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Machine learning (ML) methods can be leveraged to prevent the spread of deadly infectious disease outbreak 
(e.g., COVID-19). This can be done by applying machine learning methods in predicting and detecting the deadly 
infectious disease. Most reviews did not discuss about the machine learning algorithms, datasets and performance 
measurements used for various applications in predicting and detecting the deadly infectious disease. In contrast, 
this paper outlines the literature review based on two major ways (e.g., prediction, detection) to limit the spread 
of deadly disease outbreaks. Hence, this study aims to investigate the state of the art, challenges and future 
works of leveraging ML methods to detect and predict deadly disease outbreaks according to two categories 
mentioned earlier. Specifically, this study provides a review on various approaches (e.g., individual and ensemble 
models), types of datasets, parameters or variables and performance measures used in the previous works. The 
literature review included all articles from journals and conference proceedings published from 2010 through 
2020 in Scopus indexed databases using the search terms Predicting Disease Outbreaks and/or Detecting Disease 
using Machine Learning. The findings from this review focus on commonly used machine learning approaches, 
challenges and future works to limit the spread of deadly disease outbreaks through preventions and detections.
1. Introduction

The current global population of 7.8 billion (2020) persons is ex-

pected to reach 9.7 billion by 2050 [1]. Unfortunately, this population 
growth drives infectious disease rate upward [2]. There are many fac-

tors that contribute to disease emergences. These factors include climate 
change, globalization and urbanization, and most of these factors are to 
some extent caused by humans. Pathogens may be prone to emergence 
in themselves, and rapidly mutating viruses are more common among 
the emerging pathogens. Infectious disease occurs when a pathogen 
from a person can infect another person or an animal. It can cause harm 
on a macro scale such as the coronavirus COVID-19 and therefore can 
be considered as a major social problem. It not only harms individuals, 
but also causes harm on a macro scale and, therefore, is regarded as a 
social problem [3]. Thus, identification of high-risk areas for deadly in-

fectious and non-infectious disease outbreaks is very importance so that 
prediction and detection of the deadly disease outbreaks can be con-

ducted and responding to these deadly disease outbreaks can be made 
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more effectively. Health agencies can leverage Machine Learning (ML) 
approaches in several ways to limit the spread of deadly infectious dis-

ease outbreak (e.g., COVID-19) [4, 5]. This can be done by applying 
machine learning algorithms in predicting and detecting the deadly in-

fectious disease and also in responding to the deadly infectious disease. 
Most reviews focus on the application AI technology generally in health-

care and did not discuss about the algorithms, datasets and performance 
measurements that were used. In contrast, this paper outlines the liter-

ature review based on two major ways (e.g., prediction and detection) 
in controlling the spread of deadly disease outbreaks.

In predicting the disease outbreak [6, 7, 8], the machine learning al-

gorithms can be used to learn datasets that consist of information about 
known viruses, animal populations, human demographics, biology and 
biodiversity information, available physical infrastructures, cultural/so-

cial practices around the world and also the geolocation of the diseases 
to predict any outbreaks. For instance, Malaria outbreak prediction 
can be performed using Support Vector Machine (SVM) and Artificial 
Neural Network (ANN) models that use Average monthly rainfall, Tem-
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perature, Humidity, Total number of positive cases, Total number of 
Plasmodium Falciparum (pF) cases and outbreak occur in binary val-

ues 𝑌 𝑒𝑠 or 𝑁𝑜, as the predictors and Root Mean Square Error (RMSE) 
and Receiver Operating Characteristic (ROC) are used to measure the 
performance of the models [6].

Public-health officials can also make use of the Geographic Infor-

mation System (GIS) data and spatial analytic methods can be used to 
derive information or predictions with more proactive in taking steps to 
prevent future outbreaks [9]. Geographic information technology can 
be used to extract the spatial location of cases and explore the temporal 
and spatial changes of the disease epidemic and its spatial relationship 
with other objects stored in the GIS [7].

In order to produce effective detection methods, the machine learn-

ing methods can be embedded into an intelligent system in order to 
gauge or mine social media data for indications of any outliers related 
to unusual flu symptoms [10]. For instance, Chae at al. proposed a deep 
learning approach to predict infectious diseases. In their work, the pa-

rameters of deep learning algorithms are optimized and at the same 
time incorporating social media data for better detection results [11]. 
The parameters involved include variables such as the number of con-

firmed infectious disease diagnoses occurrence, the number of daily 
naver search, the number of Twitter mentioning the disease, the av-

erage temperature and humidity for all South Korea.

Live data related to emergency medical service and ambulance data 
can also be extracted and analysed for anomalies by using any machine 
learning algorithm for a better process and a more efficient and effective 
algorithm in detecting an abnormal disease event with much faster.

In responding to the infectious disease outbreaks, making a very 
quick informed decision is very critical in order to reduce the damages 
caused by the impact of the disease outbreaks after a disease event is 
identified [3, 8]. Machine learning methods can also learn integrated 
multi-sources data related to travel schedule, population, logistics and 
epidemiology data in order to predict the disease’s location and rate 
of spreading. For medical doctors, machine learning methods can be 
used to improve the application of current treatment and accelerate the 
time it takes to develop new treatments. For instance, they may use 
deep learning algorithms to model large data sets in order to learn any 
medical data captured by the hospitals. For example, data from clinical 
tests of coronavirus patients can serve as input for machine learning 
models so doctors can make faster diagnoses.

The aim of this study is to investigate the state of the art, challenges 
and future works of leveraging machine learning methods to control the 
spread of deadly disease outbreaks according to two categories men-

tioned earlier. This study provides a review on various approaches, 
types of datasets, types of parameters or variables, individual models, 
ensemble models, performance measures and approaches used in the 
previous works. The literature review included all articles from jour-

nals and conference proceedings published from 2010 through 2020 in 
Scopus indexed databases using the search terms Predicting Disease Out-

breaks and/or Detecting Disease using Machine Learning. We categorized 
all articles and reports based on global health security issues addressed -
i.e., whether it depicted prediction or detection strategies. The findings 
from this review focus on commonly used machine learning approaches, 
challenges and future works in controlling the spread of deadly disease 
outbreaks through preventions and detections.

2. Method

The aim of this Systematic Literature Review (SLR) [12] is to iden-

tify, evaluate and interpret all available research relevant to the appli-

cation of machine learning approaches in limiting the spread of deadly 
disease outbreaks.

Five primary stages are identified to be included in this SLR. They 
are called Identification of Preliminary Requirement (IPR), Contents Re-

trieval (CR), Contents Evaluation (CE), Contents Summarization (CS) 
and Review Findings Reporting (RFR).
2

Fig. 1. Five primary stages of the systematic literature review.

In the IPR stage, it involves activities to determine the requirements 
for a systematic review and it also serves to eliminate the possibility 
of researcher biases in reviewing all the papers by determining the ap-

propriate review protocol. The objective of the review protocol is to 
ensure that the process of reviewing can be conducted unbiasedly. The 
most critical elements of the proposed review protocol in this work 
include all the outlined research questions, the process of searching rel-

evant studies, inclusion and exclusion criteria, determining the quality 
assessment, knowledge extraction and data synthesis which details are 
explained in the next section.

The contents retrieval stage consists of formulating research ques-

tions that focus on the machine learning approaches that are leveraged 
to limit the spread of disease outbreaks and finally establishing the ap-

propriate search process in order to conduct the search activities.

The contents evaluation stage involves the following steps: formu-

lating the predefined selection criteria with the purpose of selecting 
relevant and assessing the quality of these studies based on the prede-

fined quality assessment procedure outlined in this work. The contents 
summarization stage will then extract information obtained from the 
studies by performing data synthesis and to summarise the results. The 
final reporting of the review findings stage is presenting the findings 
and concluding this review with some future works derived from this 
review. All these processes are illustrated in Fig. 1 in which new infor-

mation can be integrated into the report in the future.

3. Contents retrieval

3.1. Formulating research questions

The research questions (RQs) were formulated to define the scopes 
of the research according to three viewpoints; population, intervention

and outcomes [12]. The population viewpoint covers the areas or roles 
(e.g., prediction, detection and responses) affected by the intervention. 
The populations might be any of the following: The roles of specific 
machine learning method or the types of machine learning models and 
its application area. Then, the intervention viewpoint covers machine 
learning approaches that address specific issues, for example, machine 
learning approaches to perform specific tasks such as prediction of dis-

ease outbreak, detection of disease outbreak and responses to disease 
outbreak. Finally, the outcomes viewpoint should relate to factors of 
importance to practitioners such as improved prediction, reduced di-

agnosis costs for certain diseases, and reduced time to perform the 
detection of deadly disease outbreak. All relevant outcomes should be 
specified. For example, in some cases, we require interventions that 
improve some aspect of disease outbreak prediction without affecting 
another, e.g., improved reliability with no increase in cost. The primary 
objective of this SLR is to collect and analyse appropriate evidences to 
answer the outlined RQs. Our motivation is to answer a set of seven 
RQs to obtain insights into significant aspects of our research direction, 
including advancing our knowledge of the roles of ML technologies in 
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Table 1. Research question.

ID Research Question

RQ1 What are the roles of machine learning models in limiting the spread of 
deadly diseases outbreak?

RQ2 What disease datasets in the literature have been used to build the models?

RQ3 What type of parameters or variables have been used?

RQ4 What type of problems are addressed using these machine learning models?

RQ5 What are the individual models used?

RQ5.1 What are the best performing individual models?

RQ6 What are the evaluation measures and approaches used to assess the per-

formance of the machine learning models?

RQ7 What type of ensemble models are used in the machine learning models?

RQ7.1 Do the ensemble models outperform the individual models?

Table 2. Online digital libraries.

No Online Digital Libraries Websites

1 Elsevier https://www .sciencedirect .com/
2 Springer https://link .springer .com/
3 IEEE eXplore https://ieeexplore .ieee .org/
4 ACM Digital Library https://dl .acm .org/
5 Wiley online library https://onlinelibrary .wiley .com/
6 Medline (life sciences and 

biomedicine)

https://www .nlm .nih .gov /bsd /
medline.html

limiting the spread of deadly disease outbreak and identifying the lim-

itations of research so as to define further research directions. The RQs 
and their motivation are documented in Table 1.

3.2. Search process

The search process is conducted, and it must ensure that all the 
predefined research questions can be taken into consideration and thus 
this search process involves identifying the appropriate digital libraries, 
choosing the interval time of the published articles and defining search 
keywords.

Five most popular and largest computer science online digital li-

braries and a Medline digital library that publish peer-reviewed articles 
will be explored and these digital libraries are listed in Table 2.

Furthermore, several independent relevant journals and conference 
proceedings in the artificial intelligence field were explored which are 
presented in Table 4. The search was limited to articles published in 
the interval from 2010 to 2020. We restricted the search in this time 
interval since machine learning has been extensively used to be applied 
to problems related to diseases outbreak in 2010s.

We created a list of search strings by integrating appropriate syn-

onyms and alternative terms with the Boolean operator (AND has the 
effect of narrowing and limiting the search, while OR serves to broaden 
and expand the search).

The following search terms were formulated in this SLR: (artificial 
intelligence OR disease outbreak), (artificial intelligence AND disease 
outbreak), (machine learning OR disease outbreak), (machine learn-

ing AND disease outbreak), (deep learning OR disease outbreak), (deep 
learning AND disease outbreak), (prediction OR disease outbreak), (pre-

diction AND disease outbreak), (detection OR disease outbreak), (detec-

tion AND disease outbreak).

Since deep learning algorithm is one of the machine learning al-

gorithms and machine learning is a subset of artificial intelligence, we 
decided to use these terms in this review. Thus, this paper focuses on 
a systematic summarisation of artificial intelligence techniques that in-

clude machine learning techniques and deep learning techniques used 
in predicting, detecting and responding the deadly disease outbreaks. 
The candidate studies were selected if they meet our criteria outlined 
in Content Evaluation section.

4. Contents evaluation

In the content evaluation phase, several criteria were carefully for-

mulated in order to ensure that appropriate studies are selected. Table 3
3

Table 3. Quality Assessment Question.

ID Ten Assessment Questions

AQ1 Does the study define a main research objective or problem related to 
the spread of deadly diseases outbreak (e.g., prediction, detection, re-

sponses)?

AQ2 Does the study specify the relevant disease datasets used?

AQ3 Does the study specify the availability of these datasets (e.g. public 
datasets, private datasets)?

AQ4 Does the study define the parameters or variables used or learnt by the 
machine learning algorithms?

AQ5 Does the study define the type of parameters used or learnt by the ma-

chine learning algorithms?

AQ6 Does the study specify the type of machine learning models used (e.g. 
classification, regression, clustering) in solving the problem?

AQ7 Does the study specify the individual models explicitly (e.g., neural net-

work, linear regression)?

AQ8 Does the study specify the evaluation measures (e.g., Accuracy, Preci-

sion, Recall, F-Measure, ROC) used to assess the performance of the 
proposed machine learning approach?

AQ9 Does the study specify the evaluation approaches (e.g., cross-validation, 
holdout) used to assess the performance of the proposed machine learn-

ing approach?

AQ10 Does the study specify the ensemble models (e.g., bagging, boosting) 
used and compare the performance with individual models?

shows the assessment criteria outlined in this work. Then, all retrieved 
studies were examined carefully. This quality assessment was per-

formed according to the quality checklist proposed by Kitchenham [12]. 
The main objective of the assessment is to evaluate and select relevant 
studies that can be used to answer all the predefined research questions 
outlined in Table 1.

The total scoring of the quality assessment by applying all the ques-

tions for a particular study, 𝑆𝑗 , can be measured using the following 
formula:

𝑆𝑐𝑜𝑟𝑒(𝑆𝑗 ) =
1

|𝐴𝑄|
|𝐴𝑄|∑
𝑖=1

𝐴𝑄𝑖,𝑗 (1)

where |𝐴𝑄𝑖,𝑗 | is the number of questions applied (e.g., which is 10 
for AQ1 - AQ10), 𝐴𝑄𝑖,𝑗 is the score for individual assessment ques-

tion, 𝑖, for study 𝑗, in which the value of score is 1 if the answer is 
YES, 0.5 is the answer is partly and 0 if the answer is NO. Then, the 
paper is ranked according to the score computed in Eq. (1), as Excel-

lent (0.85 ≤ 𝑆𝑐𝑜𝑟𝑒(𝑆𝑗 ) ≤ 1.00), Good (0.65 ≤ 𝑆𝑐𝑜𝑟𝑒(𝑆𝑗 ) < 0.85), Fair

(0.50 ≤ 𝑆𝑐𝑜𝑟𝑒(𝑆𝑗 ) < 0.65) and Poor (0.00 ≤ 𝑆𝑐𝑜𝑟𝑒(𝑆𝑗 ) < 0.50). Based on 
the above quality assessment criteria, we only consider studies that are 
ranked Excellent and Good only.

The number of studies retrieved, screened, reviewed and the average 
score of assessments for each study reviewed are summarized in Table 4

and the total of studies selected for each year are tabulated in Table 5.

Based on the proposed assessment, forty-seven studies have been 
selected to be reviewed for this SLR. The search yielded 47 articles and 
publicly available reports from the computer science and the pubmed 
online digital library. Based on Table 5, majority of the papers reviewed 
are obtained from the publications between the year 2018 and 2020.

5. Contents summarization

Both quantitative and qualitative data were extracted from the se-

lected studies that address issues related to the outlined research ques-

tions and the results are presented in the form of tables.

5.1. Roles of machine learning models

Disease outbreaks prediction and detection contributes to the im-

provement of the surveillance systems. Based on the type of problems 
addressed, most of the task of predicting the disease outbreaks or mod-

elling the disease frequencies using regression methods. On the other 
hand, most of the classification problems solved by machine learning 

https://www.sciencedirect.com/
https://link.springer.com/
https://ieeexplore.ieee.org/
https://dl.acm.org/
https://onlinelibrary.wiley.com/
https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/medline.html
https://www.nlm.nih.gov/bsd/medline.html
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Table 4. Number of studies screened and reviewed.

No Online Digital 
Libraries

Retrieved Screened Reviewed Average 
Score

Quality

1 Elsevier 987 54 18 0.889 Excellent

2 Springer 559 46 6 0.817 Good

3 IEEE eXplore 456 15 7 0.771 Good

4 ACM 380 13 7 0.814 Good

5 Wiley 28 8 1 0.800 Good

6 Medline 
(PubMed)

158 25 8 0.825 Good

Total 47 0.838
Table 5. Number of studies reviewed based on year (2010 - 2020).

2010 - 2015 2016 2017 2018 2019 2020

Studies 7 3 2 9 19 7

Table 6. Type of Machine Learning Problems and Related Studies.

Problems Roles Related Studies

Regression Predict disease 
outbreaks

[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 
37, 38, 39, 40, 41, 42]

Classification Detect disease 
outbreaks

[22, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 
54, 55, 56, 57, 58, 59]

Table 7. Structured Data: Datasets and Parameters Used.

Databases (Frequency) Features

Epidemiology Data (18) Number of Disease Outbreak Incidences, Signs and 
Symptoms of Diseases, Treatment Information, Sea-

sonal Information

Spatial Data (4) GPS Coordinates, Topology, Distance, Area

Remotely Sensed Data (2) Normalized Difference Vegetation Index, Normal-

ized Difference Water Index, Land Surface Temper-

ature

Meteorological Data (24) Temperature, Humidity, Precipitation, Air Pressure, 
Solar Radiation, Wind Speed

Physiological Data (3) Blood Pressure, Cholesterol, Obesity, Heart Rate, 
Risk Factor (e.g., Smoking)

Demographic Data (6) Age, Gender, Race, Ethnicity, Marital Status, In-

come, Education, Occupation, Employment

Table 8. Unstructured Data: Datasets and Parameters Used.

Databases (Frequency) Features

Social Media Data (12) Posted Text, Post Time, Post Date, Post Geo-

Location, Number of Comments, Number of Likes

Search Keywords (9) Keywords Searched, Keywords Volumes, Key-

words Trends

News Articles (1) Original News Texts, News Published Date, Symp-

toms Detected

models are related to the task of detecting disease outbreaks. Table 6

tabulates all the studies related to prediction and detection of disease 
outbreaks.

5.2. Types of datasets and parameters used

Tables 7 and 8 summarize both the structured and unstructured data 
based on the type of datasets used and also number of studies con-

ducted for predicting and detecting the spread of disease outbreaks in 
this work. Based on these findings obtained from all the studies, there 
are six sets of structured datasets and three sets of unstructured datasets 
identified as the most commonly used in predicting and detecting the 
spread of disease outbreaks.

The structured databases include the Epidemiology Data, Spatial Data, 
Remotely Sensed Data, Meteorological Data, Physiological Data and finally 
Demographic Data. Epidemiology is a systematic study and analysis of the 
distribution, patterns and determinants of health and disease conditions 
in a particular predefined population. The three most used epidemiol-

ogy parameters in this review include the number of disease outbreak 
incidences, signs and symptoms of diseases, treatment information and 
4

seasonal information. Spatial data, also known as geospatial data, is in-

formation about a physical object that can be represented by numerical 
values in a geographic coordinate system [60]. Other information in-

cludes digital elevations, distance and area. Remotely Sensed Data are 
derived from the remote sensing activities. Remote sensing is the pro-

cess of detecting and monitoring the physical characteristics of an area 
by measuring its reflected and emitted radiation at a distance (typically 
from satellite or aircraft) [61]. Three parameters that are commonly in-

cluded in the prediction that include Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index (NDWI) and Land 
Surface Temperature (LST). Meteorological data includes temperature, 
humidity, precipitation (Rain or Snow), air pressure, solar radiation and 
wind speed. They were collected regionally by surface and upper air 
meteorological stations [62]. Physiological data represents physiologi-

cal properties including blood pressure, cholesterol, obesity, heart Rate 
and many others variables [63]. Finally, demographic data is statistical 
data collected about the characteristics of the population, e.g. age, gen-

der, race, ethnicity, marital status, income, education and occupation 
for example.

Next, unstructured databases are typically large collections of files 
that are not stored in a structured database format. In this work, three 
types of unstructured datasets are found to be useful that include Social 
Media Data, Search Keywords and News Articles. Social media data (or 
social data for short) refers to all of the raw insights and information 
collected from individuals social media activity [64]. This social data 
includes posted texts, post time, post date, post location, number of 
comments and number of likes. Keyword research provides you with 
specific search data that can help you answer questions such as what 
are people searching for, how many people are searching for it and in 
what format do they want that information [65]. In this review, search 
keyword is one of the parameters used to predict the occurrence of 
disease outbreaks, and the parameters collected include the keywords 
searched, keywords volumes and keywords trends. Finally, news articles’

parameters that are commonly used include the original news texts, 
news published date and symptoms detected in the news [66].

5.3. Type of problems addressed and individual machine learning models

Table 9 tabulates and summarizes the regression problems and all 
the individual machine learning models applied to achieve the objec-

tives of each study. On the other hand, Table 10 tabulates and summa-

rizes the classification problems and all the relevant individual machine 
learning models applied to solve these classification problems. The best 
models and their performances for each study are also tabulated in these 
tables. The details of the findings are discussed in Section 6.3. Based on 
the results shown in Table 9, for time-series data, ARIMA and LSTM are 
the most common machine learning algorithms used to perform the pre-

diction [23, 25, 28, 31, 32, 33, 38, 39]. On the other hand, the family of 
ANN and 𝑘NN algorithms are widely used in solving the classification 
tasks [44, 46, 48, 49, 51, 55, 59].

5.4. Assessment measures and methods

Various evaluation measures have been used in assessing the perfor-

mance of the machine learning algorithms used to predict or detect dis-
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Table 9. Regression: Types of Machine Learning approaches and Individual Models Used.

Study Objectives Models Applied Best Model

[13] Predicting the number of new outbreaks of 
diseases

ARMA(1,1), ARMA(1,0), ARMA(0,1) ARMA(0, 1) (MAE = 1.257)

[14] Incidence prediction of communicable dis-

eases using remote sensing

BPNN BPNN∗ (MSE = 0.100)

[15] Predicting dengue outbreak HNN, ANN, NLR HNN∗ (MSE = 0.239)

[16] Prediction of province-level outbreaks of 
foot-and-mouth disease

ZI ZI

[17] Forecasting influenza like illness ARIMA, LASSO, LSTM, FNN, MARS LSTM∗ (MAPE = 0.320)

[18] Antibiotic resistance outbreaks prediction GPR, SVM, 𝑘NN, RF, LR, MLP SVM (MAE = 0.100)

[19] Forecasting the endemic infectious diseases LASSO LASSO (MAPE = 0.404)

[20] Modeling Dengue vector population using 
remotely sensed data and machine learning

LR, RR, SVR, MLP, DTR, 𝑘NNR MLP, 𝑘NNR (MSE = 0.494)

[22] Predicting influenza outbreaks ARIMA, SVM, RF, ANN ANN∗ (MAE = 0.119)

[23] Predict infectious diseases XGBoost, LSTM, RR, ARIMA LSTM∗ (MAPE = 0.099)

[25] Prediction of Malaria disease outbreak ARIMA, SARIMA, BPNN, LSTM LSTM∗ (RMSE = 0.072)

[26] Time Series Analysis of Dengue Fever SARIMA SARIMA(1,2,2) (MAPE = 0.050)

[27] Prediction of avian influenza H5N1 out-

breaks

ARIMA, RF RF (MSE = 0.248)

[28] Predicting new and urgent trends in epi-

demiological data

RNN, LSTM LSTM∗ (RMSE = 0.140)

[29] Predicting the spread of influenza epi-

demics by analyzing twitter messages

ARX, ARMAX, NARX, DeepMLP, CNN CNN∗ (MAE 0.250)

[30] Predicting of Dengue outbreaks 𝑘NN 𝑘NN (RMSE = 0.089)

[31] Influenza Trends Prediction LSTM LSTM∗ (RMSE = 0.015)

[32] Forecast of Dengue Cases in China LSTM-TL, LSTMs, BPNN, GAM, SVR, GBM LSTM-TL∗ (RMSE = 0.322)

[33] Predicting Infectious Disease in Korea OLS, ARIMA, NN, LSTM LSTM∗ (RMSE = 0.179)

[38] Forecasting Hepatitis incidence ARIMA, RNN, ARIMA + RNN ARIMA + RNN∗ (MAPE = 0.045)

[39] Prediction of Haemorrhagic fever with re-

nal syndrome in China

ARIMA, RNN, ARIMA + RNN ARIMA + RNN∗ (MAPE = 0.178)

[40] Forecasting dengue incidence in Guade-

loupe, French West Indies

SARIMA SARIMA (RMSE = 0.850)

[41] Dengue prediction model based on climate SARIMA SARIMA (MSE = 0.839)

[42] Forecasting incidence of hand, foot & 
mouth disease

ARIMA, BPNN BPNN∗ (MAPE = 0.200)

Models: Exogenous Inputs (ARX), Autoregressive Moving Average with Exogenous Inputs (ARMAX), Auto Regressive Inte-

grated Moving Average (ARIMA), Autoregressive Moving Average (ARMA), Artificial Neural Network (ANN), Back Propagation 
Neural Network (BPNN), Convolutional Neural Network (CNN), Decision Tree Regression (DTR), Feedforward Neural Network 
(FNN), Gradient Boosting Machine (GBM), Gaussian Process Regression (GPR), Hybrid Neural Network (HNN), 𝑘-Nearest 
Neighbour (𝑘-NN), 𝑘-Nearest Neighbour Regression (𝑘-NNR), Least Absolute Shrinkage and Selection Operators (LASSO), Lin-

ear Regression (LR), Long Short Term Memory (LSTM), Multilayer Perceptron (MLP), Multivariate Adaptive Regression Splines 
(MARS), Nonlinear Autoregressive Exogenous (NARX), Non-Linear Regression (NLR), Random Forest (RF), Recurrent Neu-

ral Network (RNN), Ridge Regression (RR), Seasonal Autoregressive Integrated Moving Average (SARIMA), Support Vector 
Machine (SVM), Support Vector Regression (SVR), Zero-Inflated (ZI). Note: ∗Belongs to Neural Network family.
ease outbreaks. These types of evaluation measures depend on the prob-

lem type: regression or classification. For instance, the Mean Absolute 
Error (MAE) [13, 18, 22], Mean Absolute Percentage Error (MAPE) [17, 
19, 23, 26, 38, 39, 42], Root-Mean-Square Error (RMSE) [25, 28, 30, 31, 
32, 33, 40] and Mean Squared Error (MSE) [15, 20, 27, 41] evaluation 
measures are used to solve the regression problems and Accuracy [22, 
49, 53, 54, 55, 56], F1 Score [43, 46, 47], AUC-ROC [44, 48, 51] eval-

uation measures are used to solve the classification problems [67]. The 
performance comparison of various approaches and metrics are dis-

cussed in more detail in Section 6.4.

5.5. Ensemble methods

Tables 11 and 12 outline the proposed ensemble approach to pre-

dict and detect disease outcomes and also summarize the evaluation 
approaches and measures used for ensemble learning.

Ensemble model, that integrates multiple weak classifiers, tends to 
perform better than a single classifier. Tables 11 and 12 showed that 
combining several strong classifiers also improved the regression and 
classification results. There is a need to explore further the capability 
of ensemble models or hybrid models based on deep learning methods 
using multi-source data, as these have been shown to improve the per-

formance of the base model. Section 6.5 discusses in detail about the 
5

findings obtained from this review related to the performance of en-

semble methods in detecting and predicting disease outbreaks.

6. Reporting of review findings

In the reporting of review findings, the summary of findings was 
obtained from the selected studies based on the outlined research ques-

tions.

6.1. Roles of machine learning models

This section summarizes and discusses the findings in relation to 
the RQ1: What are the roles of machine learning models in limiting 
the spread of deadly diseases outbreak? The roles of machine learning 
models can be categorized into regression and classification problems.

6.1.1. Regression problems for predicting disease outbreaks

Regression problems are commonly addressed in the task of pre-

dicting or modelling the disease frequencies as shown in Table 6. For 
instance, Li and Luan showed how ARMA model is applied to predict 
the number of new outbreaks of Newcastle Disease during the month 
in a province in china, and to establish some corresponding mathe-

matical predicting models [13]. Soliman et al. have investigated the 
utility of deep learning with feedforward neural networks (DL with 
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Table 10. Classification: Types of Machine Learning approaches and Individual Models Used.

Study Objectives Models Applied Best Model

[22] Predicting influenza outbreaks in Iran SVM, RF, ANN SVM (MAE = 0.132)

[43] Detecting Disease Outbreaks among Physiological 
Variables

FL FL (𝐹1 Score = 0.820)

[44] Predicting outbreak of hand-foot-mouth diseases RR, 𝑘-NN, RF, LSTM LSTM∗ (ROC = 0.841)

[45] Predicting death and cardiovascular diseases in 
dialysis patients.

LR, 𝑘-NN, CART, NB, SVC-RBF SVC-RBF (ACC = 0.953)

[46] Event detection and Situational Awareness of dis-

ease outbreaks

NB, SVM, LSTM LSTM∗ (𝐹1 Score = 0.939)

[47] Modelling disease outbreak events CRF CRF (𝐹1 Score = 0.885)

[48] Infection detection using physiological and social 
data in social environments

𝑘NN 𝑘NN (ROC = 0.798)

[49] Detection and prevention of mosquito-borne dis-

eases

NB, RDT, J48, F𝑘NN F𝑘NN (ACC = 0.959)

[51] Detecting the occurrence of Zika BPNN, GBM, RF BPNN∗ (ROC = 0.966)

[53] Influenza Detection and Surveillance NB, ME, DLM NB (ACC = 0.700)

[54] Detection on Dengue Diseases MAA MAA (ACC = 0.750)

[55] Detection of Meningitis Outbreaks in Nigeria RF, ANN, 𝑘NN, LR, SVM NN∗ (ACC = 0.951)

[56] Detecting global African swine fever outbreaks RF RF (ACC = 0.847)

[59] Detecting disease epidemics using a symptom-

based approach

M𝑘NN M𝑘NN

Models: Artificial Neural Network (ANN), Back Propagation Neural Network (BPNN), Dynamic Language Model 
(DLM), Fuzzy k-Nearest Neighbor (F𝑘NN), Fuzzy Logic (FL), Gradient Boosting Machine (GBM), Long Short Term 
Memory (LSTM), Classification Decision Tree (CART), Conditional Random Field (CRF), J48 classifier (J48), Linear 
Regression (LR), 𝑘-Nearest Neighbour (𝑘-NN), Random Forest (RF), Maximum Entropy (ME), Modified Apriori 
Algorithm (MAA), Modified 𝑘-Nearest Neighbor (M𝑘NN), Naive Bayes (NB), Random Decision Tree (RDT), Ridge 
Regression (RR), Support Vector Classifier RBF kernel (SVC-RBF), Support Vector Machine (SVM). Note: ∗Belongs 
to Neural Network family.

Table 11. Ensemble Methods Used for Regression Problems.

Study Objectives Models Applied Best Model

[21] Forecasting influenza activity SAAIM, LSTM, LASSO SAAIM (MAPE = 0.104)

[24] Predicting Influenza-like-illness (ILI) 
using multiple open data sources

AR, VAR, GPR, RNN, RNN-CNN, 
CNN-RNN-ResNet

CNN-RNN-ResNet (RMSE = 0.259)

[25] Prediction of Malaria disease outbreak ARIMA, SARIMA, BPNN, LSTM, 
ARIMA+SARIMA+BPNN+LSTM

ARIMA + SARIMA + BPNN + 
LSTM (RMSE = 0.068)

[34] Prediction of dengue outbreak EPRA, LASSO, RR, ENet EPRA (MAE - 1.069)

[35] Forecasting Ebola disease epidemic GGM, GLM, GGM+GLM GGM+GLM (RMSE = 0.374)

[36] Forecasting respiratory syncytial virus 
outbreaks

Superensemble Superensemble (MAE = 0.1011)

[37] Forecasting seasonal influenza epi-

demic

XGBoost, LASSO, SAAIM SAAIM (RMSE = 0.374)

Models: Autoregression (AR), Auto Regressive Integrated Moving Average (ARIMA), Back Propagation Neural Net-

work (BPNN), Convolutional Neural Network (CNN), Elastic Net (ENet), Ensemble Penalized Regression Algorithm 
(EPRA), Generalized-Growth Model (GGM), Generalized Logistic Model (GLM), Long Short Term Memory (LSTM), 
Residual Neural Network (ResNet), Seasonal Autoregressive Integrated Moving Average (SARIMA), SARIMA + XG-

Boost (SAAIM), Least Absolute Shrinkage and Selection Operators (LASSO), VAR, GPR, Recurrent Neural Network 
(RNN), Ridge Regression (RR).

Table 12. Ensemble Methods Used for Classification Problems.

Study Objectives Models Applied Best Model

[50] Detecting and Classifying diseases RKRE, SKRE, KG_ResNet RKRE (ACC = 0.886)

[57] Predicting Disease Risk DPMM, COOC, CBC, eDPMM, eCOOC, eCBC eCBC (ACC= 0.765)

[58] Classification of risk areas using am 
ensembled bootstrap-aggregated

Ensemble DTs with bootstrap aggregating eDT (ROC = 0.91)

Models: ResNet, Residual Neural Network (ResNet), ResNet + KG_ResNet (RKRE), Knowledge Graph + Resid-

ual Neural (KG_ResNet), SVM + KG_ResNet (SKRE), Dirichlet Process Mixture Mode (DPMM), DPMM trained 
on disease occurrence (COOC), Co-occurrence Based Clustering (CBC), Ensemble Dirichlet Process Mixture 
Mode (eDPMM), Ensemble DPMM trained on disease occurrence (eCOOC), Ensemble Co-occurrence Based 
Clustering (eCBC), Ensemble Decition Tree (eDT).
FNN) for Influenza like illness (ILI) prediction, in application to fore-

casting influenza in Dallas County based on meteorological data (Air 
Temperature, Relative Humidity(RH), Evapotranspiration (ET), Wind 
Speed, Solar radiation, Soil Temperature and Rainfall) [17]. The results 
obtained using the Deep Learning with Feedforward Neural Network 
were compared to the results obtained by other statistical models such 
as beta regression, Autoregressive Integrated Moving Average (ARIMA), 
Least Absolute Shrinkage and Selection Operators (LASSO), and non-

parametric Multivariate Adaptive Regression Splines (MARS) models 
6

for one week and two weeks ahead forecasting. A probabilistic forecast-

ing of influenza in Dallas County by fusing all the considered models 
using Bayesian model averaging (BMA) was also developed. Based on 
the results obtained, FNN and the BMA-based multi-model ensemble of 
ILI forecasts yield a similar competitive performance, outperforming all 
other considered models.

Mezzatesta et al. have performed a research on the prediction of 
province-level outbreaks of foot-and-mouth disease in Iran using a zero-

inflated negative binomial model based on the number of previous 



R. Alfred and J.H. Obit Heliyon 7 (2021) e07371
occurrences of HFMD for the same or adjacent provinces and season 
as covariates [16]. Incidence prediction of communicable diseases has 
also been proposed by using Back Propagation Neural Network model 
based on population, earthquake intensity, route distance, direct dis-

tance, Normalized Difference Vegetation Index, Normalized Difference 
Water Index, and Digital Elevation Model [14]. A hybrid model using 
genetic algorithm and neural network for predicting dengue outbreak 
based on dengue and rainfall data has also been proposed [15].

6.1.2. Classification problems for detecting disease outbreaks

On the other hand, most classification problems address the task of 
detecting disease outbreaks as shown in Table 6. For instance, mosquito-

borne diseases include Chikungunya, Dengue fever, Yellow fever, Zika 
virus, and Lymphatic filariasis which is transmitted by Aedes aegypti 
mosquito. The female anopheles mosquito spreads Malaria and Lym-

phatic filariasis, whereas culex mosquito spreads Lymphatic filariasis 
and West Nile fever. Vijayakumar et al. incorporated personal informa-

tion, diseases’ signs/symptons and contextual information in building 
the Fog computing-based intelligent healthcare system for the detection 
and prevention of mosquito-borne diseases [49] The experimental eval-

uation revealed the best performance can be achieved using the Fuzzy 
k-Nearest Neighbour (FKNN) classifier with 95.9% classification accu-

racy. Khanita showed another approach that applies symptoms and lo-

cation based method to detect disease epidemics using a symptom-based 
approach. 𝑘-NN clustering is also helpful to identify a new potential 
epidemic cluster [59]. SVC with RBF kernel and GridSearch algorithm 
were used in predicting the outbreak of cardiovascular diseases in Italy 
and America with accuracy of 95.25% based on 29 features that in-

clude Framingham risk factors, Uremic risk factors and inflammatory 
biomarkers [45]. Tapak et al. also investigated and compared the per-

formance of three machine learning techniques of SVM, RF and ANN in 
detecting ILI outbreaks [22]. The total accuracy of the SVM (Gaussian 
Radial Basis (GRBF), polynomial, Sigmoid) was 89.2% which shows ex-

cellent performance.

Khanita showed that 𝑘-NN based classification method can be ap-

plied to detect disease epidemics using a symptom-based and location-

based approach [59]. Vijayakumar et al. also have introduced a Fog 
computing-based intelligent healthcare system for the detection and 
prevention of mosquito-borne diseases [49] using a Fuzzy k-Nearest 
Neighbour (FKNN) classifier with 95.9% classification accuracy.

Chanlekha and Collier have also proposed a method that associates 
each reported event with the most specific spatial information available 
in a news report. This is useful not only for health surveillance systems, 
but also for other event-centered processing systems [47]. Based on the 
results obtained, the Conditional Random Fields (CRF), statistical ma-

chine learning was the approach that performed the best by yielding 
an F-score of 85.5% compared to probabilistic approach. There was an 
approach introduced for detecting disease outbreaks using fuzzy infer-

ence based on physiological variables: age, blood pressure, cholesterol, 
obesity, and smoking [43].

6.2. Types of datasets and parameters used

This section summarizes and discusses the findings in relation to the

RQ2: What disease datasets in the literature have been used to build 
the models? and RQ3: What type of parameters or variables have been 
used?

Table 13 shows the type of diseases, dataset sources and related 
studies working on the prediction and detection in order to limit the 
spread of disease outbreaks. For instance, for dengue disease, most stud-

ies have used the Epidemiology and Meteorological data in order to per-

form the predictions and detections of dengue outbreaks.

For structured datasets, the most frequently used databases include 
the Meteorological and Epidemiology data. The temperature variable im-

proves dengue outbreaks forecasts better than humidity and rainfall for 
the Meteorological data [40].
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Table 13. Diseases, Database Sources and Studies.

Diseases Database Sources or Parameters

Dengue Meteorological Data [15, 19, 20, 32, 34, 40, 41, 49]

Epidemiology Data [26, 49, 52, 54]

Demographic Data [32, 49]

Social Media Data [34, 52]

Remotely Sensed Data [20]

Spatial Data [30]

Zika Epidemiology Data [19, 49, 51, 58]

Meteorological Data [49, 58]

Demographic Data [49, 58]

HFMD Meteorological [19, 42]

Spatial Data [16]

Search Keywords [44]

ILI Social Media Data [21, 23, 29, 33, 37, 53, 68, 69, 70]

Meteorological [17, 21, 23, 31, 33, 37, 68, 69]

Search Keywords [21, 23, 33, 37, 68, 69]

Epidemiology Data [22, 23, 24, 36, 59]

Spatial Data [59]

Others Epidemiology Data [13, 18, 27, 28, 35, 38, 39, 46, 50, 55, 57]

Demographic Data [45, 50, 55, 57]

Meteorological Data [25, 56]

Spatial Data & Remotely Sensed Data [14]

Social Media Data [46]

News Articles [47]

Search Keywords [48]

∗Dependent variable: Number of disease outbreak incidences (EP1) (see

Table 7).

In contrast, for unstructured datasets, Social Media data and Search 
Keyboards are the most frequently used dataset for forecasting disease 
outbreaks (e.g., Influenza-like illness (ILI)). There are also studies con-

ducted that used multiple sources of data such as Social Media Data, 
Search Keywords, Meteorological Data ([21, 23, 33, 37, 68, 69]) and 
also Epidemiology Data coupled with Demographic Data ([50, 55, 57]).

Incorporating multiple sources of data can be useful if there is a 
lack of data availability to predict and detect disease outbreaks [48]. 
For instance, the dynamics of certain diseases, (e.g., Dengue, Malaria, 
Zika) could be associated with other information (e.g., disease carriers 
density, population density and mobility), and this information should 
be incorporated in the process of modelling the spread of disease out-

breaks and reduce the residual errors of the models [34]. There could 
also be a potential threat that may arise when the conducted analysis 
and the data used are dependent on a particular study of diseases. This 
threat can be handled by incorporating multiple data obtained from 
different studies [48]. For instance, incorporating epidemiological data 
that includes incidence, distribution, and control of diseases and me-

teorological data from different locations may produce more reliable 
results [50]. Besides that, several findings have also suggested that in-

corporating epidemiological, demography and meteorological data may 
also improve the performance of the forecasting algorithms [46, 48]. In 
addition to that, incorporating spatial information related to disease 
outbreak with the epidemiological data may also improve the epidemi-

ological detection and prediction [47].

It also has been shown that incorporating data extracted from WSM 
with meteorological data, that is collected at a finer resolution, will also 
improve the performance of the disease detection system [19, 48].

Most unstructured data (e.g., blogs, news or social media medium) 
are not explored intensively. Corley et al. evaluated blog posts, a type 
of Web and Social Media (WSM), and they found that the number of 
blogs related to ILI has a high correlation with the number of ILI related 
reports done by patients during the outbreak of influenza season in US 
2008–2009. In this work, the frequency of WSM posts was hypothesized 
to be highly correlated with the number of patient reporting ILI [70]. 
As a result, one may use the WSM to identify and extract information 
for predicting disease outbreak based on the sentiment characteristics 
and its location, and visualizing the obtained results using any data 
visualization tool. By incorporating the analysis of relevant informa-

tion extracted from WSM, the spread of ILI diseases or any infectious 
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diseases can be detected and predicted with more effectively and effi-

ciently [29, 53].

In addition to that, not many works are done relating to methods 
examined and used to relate disease events that are officially reported 
in any news or reports to their exact GPS location and time of occur-

rences [47]. Words that have similar meanings can also be used to 
improve the relationship between reports and its spatial information. 
For instance, using effective methods for topic modelling (e.g., LDA), 
one can easily perform the topic modelling by identifying the main topic 
of each news article and cluster this news according to the topics. These 
topics or clusters information then could be used to improve the associ-

ation between news articles and events [46, 50].

The detection of disease outbreak can also be improved by en-

hancing the preprocessing techniques for social media sources, such 
as extracting URLs information, removal of meaningless words (e.g., 
stop-words), reducing words into its root words (e.g., stemming), rec-

ognizing and extracting negative words and identifying and locating 
the GPS locations. The GPS location information is now embedded on 
the web social media sites and this information can be leveraged in fu-

ture research for more advanced WSM surveillance system [53]. Most 
of the unstructured resources in the web social media, (e.g., twitter and 
facebook messages and blogs) can be effectively and efficiently exam-

ined and classified based on the Epidemiology related terms and its 
geo-location and the spread of infectious disease could be detected and 
predicted [53].

6.3. Type of problems addressed and individual machine learning models

This section summarizes and discusses the findings in relation to 
the RQ4: What type of problems are addressed using these machine 
learning models? and RQ5: What are the individual models (e.g., neural 
network, linear regression) used? which includes RQ5.1: What are the 
best performing individual models?

AI or machine learning methods can be categorized into supervised, 
unsupervised and semi-supervised learning. Supervised learning is the 
process of inferring a function from labeled training data which are 
used to handle the classification and regression problems in predict-

ing and detecting the occurrence of disease outbreaks efficiently and 
effectively. These algorithms include Support Vector Machine (SVM), 
Decision Tree, Random Forest, Naïve Bayes (NB), Artificial Neural Net-

work (ANN), Bootstrap Aggregating, AdaBoost,

In contrast, unsupervised learning methods can be used for cluster-

ing and dimensionality reduction problems. For instance, Principal Com-

ponent Analysis (PCA) can be used to transform a data into another 
dimension with reduced number of features, which would improve the 
learning process [71]. Other unsupervised learning methods, such as 𝑘-

means clustering, can be used to describe the data by clustering the data 
into smaller groups or subgroups and also can be used to detect outliers. 
In addition to that, for unstructured data, topic modelling algorithms or 
methods (e.g., Latent Dirichlet allocation (LDA)) could be used to iden-

tify relevant topics from infectious disease textual record [47, 48].

6.3.1. Approaches to solving regression problems

The approaches to solving regression problems in detecting and 
predicting the occurrence of disease outbreaks can be divided into sta-

tistical and machine learning approaches.

Based on the information tabulated in Table 9, for the statistical ap-

proaches, several models have been used to perform the detection and 
prediction of disease outbreaks that includes ARMA [13], ARIMA [17, 
22, 23, 25, 27, 38, 39, 42], SARIMA [25, 26, 40, 41] and LASSO [17, 
19]. In time series modeling, CNN has outperformed the nonlinear au-

toregressive exogenous model (NARX) [29]. Based on the review, deep 
learning algorithms have outperformed the statistical approaches in de-

tecting and predicting the outbreaks of disease, such as ARIMA [23, 25, 
33, 42] and SARIMA [25].
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In machine learning approach, most of the best methods found to 
be more effective in predicting disease outbreaks are those related to 
neural network family. The experimental results showed the consistent 
performance improvements by the proposed deep learning approaches 
over other representative linear and non-linear methods on multiple 
real-world datasets. These algorithms include the Long Short Term 
Memory (LSTM) [17, 23, 25, 31, 32, 33], Convolutinal Neural Net-

work (CNN) [29], Back Propagation Neural Network (BPNN) [14, 42], 
Multilayer Perceptron (MLP) [20], Neural Network [22], Hybrid Neu-

ral Network (HNN) [15] and combination of statistic and deep learning 
approaches [38, 39].

LSTM (RNN), was also able to produce better predictive capabil-

ity for predicting the morbidity incidence of 10 infectious diseases, 
compared to linear model (RR), time series analysis model (ARIMA), 
boosting tree model (XGBoost) [23]. LSTM algorithms was shown to be 
more superior in predicting Malaria outbreak [25] with RMSE of 0.072.

Based on the results, a hybrid approach is also found to be more ef-

fective in predicting disease outbreaks. For instance, a hybrid method 
that combines Autoregressive Integrated Moving Average (ARIMA) and 
Generalized Regression Neural Network (GRNN) has shown better per-

formances compared to single individual models in forecasting hepatitis 
incidence in Heng County, China [38] and predicting haemorrhagic 
fever with renal syndrome in China [39]. The results also showed that 
the data fitting were good for the proposed hybrid approaches [38, 39] 
although the results showed that better performance can be obtained 
for short term prediction [40, 41].

The Random Forest algorithm produces good performance but BPNN 
is a better algorithm [42, 51]. For instance, the Random Forest (ho-

mogenous ensemble learning) approach produced better results com-

pared to the ARIMA approach in predicting the H5N1 avian outbreaks 
in birds in Egypt [27].

For other algorithms, Tapak et al. have investigated and compared 
the performance of four machine learning techniques of SVM, ARIMA, 
RF and ANN in forecasting weekly number of influenza-like illness (ILI) 
cases with time series adaptation of them [22]. Based on the results 
obtained, the sensitivity of the ANN for the test set (86.2%) was bet-

ter compared to the other three methods. In addition to that, Scavuzzo 
et al. have made a performance comparison between 6 models which 
comprises of two linear models (Simple and Ridge) and four non-linear 
models (Support Vector Machine, ANN multi-layer Perceptron, Deci-

sion Tree, and K-Nearest Neighbor) [20]. The modelling was conducted 
based on several variables that include Normalized Difference Vegeta-

tion Index (NDVI), Normalized Difference Water Index (NDWI), Land 
Surface Temperature (LST) night, Land Surface Temperature (LST) day 
and TRMM-GPM rain (vegetation, moisture, temperature and rain). The 
ANN multilayer perceptron (MLP) is found to be the model that can best 
produce more presentable results compared to other models [20].

A feature selection based Time Series forecasting has been proposed 
for predicting future outbreaks of Methicilin-resistant Staphylococcus 
aereus (MRSA) [18]. The performance of the feature selection methods 
has been measured using the root mean square error (RMSE) and mean 
absolute error (MAE) performance metrics with RMSE and MAR values 
of 0.1349 and 0.1003 respectively. The six regression algorithms Gaus-

sian Processes(GP), Support Vector Machine (SVM), 𝑘 Nearest Neigh-

bour (𝑘NN), Random Forest (RF), Linear Regression (LR), Multilayer 
Perceptron (MLP) have been applied in this work and the best results 
are obtained using the GP and SVM methods. The work proposed a 
multi-objective evolutionary algorithm to find the best regression algo-

rithm (ensemble learning) at prediction intervals.

6.3.2. Approaches to solving classification problems

Based on the information tabulated in Table 10, Neural Network 
methods were also found to be very effective also in detecting disease 
outbreak. This review reports that the neural network based methods 
have achieved 4 best results out of 14 studies [44, 46, 51, 55].
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SENTINEL, a deep learning based algorithm has been proposed to 
classify health-related tweets with high accuracy classification results. 
In this work, it has shown that deep neural network algorithms (e.g., 
CNN and LSTM) have outperformed the Multinomial Naïve Bayes (F1
of 0.852 for Twitter classification) and SVM models (F1 of 0.939 for 
news classification) [46]. In a separate work, multiple machine learning 
method were also used to predict the amount and time of the outbreak 
of HFMD and these methods include Ridge Regression, KNN, RF and 
RNN algorithms, having the best AUC of 0.9164 for validation set and 
0.8413 for testing set using the LSTM model [44], in which a trans-

fer learning (TL) was used in training the LSTM in order to improve 
the generalization ability of the LSTM model [32]. This indicates that 
deep learning algorithms (e.g., LSTM (RNN)) performed better than any 
classical linear model statistical machine learning (e.g., classical linear 
model (ridge regression), statistical machine learning (K-nearest neigh-

bor), and homogenous ensemble learning method (random forest)) [32, 
44].

Jiang et al. compared the performance of three machine learning 
(e.g., BPNN, GBM and RF) in predicting the occurrence of Zika based 
on five factors; Occurrence of Aedes, Absence records, predicted distri-

bution of Aedes, Meteorological factors, Environment factors, socioeco-

nomic factors. The BPNN model obtained the best result having the area 
under the curve (AUC) of 0.966 [51]. In predicting the meningitis out-

breaks in Nigeria, several machine learning methods, namely, logistic 
regression, k-nearest neighbors (KNNs), random forests, support vec-

tor machine (SVMs) and neural networks (NNs) were applied and their 
accuracy of prediction were compared in which the neural network al-

gorithm achieved an accuracy of over 95% [55].

𝑘-Nearest Neighbour (𝑘-NN) was found to be very effective when 
applied for infection detection using physiological and social data in 
social environments [48], detection and prevention of mosquito-borne 
diseases [49] and detection of disease epidemics using a symptom-

based approach [59]. In short, Neural Network and 𝑘-Nearest Neighbor 
methods were found to be popular and very effective in detecting and 
predicting disease outbreaks [48].

6.4. Assessment measures and methods

This section summarizes and discusses the findings in relation to the

RQ6: What are the evaluation measures used to assess the performance 
(e.g., Accuracy, Precision, Recall, F-Measure, ROC) of the proposed ma-

chine learning algorithms (e.g., prediction models, detection models, 
classification models)?

In most regression problems, all the proposed methods or algorithms 
are measured by using MAE, MSE, RMSE and MAPE. On the other hand, 
Accuracy and ROC are mostly used for evaluating the performance of 
the classifiers proposed in those studies. In this paper, 17 out of 34 
(50%) studies found that the individual models that belong to neural 
network family performed better when compared to other linear and 
non-linear methods.

Tables 9 and 10 show that machine learning models achieved lower 
MAE and MSE measurements compared to other statistical models (e.g., 
ARMA (0,1) and SARIMA) [15, 22]. Similarly, it can be observed from 
these tables that deep learning approaches produced lower RMSE read-

ings [25, 31]. As we have noticed based on summaries stated in previous 
sections that machine learning approaches performed better than the 
statistical approach. For the MAPE measurement, there is an inconsis-

tent trend shown above. Deep learning algorithms are found to show 
consistent trend in producing higher accuracy measurements [49, 55], 
𝐹1 Score measurement [46] and ROC measurement [51] compared to 
other statistical and machine learning models reviewed in this study.

6.5. Ensemble methods

This section summarizes and discusses the findings in relation to 
the RQ7: What ensemble models (e.g., stacking, bagging, boosting) are 
used?
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There are several ensemble approaches introduced to forecast dis-

ease outbreaks. Tables 11 and 12 outline several ensemble approaches 
used to predict and detect disease outcomes and also summarize the 
evaluation approaches and measures used for ensemble learning. There 
is a need to explore further the capability of ensemble models or hy-

brid models based on deep learning methods using multi-source data, as 
these have been shown to improve the performance of the base model.

An ensemble method can be defined as a technique which uses mul-

tiple independent similar or different models/weak learners in order to 
derive an output. Ensemble methods can be categorized into bagging, 
boosting and stacking approaches.

Bagging is a homogeneous weak learners’ model that are arranged 
independently in parallel and combines their outputs or prediction 
for determining the final output. For instance, a novel bagging type 
of ensemble model developed and called Ensemble Penalized Regres-

sion Algorithm (EPRA) has outperformed other individual models (e.g., 
LASSO, Ridge, Elastic Net, SCAD and MCP) for timely tracking the tim-

ing and magnitude of dengue epidemics based on multi-sources data 
(e.g., search keywords Data, meteorological data and social media data) 
by integrating different penalties with the techniques of iteratively sam-

pling and model averaging [34]. These findings can be used as indica-

tions or trends that can be monitored online informally to estimate and 
detect the temporal patterns of disease epidemics in other parts of the 
world. Rider and Chawla developed an approach that allows the shar-

ing of beneficial information while staying within the bounds of data 
privacy. Three bagging types of ensembles have been proposed called 
ensemble Dirichlet Process Mixture Model (DPMM), ensemble COOC 
(DPMM trained on disease occurrence) and ensemble Co-occurrence 
Based Clustering (CBC) [57]. Based on the results obtained, ensemble 
approaches produced better accuracy performance. Another example of 
bagging approach named bootstrap-aggregated ensemble of fine deci-

sion trees, to identify epidemic risk areas has also been proposed [58]. 
This approach has shown to be capable to infer about possible epidemic 
risk areas caused by the ZIKA virus, which can lead to severe complica-

tions for pregnancy.

On the other hand, boosting approach has homogeneous weak learn-

ers that are arranged sequentially and adaptively to improve model 
predictions of a learning algorithm. For instance, a statistical based al-

gorithm coupled with ensemble algorithm, in which a SARIMA model 
and XGBoost model are combined using a mechanism that allows a 
self-adaptive weight adjustment, produced better results compared to 
LASSO and LSTM alone [21]. The same ensemble has been proven to 
be more effective compared XGBoost alone [37]. A hybrid method has 
also been proposed that combines CNN, RNN and residual links to pro-

duce ensemble model which is more expressive and is able to perform 
a more robust prediction of epidemiological data. Based on the results 
obtained, it showed that this hybrid method outperformed AR, VAR and 
GPS algorithms with RMSE of 0.259 [24].

Another approach of ensemble learning is called stacking approach 
that often considers heterogeneous weak learners, learns them in paral-

lel and combines them by training a meta-model to output a prediction 
based on the different weak models predictions. Stacking algorithms are 
shown to be more superior in predicting Malaria outbreak [25] with 
RMSE of 0.068. The stacking ensemble method comprises of four ma-

chine learning algorithms (ARIMA, SARIMA, BPNN, LSTM). Similarly, a 
stacking ensemble approach has been proposed where a fusion method 
called RKRE based on both ResNet and KG_ResNet in which the expert 
system attained an average classification accuracy of 88.57%, which 
is a good feasibility study in the field of disease classification [50]. In 
this study, a combination of knowledge graph (KG) and Deep Learning 
algorithms (ResNet + KG_ResNet (RKRE)) was introduced to classify 
diseases in order to detect the disease outbreaks.

Another common type of ensemble used is a Bayes optimal classi-

fier. For instance, an ensemble approach call superensemble was pro-

posed that combines Bayesian Weighted Outbreaks (BWO), a process-

based model (SIR-EAKF) that combines ensemble adjusted Kalman filter 
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(EAKF) with a dynamical Susceptible-Infected-Recovered (SIR) mode, 
and a simple null model [36]. In this ensemble approach, all three 
models are integrated to produce a single model classifier and the per-

formance is better compared to individual models. In a separate work, 
Chowel et al. generated a sequential short-term based forecast system 
for epidemic outbreaks by combining the Generalized-Growth Model 
(GGM) and the Generalized Logistic Model (GLM). The GGM-GLM en-

semble model produced an overall mean RMSE performance of 0.374 
in the Ebola Forecasting Challenge [35].

Based on this review, several bagging, stacking and boosting ap-

proaches have been identified and bagging approach was found to be 
more popular and produced better performance results compared to in-

dividual model approach.

7. Conclusion

In conclusion, the aim of this literature review is to identify and 
analyse various approaches, types of datasets, types of parameters or 
variables, individual models, ensemble models, performance measures 
and approaches used in the previous works on leveraging machine 
learning approaches to limit the spread of deadly disease outbreaks. 
In this work, there were six online digital libraries used to retrieve all 
related peer-reviewed articles and only forty-seven studies have been 
selected between the year of 2010 and 2020 publications in which seven 
main questions are used to assess the quality of these studies. This SLR 
was conducted to evaluate and select all relevant research studies re-

lated to the detection and prediction of disease outbreaks using machine 
learning based on the seven questions outlined earlier.

The contributions of this paper can be summarized as follows:

• The type of databases and variables used are identified, and Mete-

orological and Epidemiology data are found to be the mostly useful 
datasets for predicting and detecting disease outbreaks.

• Multi-sources data contributes to the improvement of the disease 
outbreaks predictions.

• Algorithms belong to the Neural Network family are found to pro-

vide better performance compared to other linear and non-linear 
machine learning methods.

• Ensemble and hybrid approaches performed better and are more 
appropriate to be applied for predicting and detecting disease out-

breaks.

• Exploring unstructured data (e.g., news, blogs, search keyword 
trends) may improve the performance of the disease outbreaks pre-

diction and detection.

Several guidelines are generated based on the findings obtained 
from this SLR for future work. Firstly, there is a need to explore fur-

ther the capability of ensemble models or hybrid models based on deep 
learning methods using multi-source data, as these have been shown to 
improve the performance of the base model. Next, A limited number 
of investigations conducted in the area of disease outbreaks prediction 
based on multi-sources data as the findings from existing studies have 
shown that a more comprehensive understanding can be obtained about 
a particular disease outbreak by integrating multi-sources data. We can 
produce better modelling results comprehensively by analysing these 
complex relationships among multi-sources data. Finally, limited works 
are found in exploring unstructured data such as news articles, blogs 
and web social media sites, even though integrating structured and un-

structured data, has been shown to improve the prediction of disease 
outbreaks.
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