of lncRNA UCA1. LncRNA UCA1 is pro-
duced by transcriptional process mediated by RNA polymerase II
from DNA template. It then undergoes special posttranscriptional
processing events, including 5′-capping, splicing, polyadenylation,
and chemical base modification, to become a mature form.
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that the lncRNA UCA1 may facilitate GC development,
progression, and chemoresistance via the interaction with
different molecules, signaling pathways, and/or miRNAs.

3.3. Hepatobiliary Cancer. Hepatobiliary cancer comprises
tumors present in the liver, gallbladder, and bile duct
(cholangiocarcinoma). For instance,Wang et al. showed that
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lncRNA UCA1 was highly expressed in HCC and positively
correlated with postoperative survival and tumor, node, and
metastasis (TNM) stage [78]. In addition, the result also
showed that lncRNA UCA1 regulated fibroblast growth
factor receptor 1 (FGFR1)/ERK signaling pathway through
spongingmiR-216b that led to downregulation of themRNA
levels of miR-216b. In contrast, upregulation was detected
for fgfr1 gene to activate the ERK signaling pathway [78].

One of the known risk factors for HCC is hepatitis virus
infection [79]. Interestingly, hepatitis B virus (HBV) can induce
lncRNA UCA1 in HCC cells via their produced X protein
(HBx) [55]. LncRNA UCA1 also significantly reduced p27kip1
expression along with the increased expression of EZH2 via
histone methylation on p27kip1 promoter region [55]. In
addition, ectopically expressed lncRNA UCA1 induced the
expression of cyclin-dependent kinase-2 (CDK2) but not for
CDK4 and CDK6 where CDK2 regulated cell cycle and ap-
optosis, and its activity was regulated by CDK inhibitors (e.g.,
p21 and p27) [55]. However, only p27 expression was sup-
pressed in overexpressed HBx and lncRNA UCA1 HCC cells
[55].,erefore, this finding suggested that the regulating effects
of lncRNA UCA1 are protein-specific despite originating from
the same upstream mediators.

Apart from lncRNAUCA1, TGF-β1 and HXK2were also
found to be overexpressed in HCC patients [56]. Hu et al.
suggested that TGF-β1 promoted HCC cell growth through
the induction of energy metabolism and subsequently
promoted lncRNA UCA1 expression and its downstream
regulator HXK2, an isozyme that involves in glycolysis [56].
Most studies have reported that lncRNA UCA1 is prone to
regulate miRNA expression, but Zhao et al. revealed that
miR-124, a tumor suppressor mRNA, reduced rho-associ-
ated protein kinase 1 (ROCK1) to suppress lncRNA UCA1
expression, leading to the inhibition of HCC cell prolifer-
ation, migration, and invasion [57]. ,ey further discovered
that the expression of both lncRNA UCA1 and miR-124 was
not affected by HBV and HCV infections [57]. ,is finding,
however, could be correct if lncRNA UCA1 is the down-
stream target protein of miR-124 or incorrect if miRNA and
lncRNA UCA1 are negatively regulated in which miRNAs
usually downregulated when lncRNA UCA1 is overex-
pressed as in most cancer types reported.

Furthermore, staphylococcal nuclease and tudor domain
containing 1 (SND1) can induce the expression of lncRNA
UCA1 through its interaction with myeloblastosis proto-
oncogene (MYB), a transcriptional activator, by forming
SND1-MYB complex [58]. Meanwhile, SND1 itself acts as an
antiapoptotic factor in HCC [58]. Again, this finding sup-
ported the previous hypothesis that lncRNA UCA1 ex-
pression can be induced by another gene or protein.

Meanwhile, an in vitro study involving HCC cells showed
that lncRNAUCA1was substantially induced by arsenic (As) at
10μM/L with > 4-fold increase, denoting a protective role
against As-induced cell death [59]. By using RNA-Seq assay,
oxidative stress induced growth inhibitor 1 (OSGIN1) was
uncovered to be the most responsive downstream target of
lncRNA UCA1, and miR-184 acted as an intermediate for the
regulation of lncRNA UCA1 on OSGIN1 expression through
ceRNAmechanism [59].,e lncRNAUCA1/OSGIN1 signaling

contributed to As-induced autophagic flux blockage through
activating mTOR/ribosomal protein S6 kinase beta-1 (p70S6K)
cascade and therefore resulting in compromised cell death [59].
Nonetheless, this finding did not directly conclude the rela-
tionship of lncRNA UCA1 with HCC progression. However,
the arsenic stress might resemble anticytotoxicity effects as
arsenic induces cell death. ,erefore, future studies should be
conducted in order to relate the effects of lncRNA UCA1/
OSGIN1/mTOR/p70S6K with HCC progression.

On the other hand, overexpressed lncRNA UCA1 in
cholangiocarcinoma (CCA) showed that it could act as an
independent prognostic factor in CCA patients [60]. Similar
to the finding reported by Wang et al. in GC, Xu et al. also
found that enhanced CCA cell proliferation was via the
activation of AKT/GSK-3β axis that led to upregulation of
cyclin D1 (CCND1) expression [50, 60]. ,e apoptosis in-
hibition in highly lncRNAUCA1-expressed CCA cells might
be partly due to B-cell lymphoma 2 (Bcl-2)/caspase-3
pathway [60].

LncRNA UCA1 has also been reported to play an im-
portant role in CCAmetastasis through regulating miR-122/
chloride intracellular channel 1 (CLIC1). For instance, both
lncRNAUCA1 and CLIC1 were elevated, while miR-122 was
reduced in bile duct carcinoma [61]. Also, both lncRNA
UCA1 and CLIC1 promoted the phosphorylation of ERK
and mitogen-activated protein kinase (MAPK), activating
ERK/MAPK signaling pathway to promote cancer cell
metastasis [61].

Apart from HCC and CCA, lncRNA UCA1 is also over-
expressed in gallbladder cancer (GBC) [62]. ,e overexpressed
lncRNA UCA1 regulated tumor progression through the re-
cruitment of EZH2 to the promoter of both tumor suppressor
p21 and E-cadherin that resulted in their suppressed expression
[62]. ,is observation is opposed to what discovered in HCC
by Hu et al. for p21, which could be probably explained by
different cancer types used.

In short, these findings revealed the association of
lncRNA UCA1 in tumor progression, invasion, and me-
tastasis of hepatobiliary cancer by regulating downstream
molecules or be regulated by upstream mediators.

3.4. Pancreatic Cancer. Pancreatic cancer (PC) is the fourth
leading cause of cancer-related deaths worldwide [80, 81].
According to Chen et al., lncRNA UCA1 overexpression was
detected in the tissues of 128 pancreatic cancer patients
compared to adjacent nontumor tissues [63]. Moreover,
lncRNA UCA1 silencing inhibited cell proliferation and in-
duced apoptosis and cell cycle arrest in PC cells [63]. ,ey also
found the possible association of lncRNA UCA1 with the
inhibition of p27 in their previous study on PC [63]. In ad-
dition, lncRNA UCA1 was shown to regulate growth and
metastasis by sponging miR-135a in PC [64]. Apart from the
interaction with miR-135a, lncRNA UCA1 also inhibitedmiR-
96, a tumor suppressor mRNA, resulting in the upregulation of
forkhead box O-3 (FOXO3) to promote tumor progression
[65].

In PC cells, lncRNAUCA1 demonstrated to promote cell
migration and invasion through Hippo pathway by
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interacting with key proteins, such as Mps one binder kinase
activator (MOB1), large tumor suppressor kinase 1 (Lats1),
phosphorylated-Lats1, and Yes-associated protein (YAP)
[66]. LncRNA UCA1 bound to MOB1, Lats1, and YAP to
form three shielding composites, retaining YAP activation
and leading to YAP translocation into the nucleus to induce
gene expression for cell proliferation and apoptosis and for
lncRNA UCA1 expression itself [66]. Moreover, lncRNA
UCA1 also interacted with MOB1, Lats1, and YAP to form
ribonucleoprotein complex that could be another reason in
regulating gene expression. In addition, upregulation of
MMP (e.g., MMP14, MMP2, and MMP9) proteins were also
detected in lncRNA UCA1-overexpressed PC cells, sug-
gesting the role of lncRNA UCA1 in invasion and migration
[66]. ,is study indicated that lncRNA UCA1 could interact
with key proteins and protein complexes by binding to their
promoter region to enhance PC cell progression.

In pancreatic ductal adenocarcinoma (PDAC), lncRNA
UCA1 regulated miR-590-3p to increase the expression of
oncogenic Kirsten rat sarcoma viral oncogene homolog
(KRAS) protein, and KRAS itself can promote lncRNA
UCA1 expression [67]. ,is discovery showed that lncRNA
UCA1 and its downstream protein could regulate each other.
Previously, Gu et al. reported that lncRNA UCA1 was as-
sociated with miR-590-3p in GC cells via the target gene of
miR-590-3p and creb1 [46]. Interestingly, Liu et al. newly
discovered that kras is another target gene of miR-590-3p in
PDAC [67].,erefore, further studies could be conducted to
identify miRNA target genes associated with lncRNA UCA1
to enhance the understanding of the exact mechanism in
regulating PDAC progression.

Interesting observation by using human PDAC PANC-1
cells showed the potential of ceRNA networks, consisting of
lncRNAs, circRNAs, and mRNAs, to be involved in autophagy
suppression of PDAC caused by chloroquine diphosphate [82].
By using microarrays, numerous ceRNAs exhibited target as-
sociations with miR-663a-5p and miR-154-3p, and negative
associations with the expression of the targeted miRNAs under
the same changes in the autophagic level were determined [82].
,e study also demonstrated that AC024560.2 competitively
binds to miR-663a-5p and thus regulates the autophagic level of
PDAC cells by inhibiting the expression of this miRNA [82].
,is shows that the ceRNAs including lncRNA could be a
potential molecular target in diagnosis and treatment of PC.

To sum up, lncRNA UCA1 plays a significant role in PC
progression that could be a novel independent predictor of
the poor survival of PC patients, as well as a promising
biomarker in cancer therapy.

3.5.ColorectalCancer. Highly expressed lncRNAUCA1 is also
reported in colorectal cancer (CRC) cells and contributed to
tumorigenic activity [68]. For instance, overexpressed lncRNA
UCA1 reduced miR-204-5p expression in CRC cells to enhance
the expression ofmiR-204-5p target proteins, such as BCL2, ras-
related protein (RAB22A), and CREB1 [69]. Elevated expres-
sion of BCL2 and RAB22A can promote CRC cell proliferation

and drug resistance, while CREB1 transcription factor involves
in CRC tumorigenesis [69, 83]. In addition to miR-204-5p,
creb1 is also a target gene of miR-590-3p [46].

Similarly, lncRNA UCA1 also inhibited miR-28-5p ac-
tivity to cause the overexpression of Homeobox B3
(HOXB3), promoting CRC cell proliferation and migration
[70]. Cui et al. revealed that both lncRNA UCA1 silencing
and elevation of miR-28-5p expression reduced the protein
levels of MMP2 and MMP9 that play a crucial role in cancer
cell metastasis [70].

Interestingly, lncRNA UCA1 also has an miRNA
sponging activity in CRC. For instance, it sponged miR-185-
5p and led to overexpressed Wnt family member 1 (WNT1)
and WNT1-inducible-signaling pathway protein 2 (WISP2);
both activating WISP2/β-catenin signaling pathway to
regulate autophagy and survival of CRC [71]. Apart from
wnt1 and wisp2,mapk14 is also a target gene of miR-185-5p,
where upregulation of mapk14 activated mitogen-activated
protein kinase-activated protein kinase 2 (MAPKAPK2)/
heat-shock protein 27 (HSP27) signaling pathway to pro-
mote invasion, migration, and EMT [72].

,e interplay of CRC tumor microenvironment on the
expression of lncRNA UCA1 has also been studied. Jahangiri
et al. demonstrated that cancer-associated fibroblasts (CAFs)
activated lncRNAUCA1 to inducemTOR overexpression [73].
,e active lncRNA UCA1/mTOR axis subsequently reduced
the expression of tumor suppressor p27 and miR-143 while
significantly increased cyclin D1 and KRAS expression [73].
Nonetheless, they further discovered that mTOR can regulate
miR-143, but whether lncRNA UCA1 could directly regulate
the expression of miR-143 is unknown.

Interestingly, it was discovered that the expression of
lncRNA UCA1 was significantly higher in four CRC human
tissues andCCL244CRC cells, but no significant difference was
observed in HCT-116 CRC cells after chemoradiotherapy [74].
,is observation may indicate that lncRNA UCA1 plays a
regulatory role in CRC radioresistance. Nevertheless, when
lncRNA UCA1 was silenced, it enhanced the radiotherapy
sensitivity of CRC cells via X-ray irradiation-induced apoptosis
and prolonged G2/M cell cycle [74]. Yang et al. further showed
that low level of lncRNA UCA1 inhibited EMT induction by
significantly suppressing the expression of EMT-regulating
proteins, such as MMP2, MMP9, ZEB1, and vimentin [74]. In
addition, the regulation of lncRNA UCA1 in CRC chemo-
resistance is also facilitated by autophagy. For instance, it was
shown to promote 5-fluorouracil resistance in CRC cells by
facilitating autophagy mediated by repressed miR-23b-3p and
elevated zinc finger protein 281 (ZNF281) [75]. Similarly,
lncRNA UCA1 also mediated autophagy to protect BC against
rapamycin by inducing miR-582-5p-regulated autophagy-re-
lated protein 7 (ATG7) [84].

Meanwhile, Yang et al. illustrated that exosomal lncRNA
UCA1 could be a promising biomarker for effective diag-
nosis and targeted therapy as exosomal lncRNA UCA1 can
be assayed in a noninvasive manner and found to be rela-
tively abundant and stable in the serum of CRC patients [76].
To note, exosomes originated from cetuximab-resistance cell
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can alter the expression of lncRNA UCA1 and enhance
resistance to cetuximab in CRC cells in view of the fact that
lncRNA UCA1 can transmit cetuximab resistance to sen-
sitive cells [76]. Given this circumstance, exosomal lncRNA
UCA1 indeed has a great potential to be used as an evalu-
ation factor for predicting cetuximab chemoresistance in
CRC patients.

In summary, lncRNA UCA1 participated significantly in
the CRC progression, invasion, migration, metastasis,
radioresistance, and chemoresistance. ,erefore, lncRNA
UCA1 can be a promising molecular target to combat CRC
in chemotherapy, as well as in diagnostic and prognostic
purpose of CRC patients.

4. Conclusion

,is review has provided an insight into the regulatory roles
and patterns of lncRNA UCA1 in GI cancer progression and
chemoresistance, as well as its underlying mechanisms and
interaction with key molecules involved, which may serve as
a novel and highly potential molecular target for GI cancer
therapy. It has discovered that multiple preclinical and
clinical studies supporting the oncogenic role of lncRNA
UCA1 in GI cancer. In addition, the potential of lncRNA
UCA1 to be used as a prognostic marker has also been
reported in several studies, where its expression correlates
with the TNM stage of GI cancer [85]. Based on the findings
in this review, it was revealed that basic overexpression of
lncRNA UCA1 has a positive implication in initiation,
proliferation, invasion, migration, and chemoresistance of
GI cancer, although contradictory findings claim that it also
has anticancer activity, via the interactions with upstream
and/or downstream molecules, signaling pathways, or bio-
logical processes. ,e regulatory roles of lncRNA UCA1 in
GI cancer progression are relatively observed more in GC
followed by CRC. Comparatively, the regulation of che-
moresistance by lncRNAUCA1 has so far discovered only in
GC and CRC [16]. In general, lncRNA UCA1 interacts with
miRNAs, leading to the reduction of its target gene ex-
pression, such as sponging miR-185-5p, in CRC. Moreover,
a similar miRNA sponging activity by lncRNA UCA1 can be
observed in different GI cancers, such as miR-590-3p in GC
and PDAC [46, 67]. LncRNA UCA1 also modulates several
gene expressions through epigenetic regulation, particularly
associated with histone and chromatin modifications. For
instance, lncRNA UCA1 interacts with EZH2 to induce
histone methylation as observed in GC, HCC, and CCA
[50, 55, 62].

,e strategy of lncRNAUCA1 silencing conducted bymany
researchers showed a promising result in combating GI cancer
progression and chemoresistance. Moreover, targeted therapies
against lncRNAUCA1 can also be developed for cancer therapy.
,e approaches that could be taken to achieve this purpose
include lncRNA UCA1 silencing via RNA interference (RNAi)
and structural disruption of lncRNA [86, 87]. In addition, the
research of active compounds from the natural products,
particularly plants, also could be considered in order to achieve
this purpose.,is is because the active phytochemicals in many
herbal plants have shown to exert potent cytotoxic effects

against various cancers, including GI cancer [88–90]. In con-
clusion, lncRNA UCA1 has been identified as a novel and
potential molecular target for GI cancer in the last decade based
on its potent regulatory roles in cancer progression and che-
moresistance. However, to enhance its translation possibility to
clinical trials, more preclinical studies using both in vitro and in
vivo models should be conducted to further explore the key
mechanism of actions underlying its regulatory roles. Also,
lncRNA UCA1, particularly enriched in exosomes, can be a
potential diagnostic and prognostic biomarker compared to
other molecular targets due to its high stability and availability
in various human body fluids, including urine for BC [13],
serum for HCC [91], and plasma sample in early GC [42], as
well as its possible simplicity of extraction and diagnostic testing
procedures.
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