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Sclerotinia homoeocarpa (F. T. Bennett) is one of the most economically important pathogens on high-amenity cool-season turf-
grasses, where it causes dollar spot. To understand the genetic mechanisms of fungicide resistance, which has become highly
prevalent, the whole genomes of two isolates with varied resistance levels to fungicides were sequenced.
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Sclerotinia homoeocarpa, the causal agent of dollar spot disease,
is the most economically important cool-season turfgrass

pathogen. This sterile ascomycete fungus has developed cross-
resistance and multiple resistance to the demethylation inhibitor
(DMI), methyl benzimidazole carbamates (MBC), and dicarbox-
imide fungicide classes (1–4). Two isolates of S. homoeocarpa,
HRS10 and HRI11, were collected from individual symptomatic
leaf blades of creeping bentgrass (Agrostis stolonifera) in 2009 (5).
HRI11 displays resistance to DMI fungicides and other chemically
unrelated fungicide classes, while HRS10 is sensitive to all fungi-
cide classes (6, 7).

The isolates were preserved on oat seeds (Avena sativa L.), ac-
cording to methods described previously (8). Both isolates were
transferred to potato dextrose agar (Difco Laboratories, Detroit,
MI), subcultured after 4 days onto potato dextrose broth, and
grown for an additional 4 days. Mycelia were freeze-dried using a
lyophilizer (Labconco, Kansas City, MO), and the total genomic
DNA was extracted using a modified cetyltrimethylammonium
bromide method (9).

Libraries were made using a combination of PacBio CLR reads
with 20-kb inserts at the High-Throughput Sequencing Facility
(HTSF) at North Carolina University, USA, and 2 � 100 Illumina
HiSeq reads (Macrogen, Seoul, South Korea). Over 38,000,000
Illumina HiSeq and 1,420,000 PacBio CLR reads were generated
for each isolate. The Illumina reads were polished using default
parameters with Trimmomatic (10). De novo assembly was per-
formed using SPAdes version 3.6.1 (11), with k-mer lengths of 33,
55, and 77. Contigs �5,000 bp and PacBio CLR reads were used
for scaffolding with SSPACE-LongRead (12). Scaffolding up-
graded the HRS10 draft genome to 231 scaffolds and a total length
of 42,266,283 bp (N50, 600,417 bp), with a largest scaffold of
1,672,908 bp and a G�C content of 43.35%. The HRI11 assembly
was upgraded to 257 scaffolds and a total length of 43,359,131 bp
(N50, 709,078 bp), with a largest scaffold of 1,993,158 bp and a
G�C content of 43.83%.

Repeats were masked using RepeatMasker and the fungal repeti-
tive elements database from Repbase (13). A total of 1,272,222 bp

were masked in HRS10 (3.01%), and 1,353,753 bp were masked in
HRI11 (3.12%). Using the masked genomes, 12,216 and 12,912 pro-
teins were annotated for HRS10 and HRI11, respectively, using RNA
transcripts from S. homoeocarpa (6) as cDNA hits with Augustus (14).

Previous reports (6, 7) have revealed multiple mechanisms of fun-
gicide resistance conferred in isolates HRS10 and HRI11. ATP-
binding cassette (ABC) transporters have been shown to be upregu-
lated in the absence and presence of fungicides and contribute to
insensitivity to multiple fungicidal classes. Moreover, zinc finger pro-
teins and other transcription factors play a potential role in the detox-
ification of xenobiotic substances in S. homoeocarpa (6). These tran-
scription factors and their DNA-binding domains can now be
searched on a genome-wide level for comparisons between HRS10
and HRI11.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited in GenBank under the acces-
sion no. LNGN00000000 for HRS10 and no. LNKV00000000 for
HRI11. The versions described in this paper are the first versions,
LNGN01000000 and LNKV01000000, respectively.
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