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Abstract: Liriope platyphylla (Liliaceae), a medical plant distributed mainly in China, Taiwan,
and Korea, has been used traditionally for the treatment of cough, sputum, asthma,
and neurodegenerative diseases. The present study involved the metabolic profiling of this plant and
reports spicatoside A accumulation in four different varieties of L. platyphylla (Cheongyangjaerae,
Seongsoo, Cheongsim, and Liriope Tuber No. 1) using HPLC and gas chromatography time-of-flight
mass spectrometry (GC–TOFMS). A total of 47 metabolites were detected in the different cultivars
using GC–TOFMS-based metabolic profiling. The resulting data were subjected to principal
component analysis (PCA) for determining the whole experimental variation, and the different
cultivars were separated by score plots. Furthermore, hierarchical clustering, Pearson’s correlation,
and partial least-squares discriminant analyses (PLS-DA) were subsequently performed to determine
significant differences in the various metabolites of the cultivars. The HPLC data revealed that
the presence of spicatoside A was detected in all four cultivars, with the amount of spicatoside A
varying among them. Among the cultivars, Liriope Tuber No. 1 contained the highest amount of
spicatoside A (1.83 ± 0.13 mg/g dry weight), followed by Cheongyangjaerae (1.25 ± 0.01 mg/g dry
weight), Cheongsim (1.09 ± 0.04 mg/g dry weight), and Seongsoo (1.01 ± 0.02 mg/g dry weight).
The identification of spicatoside A was confirmed by comparing the retention time of the sample
with the retention time of the standard. Moreover, the Cheongsim cultivar contained higher levels of
phenolic compounds—including vanillic acid, quinic acid, gallic acid, chlorogenic acid, caffeic acid,
and benzoic acid—than those of the other two cultivars. On the other hand, the levels of amino acids
were higher in the Seongsoo cultivar. Therefore, this study may help breeders produce new varieties
with improved nutraceutical and nutritional qualities.

Keywords: Liriope platyphylla; Liliaceae; spicatoside A; steroidal saponins; phenylpropanoid

1. Introduction

Liriope platyphylla Wang et Tang, belonging to the Liliaceae family, is a herbaceous perennial plant,
the members of which typically contain unusual and/or unique phytochemicals [1]. This medical plant
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is distributed mainly in China, Taiwan, and Korea, and has been used traditionally for the treatment of
cough, sputum, asthma, and neurodegenerative diseases [2]. It has also been used traditionally as an
antitussive agent, expectorant, and tonic in Korea [3]. Furthermore, a previous study reported that the
compounds isolated from L. platyphylla possess anticancer properties, even if the mechanisms remain
largely unknown [4].

Plant primary metabolism includes biological processes involved in the biosynthesis and use of a
variety of endogenous building blocks such as nucleotides, amino acids, lipids, and carbohydrates,
and energy sources contributing to the plant survival. On the other hand, plant secondary metabolism
includes chemical reactions, which play major roles in plant development, defense, and reproduction,
but are not essential for survival [5,6].

A phytochemical study revealed that L. platyphylla contains various steroidal saponins
as major secondary metabolites. Of the known steroidal saponins, spicatoside A
(25(S)-ruscogenin-1-O-β-D-glucopyranosyl(1→2)-[β-D-xylopyranosyl(1→3)]-β-D-fucopyranoside)
was found to stimulate the secretion of growth hormone and induce neurite outgrowth [1]. Spicatoside
A has been reported to have antiosteoarthritic activity, memory enhancement properties, and relieving
effects in inflammatory pulmonary diseases [7]. However, the antitumor potential and its underlying
mechanisms of action against human cancer cells have not been elucidated yet.

Phenolics, mainly biosynthesized from the phenylpropanoid biosynthesis pathway, are distributed
in most plants and involved in protecting plants against biotic or abiotic stresses [8,9]. According to
previous studies, phenolic compounds possess diverse biological activities, such as antioxidant [10],
anti-inflammatory [11] and anti-cancer effects [12]. Therefore, intake of dietary phenolics is highly
recommended for human health.

Metabolic profiling has been used widely for providing biological information, through
identification and quantitation of primary and secondary metabolites in plant systems [13–15].
Chromatography/mass spectrometry systems are suitable for metabolic profiling to detect and identify
numerous metabolites by partial or full separation of the metabolites and their sensitive detection [16].
Among such systems, gas chromatography time-of-flight mass spectrometry (GC–TOFMS) has been
employed to detect relatively low-molecular-weight metabolites (≤1000 Da) with fast scan times and
high mass accuracy and resolution [17,18].

To our knowledge, no previous study has provided a comprehensive description of the primary
metabolites, including carbohydrates, amino acids, and organic acids, and secondary metabolites,
including spicatoside A and phenolics, in four different varieties of L. platyphylla (Cheongyangjaerae,
Seongsoo, Cheongsim, and Liriope Tuber No. 1). Therefore, this study aims to gain a comprehensive
understanding of the metabolic differences between the varieties of L. platyphylla.

2. Results

2.1. Analysis of Spicatoside A

Using metabolic profiling, the present study investigated spicatoside A accumulation in four
different varieties of L. platyphylla (Cheongyangjaerae, Cheongsim, Liriope Tuber No. 1, and Seongsoo).
The HPLC data revealed the presence of spicatoside A in all four cultivars, with the amount of
spicatoside A varying among them. Among the cultivars, Liriope Tuber No. 1 contained the highest
amount of spicatoside A (1.83 ± 0.13 mg/g dry weight), followed by Cheongyangjaerae, Cheongsim,
and Seongsoo (1.25 ± 0.01, 1.09 ± 0.04, and 1.01 ± 0.02 mg/g dry weight, respectively) (Table 1).
The identification of spicatoside A was confirmed by comparing the retention time of the sample with
the retention time of the standard.
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Table 1. Spicatoside A content in different cultivars of Liriope platyphylla.

No. Cultivars Contents (mg/g)

1 Liriope Tuber No. 1 1.83 ± 0.13 a 1

2 Cheongyangjaerae 1.25 ± 0.01 b
3 Seongsoo 1.01 ± 0.02 c
4 Cheongsim 1.09 ± 0.04 c

1 Different letters (a, b, c, d, respectively) indicate a significant difference at p < 0.05, applying a Duncan’s multiple
range test.

2.2. Analysis of Phenolic Compounds

A total of five phenolic compounds, including catechin, gallic acid, chlorogenic acid, caffeic
acid, and benzoic acid, were identified and quantified in four different varieties of L. platyphylla by
HPLC (Table 2). Cheongsim contained higher concentrations of total phenolics (461.11 ± 4.96 µg/g
dry weight), which were 1.36 times higher than the concentrations found in Cheongyangjaerae
(340.03 ± 4.29 µg/g dry weight). Moreover, a comparison of individual phenolics showed that
Cheongsim contained higher amounts of gallic acid, caffeic acid, and chlorogenic acid than those of
the other varieties, respectively. On the other hand, Liriope Tuber No. 1 contained a higher level of
benzoic acid than the other varieties.

Table 2. Phenolic compounds (µg/g dry weight) in different cultivars of L. platyphylla.

Contents (mg/g). Liriope Tuber No. 1 Cheongyangjaerae Seongsoo Cheongsim

Gallic acid 29.07 ± 0.43 d 1 30.79 ± 1.37 c 33.54 ± 0.94 b 47.21 ± 0.30 a
Catechin 105.37 ± 0.43 a 105.65 ± 0.58 a 105.72 ± 0.12 a 105.54 ± 1.11 a

Chlorogenic acid N.D N.D N.D 82.43 ± 1.39 a
Caffeic acid 38.17 ± 0.10 d 41.84 ± 0.54 c 42.89 ± 0.39 b 52.31 ± 0.76 a
Benzoic acid 220.44 ± 7.39 a 161.75 ± 5.12 d 191.78 ± 1.57 b 173.62 ± 2.51 c

Total 393.05 ± 7.87 b 340.03 ± 4.29 d 373.93 ± 0.74 c 461.11 ± 4.96 a
1 Different letters (a, b, c, d, respectively) indicate a significant difference at p < 0.05, applying a Duncan’s multiple
range test.

2.3. GC-TOFMS-Based Metabolic Profiling and Multivariate Analysis

Gas chromatography–mass spectrometry (GC-MS) is a useful tool with high sensitive
reproducibility and handling capacity for analysis via fast spectra accumulation times [19]. Through
the GC-TOFMS technique, the levels of primary metabolites including carbohydrates, amino acids,
and organic acids, and secondary metabolites including phenolic compounds, were determined. A total
of 47 metabolites were identified from four L. platyphylla). The metabolites identified in L. platyphylla
were quantitated using selected ions and normalization, based on the signal intensity of IS (Tables
S1 and S2). The quantitation data of the 47 hydrophilic metabolites were then subjected to principal
component analysis (PCA), to explore the differences in metabolite profiles among the four L. platyphylla
varieties. Metabolic profile analysis using the GC–MS technique and multivariate analysis have been
used to explore metabolic differentiation among various genotypes. In particular, PCA has been
successfully utilized as a preliminary stage in multivariate analysis to identify the patterns in complex
experimental data [20]. The score plot from PCA results presented an overview of the differences
among the four L. platyphylla cultivars, and the loading plot enabled correlation examination among
the 47 metabolites (Figure 1). All the samples representing dissimilar colors were differently clustered,
which were not differentiated by the two highest-ranking components. The components accounted
for 64.1% of the total variance within the data set. Notably, the first component, accounting for 42.8%
of the total variation, resolved the measured metabolite profiles of Cheongsim and Liriope Tuber
No. 1 from the other two cultivars, Seongsoo and Cheongyanghaerae. This separation was mainly
attributable to organic acids and amino acids; the corresponding loading vector showed that most of
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the organic acids, with the exception of three phenolic acids (p-hydroxybenzoic, vanillic, and sinapic
acids), were predominant in Cheongism and Liriope cultivars, whereas the amino acids, with the
exceptions of arginine and glutamine, differentiated the Seongsoo and Cheongyanghaerae cultivars
from the other two. The PCA results showed that most amino acids were higher in Cheongyanghaerae
compared with the other three cultivars, while Cheongsim had higher levels of organic acids than the
other cultivars.
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Figure 1. Principal component analysis (PCA) results obtained from data on 47 metabolites for four
cultivars of L. platyphylla Wang et Tang. (A) Score plot; (B) loading plots. PC 1, principal component 1;
PC 2, principal component 2.

To maximize the separation between the cultivars, we conducted partial least-squares discriminant
analysis (PLS-DA) (Figure 2). PLS-DA is a well-established chemometric approach that separates
groups of observations by rotating the PCA such that a maximum separation among classes,
here L. platyphylla cultivars, is obtained. Identification of the first component aided in resolving the
measured metabolite profiles of the four cultivars. The contribution of variables in the projection could
be explained using variables important in the projection (VIP). Shikimic acid, one of the important
building blocks employed in the biosynthesis of phenylpropanoids, was the most important for
creating a prediction for L. platyphylla classification. The levels of shikimic acid and phenolic acids
were higher in Cheongsim than other cultivars. For a cross validation, the total data should be divided
into a training set and a test set. The 47 metabolites from the 12 samples were divided into 8 training
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set samples and 4 test set samples. The model shown in Figure 2C has Q2 = 0.949. In the partial
least-squares (PLS) prediction model, a cross-validated correlation coefficient (Q2) > 0.9 indicates an
excellent model.
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To gain insights into the relationships among the concentrations of the 47 hydrophilic metabolites
identified in L. platyphylla, we performed a hierarchical cluster analysis (HCA) using Pearson’s
correlation results on the data sets. Correlation analysis is one of the effective techniques to determine
the strength of a relationship among quantitative samples. Using this method, significant correlations
can be found between diverse metabolites involved in closely related pathways in a biological
system [21]. The HCA results showed the degree of correlation among the identified metabolites.
Compounds from the same class in a biological system containing amino acids, organic acids,
or carbohydrates clustered together, which are marked by a dotted box in Figure 3. One group
included all the amino acids except glutamine, whereas another group contained most organic acids,
including the metabolites related to the TCA-cycle metabolism. The Pearson correlation coefficients
among leucine, isoleucine, and valine, which are branched amino acids, were higher than 0.7. Similarly,
a significant positive relationship was detected between serine and glycine (r = 0.7492, p = 0.005),
and phenylalanine and tryptophan (r = 0.7284, p = 0.007), which are biosynthetically linked metabolites.
Among the organic acids, the metabolites related to the TAC cycle, such as citric, succinic, fumaric,
and malic acids, showed a strong correlation (r > 0.9, p < 0.0001). In addition, most of the
identified carbohydrates, such as galactose, glucose, mannose, raffinose, sucrose, and trehalose,
formed a group. However, fructose and xylose clustered with a group of organic acids rather
than with other sugars. These results are in agreement with the loading plot of PCA results
(Figure 1B), which described the robustness of the present experimental system and the potential of
GC-TOFMS-based metabolic profiling, combined with chemometrics, as a useful tool for investigating
metabolic links in biological systems.

Sugars, including xylose, fructose, mannose, galactose, glucose, sucrose, raffinose, and trehalose,
were the most abundant metabolites in the four different cultivars. The total sugar level in Cheongsim
was higher compared with the other cultivars; specifically, the levels of carbohydrates, including
fructose, mannitol, sucrose, glucose, mannose, and galactose, were significantly higher in Cheongsim
than in the other three cultivars. On the other hand, the levels of raffinose and trehalose were higher in
Cheongyangjaerae. Liriope Tuber No. 1 showed the lowest level of total carbohydrates. Furthermore,
a total of 18 amino acids were identified in all the cultivars, and the total amount of amino acids
in Seongsoo was higher than in the other cultivars; however, the levels of only two amino acids,
namely pyroglutamate and serine, were statistically higher compared with the other cultivars.

Similarly, the levels of proline, beta-alanine, and alanine were significantly higher in
Cheongyangjaerae than in the other three cultivars. These results were consistent with a previous
study, which suggested Cheongsim as a potential source of amino acids among the cultivars, based on
HPLC-based amino acid analysis. A total of four intermediates of the tricarboxylic acid (TCA) cycle
were detected in these varieties. Liriope Tuber No. 1 and Cheongsim contained larger pools of citrate,
succinate, fumarate, and malate, which were related to the levels of pyruvate. Likewise, the levels of
phenolic compounds, including vanillic acid, quinic acid, gallic acid, chlorogenic acid, caffeic acid,
and benzoic acid, were higher in Liriope Tuber No. 1 and Cheongsim, compared with the other
two cultivars.



Metabolites 2019, 9, 59 7 of 12Metabolites 2019, 9, x FOR PEER REVIEW 7 of 12 

 

Figure 3. Correlation matrix and cluster analysis of results obtained from data on 47 metabolites for 
four cultivars of L. platyphylla Wang et Tang. Each square indicates the Pearson’s correlation 
coefficient for a pair of compounds, and the value for the correlation coefficient is represented by the 
intensity of the blue or red color as indicated on the color scale. Hierarchical clusters are represented 
by a cluster tree. 

3. Discussion 

The vague boundary between primary and secondary metabolism, comprising the intermediate 
components biosynthesized by primary metabolism, which are also involved in secondary 
metabolism pathways, suggests interactions between both metabolisms. In this study, the connection 
between primary and secondary metabolites was investigated in four cultivars of L. platyphylla using 
GC–TOFMS and HPLC. 

Carbohydrates play an important role in plant development, growth, and morphogenesis, and 
function as energy sources and metabolic precursors [22]. The lowest level of total carbohydrates in 
Liriope Tuber No. 1 reflected the requirement of carbons and energy to produce higher levels of 
spicatoside A. This finding is consistent with previous studies explaining the relationship between 
carbohydrates and secondary metabolites: Yeo et al. (2018) reported that the lower levels of 
carbohydrates in the sprouts of Vigna unguiculata exposed to blue light-emitting diodes reflected the 
higher production of phenolics and carotenoids [23]. Similarly, the total amount of carbohydrates in 
red flowers was lower than that in violet and white flowers of Rhododendron schlippenbachii due to 

Figure 3. Correlation matrix and cluster analysis of results obtained from data on 47 metabolites for
four cultivars of L. platyphylla Wang et Tang. Each square indicates the Pearson’s correlation coefficient
for a pair of compounds, and the value for the correlation coefficient is represented by the intensity
of the blue or red color as indicated on the color scale. Hierarchical clusters are represented by a
cluster tree.

3. Discussion

The vague boundary between primary and secondary metabolism, comprising the intermediate
components biosynthesized by primary metabolism, which are also involved in secondary metabolism
pathways, suggests interactions between both metabolisms. In this study, the connection between
primary and secondary metabolites was investigated in four cultivars of L. platyphylla using GC–TOFMS
and HPLC.

Carbohydrates play an important role in plant development, growth, and morphogenesis,
and function as energy sources and metabolic precursors [22]. The lowest level of total carbohydrates
in Liriope Tuber No. 1 reflected the requirement of carbons and energy to produce higher levels of
spicatoside A. This finding is consistent with previous studies explaining the relationship between
carbohydrates and secondary metabolites: Yeo et al. (2018) reported that the lower levels of
carbohydrates in the sprouts of Vigna unguiculata exposed to blue light-emitting diodes reflected
the higher production of phenolics and carotenoids [23]. Similarly, the total amount of carbohydrates
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in red flowers was lower than that in violet and white flowers of Rhododendron schlippenbachii due
to their anthocyanin production [24]. Park et al.(2018) described that red lettuce contains lower
levels of sugars and higher levels of phenolics and carotenoids than green lettuce [25], and that
there is a negative correlation between carbohydrates and phenolic compounds in red radishes [6].
Furthermore, the enhancement of alkaloid production in cell cultures of the opium poppy, derived
from treatment with a fungal elicitor, showed a more rapid depletion of carbohydrate pools [26].
Similarly, TCA intermediates play a major role in cellular catabolism and flavonol synthesis [27].
Therefore, the larger pools of TCA intermediates in Liriope Tuber No. 1 and Cheongsim suggest a
greater accumulation of phenolic compounds. This finding is consistent with a previous study [20].

Amino acids are considered protein building blocks and are required for the biosynthesis of
secondary metabolites, including phenolics and glucosinolates [28]. In this study, the Seongsoo
cultivar contained the highest total amount of amino acids, which is consistent with a previous study
reporting that the total amount of amino acids in Seongsoo was 1.76, 1.77, and 2.18 times higher than
in Cheongyangjaerae, Cheongsim, and Liriope Tuber No. 1 cultivars, respectively [29].

Spicatoside A is a representative chemical found in L. platyphylla. In this study, spicatoside A
was detected and quantified in four cultivars of L. platyphylla. Among them, Liriope Tuber No. 1
contained the highest amount of spicatoside A. Similarly, previous studies reported the identification
of spicatoside A in L. platyphylla cultivated in South Korea; Cho et al. (1998) identified spicatoside
A as well as spicatoside B using NMR [30]. Similarly, Shin (2002) detected and quantified both
chemicals in Liriope Tuber No. 1 grown in South Korea using HPLC [31]. Furthermore, Lee et al.
(2009) reported the changes in spicatoside A content in L. platyphylla tubers, with varying drying
processes [32]. Choi et al. (2015) established the high performance counter-current chromatography
(HPCCC) coupled with evaporative light scattering detection (ELSD) method for the separation of
spicatoside A and spicatoside D from L. platyphylla [33].

In this study, the Liriope Tuber No. 1 cultivar had the highest level of spicatoside A, and the
Cheongsim cultivar had the highest levels of phenolic compounds. On the other hand, the Seongsoo
cultivar had the highest total amount of amino acids. Therefore, this study suggests that the Liriope
Tuber No. 1 and Cheongsim cultivars could be a potential source of spicatoside A and phenolic
compounds, respectively. As well, the Seongsoo cultivar could be considered a good source of amino
acid for human intake. Furthermore, this study may help breeders establish a breeding strategy for
new varieties with improved nutraceutical and nutritional qualities.

4. Materials and Methods

4.1. Plant Material

Four varieties of L. platyphylla (Seongsoo, Cheongsim, Cheongyangjaerae, and Liriope Tuber
No. 1) were cultivated in a greenhouse at the Cheongyang Boxthorn Experiment Station, Cheongyang,
South Korea. The tubers of the different varieties were harvested on 30 April 2016. The tubers were
immediately placed in liquid nitrogen at −196 ◦C and then freeze-dried at −80 ◦C for at least 72 h
(Ilshin Lab Co., Ltd., Daejeon, South Korea). Afterwards, mortars and pestles were used to grind the
dried samples for further chemical analysis.

4.2. Spicatoside A Extraction and Quantification

Ten grams of dried sample powder was placed in a 250-mL flask and extracted with 80% MeOH
(200 mL × 3) by reflux (80 ◦C, 30 min). After vortexing, the mixture was filtered using filter paper
(Whatman No. 2) and left to stand for at least 1 h at room temperature. It was then centrifuged at
15,000 rpm at 4 ◦C for 5 min. Subsequently, the supernatant was evaporated in vacuo. The residue
was dissolved in 1 mL of MeOH and filtered with a 0.45-µm pore-size hydrophilic polyvinylidene
difluoride syringe filter (Ø 13 mm, Cat. no. 6779-1304, Whatman Int. Ltd., Clifton, NJ, USA) into an
HPLC vial. HPLC analysis of spicatoside A was performed on a Waters 1525 Binary HPLC (Miami, FL,
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USA) equipped with a photodiode array detector. Isolation was achieved on a SunFire C-18 stainless
steel column (2.1 × 50 mm, 5 µm thickness) and absorption determinations were generated at 210 nm,
with an oven temperature of 30 ◦C and a flow rate of 1.0 mL/min. A methanol (solvent A) and
acetonaitrile (solvent B) isocratic solution (A:B (30:70), 15 min) was used.

4.3. Phenylpropanoid Extraction and Quantification

Phenolic compounds were extracted using previously published procedures [34]. First, 0.2 g
of dried sample powder was placed in a 15-mL tube and extracted with 80% MeOH (200 mL × 3).
After sonication for 1 h, the mixture was filtered using filter paper (Whatman No. 2) and the extract
was then evaporated. Next, the residue was dissolved in 2 mL of MeOH and filtered with a syringe
filter into a brown vial. The HPLC analysis system, gradient program, and condition were carried
out as detailed in a previous study [27]. We employed an NS-4000 HPLC system (Futecs, Daejeon,
Korea), equipped with a C18 column (250 × 4.6 mm, 5 µm; RStech; Daejeon, Korea) and a UV−VIS
detector. The conditions for HPLC–UV analysis were set as follows: injection volume, 20 µL; flow rate,
1.0 mL/min; detection wavelength, 280 nm; and oven temperature, 35 ◦C. The mobile phase consisted
of a binary eluent of solvent A, acetic acid/water (0.2:99.8 v/v), and solvent B, methanol. Samples
were eluted with the following gradient conditions: 0 min, 95% A; 4 min, 95–85% A; 9 min, 85% A;
14 min, 85–80% A; 24 min, 80% A; 54 min, 80–70% A; 55 min, 70–55% A; 65 min, 55% A; 75 min, 55–44%
A; 77.0 min, 44–40% A; 79 min, 40% A; 80 min, 40–20% A; 90 min, 20% A; 91.0 min, 20–95% A; and
98.0 min, 95% A [34,35]. Quantitation was performed using the respective calibration curves.

4.4. Metabolic Analysis

Extraction of hydrophilic compounds was carried out as described previously [36]. For the
polar metabolite extraction, 10 mg of the powdered samples were measured and added to 1 mL of
water:chloroform:methanol (2.5:1:1). Ribitol (60 µL, 0.2 mg/mL) was used as an internal standard
(IS). Methoxime derivatization was executed through the addition of methoxyamine hydrochloride in
pyridine (80 µL) and vigorous shaking for 90 min at 30 ◦C. Subsequently, trimethylsilyl etherification
was carried out by adding N-methyl-N-trimethylsilyltrifluoroacetamide (80 µL). After incubation
at 37 ◦C for 30 min, GC–TOFMS analysis was performed as described by Kim et al. (2013) [19].
The conditions for GC–TOFMS analysis were set as follows: split ratio, 1:25; injector temperature,
230 ◦C; flow rate of helium through the column, 1.0 mL/min; detector voltage, 1700 V; scanned mass
range, 85–600 m/z; ion-source temperature, 200 ◦C; transfer line, 250. Furthermore, the temperature
program was set as follows: initial temperature of 80 ◦C for 2 min, followed by an increase to 320 ◦C at
15 ◦C /min, and a 10 min hold at 320 ◦C. Leco ChromaTOF software was used for the peak detection and
automated deconvolution of reference mass spectra. In-house libraries for standard compounds [35,36]
and the National Institute of Standards and Technology (NIST) were used to identify the metabolite.
The results were filtered with retention time, signal-to-noise ratio (>5:1), and mass spectral matching
(based on a match >700). As a result, a total of 47 metabolites were identified (i.e., the metabolomics
standards initiative (MSI) level 1) [37] (Table S2 and Figure S1). Concentration calculations of all
metabolites were based on the ratios determined from the peak area of each metabolite/the peak area
of the IS (Tables S1 and S3).

4.5. Statistical Analysis

Quantification data obtained from GC-TOFMS were subjected to PCA and PLS-DA (SIMCA-P
version 12.0; Umetrics, Umeå, Sweden) to assess the similarity between groups of multivariate
data. The data file was scaled with unit-variance scaling (standardization) before all the variables
were subjected to PCA. The PCA output is made up of score plots for visualizing the contrast
between different samples and loading plots to describe the cluster separation. Furthermore, the SAS
9.4 software package (SAS Institute, Cary, NC, USA) was used for Pearson correlation analysis.
Hierarchical clustering analysis and heat map visualization of the calculated correlation coefficients
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were executed using the software Multi-Experiment Viewer version 4.9.0 (http://www.tm4.org/mev/).
The HPLC data were analyzed using SAS 9.4 software, applying an analysis of variance (ANOVA)
evaluation and a Duncan’s multiple range test (DMRT).

5. Conclusions

To our knowledge, no previous studies have reported a comprehensive description of multiple
metabolites in different cultivars of L. platyphylla. This study indicated that the Liriope Tuber No. 1
cultivar contained the highest level of spicatoside A and low amounts of carbohydrates, which are
indicative of the carbon requirement and energy demand. Moreover, the observed high levels
of TCA intermediates involved in flavonol metabolism were in agreement with the high levels
of phenolic compounds. In this study, the Cheongsim cultivar contained the highest levels of
phenolic compounds, while the highest total amount of amino acids was investigated in the Seongsoo
cultivar. In contrast, the Liriope Tuber No. 1 cultivar contained the higher level of spicatoside A.
Therefore, this study provides valuable information to help breed new cultivars with desired specific
metabolite compositions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/3/59/s1:
Table S1: Metabolite peak height differences using GS–TOFMS; Table S2: Metabolites identified in GC–TOFMS
chromatograms of Liriope platyphylla; Table S3: The raw data of metabolites obtained from Liriope platyphylla using
GC–TOFMS. Figure S1: The chromatogram of metabolites obtained from Liriope platyphylla (Cheongyangjaerae)
using GC–TOFMS. Peak identification: 1, pyruvic acid; 2, lactic acid; 3, alanine; 4, glycolic acid; 5, valine; 6, serine;
7, ethanolamine; 8, glycerol; 9, leucine; 10, isoleucine; 11, proline; 12, nicotinic acid; 13, glycine; 14, succinic acid; 15,
glyceric acid; 16, fumaric acid; 17, threonine; 18, β-alanine; 19, malic acid; 20, aspartic acid; 21, pyroglutamic acid;
22, 4-aminobutyric acid; 23, threonic acid; 24, arginine; 25, glutamic acid; 26, phenylalanine; 27, p-hydroxybenzoic
acid; 28, xylose; 29, asparagine; 30, vanillic acid; 31, glutamine; 32, shikimic acid; 33, citric acid; 34, quinic acid; 35,
fructose; 36, galactose; 37, glucose; 38, mannose; 39, mannitol; 40, p-coumaric acid; 41, inositol; 42, ferulic acid; 43,
tryptophan; 44, sinapic acid; 45, sucrose; 46, trehalose; 47, raffinose; IS, internal standard (ribitol).

Author Contributions: Project administration, S.U.P. and J.K.K.; Supervision, S.U.P. and J.K.K.; Investigation,
C.H.P., A.M.A.M., B.B.P., S.Y.L., and S.L.; Writing—original draft, C.H.P., J.K.K., and S.U.P.; Writing—review &
editing, C.H.P., J.K.K., and S.U.P.

Funding: This research was supported by the Global Ph.D Fellowship Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (2017H1A2A1045963).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Park, W.T.; Kim, Y.K.; Kim, Y.S.; Park, N.I.; Lee, S.Y.; Park, S.U. In vitro plant regeneration and
micropropagation of Liriope platyphylla. Plant Omics 2011, 4, 199–203.

2. Kim, W.K.; Pyee, Y.; Chung, H.-J.; Park, H.J.; Hong, J.-Y.; Son, K.H.; Lee, S.K. Antitumor activity of spicatoside
A by modulation of autophagy and apoptosis in human colorectal cancer cells. J. Nat. Prod. 2016, 79,
1097–1104. [CrossRef] [PubMed]

3. Hur, J.; Lee, P.; Kim, J.; Kim, A.J.; Kim, H.; Kim, S.Y. Induction of nerve growth factor by butanol fraction
of Liriope platyphylla in C6 and primary astrocyte cells. Biol. Pharm. Bull. 2004, 27, 1257–1260. [CrossRef]
[PubMed]

4. Wang, H.-C.; Wu, C.-C.; Cheng, T.-S.; Kuo, C.-Y.; Tsai, Y.-C.; Chiang, S.-Y.; Wong, T.-S.; Wu, Y.-C.; Chang, F.-R.
Active constituents from Liriope platyphylla root against cancer growth in vitro. Evid. Based Complement.
Altern. Med. 2013, 2013, 857929.

5. Yeoman, M.; Yeoman, C. Tansley Review No. 90. Manipulating secondary metabolism in cultured plant cells.
New Phytol. 1996, 134, 553–569. [CrossRef]

6. Aharoni, A.; Galili, G. Metabolic engineering of the plant primary–secondary metabolism interface.
Curr. Opin. Biotechnol. 2011, 22, 239–244. [CrossRef] [PubMed]

7. Kim, S.H.; Kim, H.K.; Yang, E.S.; Lee, K.Y.; Du Kim, S.; Kim, Y.C.; Sung, S.H. Optimization of pressurized
liquid extraction for spicatoside A in Liriope platyphylla. Sep. Purif. Technol. 2010, 71, 168–172. [CrossRef]

8. Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127,
617–633. [CrossRef]

http://www.tm4.org/mev/
http://www.mdpi.com/2218-1989/9/3/59/s1
http://dx.doi.org/10.1021/acs.jnatprod.6b00006
http://www.ncbi.nlm.nih.gov/pubmed/27064730
http://dx.doi.org/10.1248/bpb.27.1257
http://www.ncbi.nlm.nih.gov/pubmed/15305032
http://dx.doi.org/10.1111/j.1469-8137.1996.tb04921.x
http://dx.doi.org/10.1016/j.copbio.2010.11.004
http://www.ncbi.nlm.nih.gov/pubmed/21144730
http://dx.doi.org/10.1016/j.seppur.2009.11.016
http://dx.doi.org/10.1111/j.1469-8137.1994.tb02968.x


Metabolites 2019, 9, 59 11 of 12

9. Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085. [CrossRef]
[PubMed]

10. Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food
Sci. Tech. 2002, 37, 153–161. [CrossRef]

11. Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.
Curr. Opin. Food Sci. 2016, 8, 33–42. [CrossRef]

12. McCann, M.; Gill, C.; O’Brien, G.; Rao, J.; McRoberts, W.; Hughes, P.; McEntee, R.; Rowland, I. Anti-cancer
properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem. Toxicol. 2007, 45,
1224–1230. [CrossRef]

13. Villas-Boas, S.G.; Nielsen, J.; Smedsgaard, J.; Hansen, M.A.; Roessner-Tunali, U. Metabolome Analysis:
An Introduction, 1st ed.; JohnWiley & Sons: Hoboken, NJ, USA, 2007; pp. 1–319.

14. Roessner, U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L.; Fernie, A.R. Metabolic profiling
allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell
2001, 13, 11–29. [CrossRef] [PubMed]

15. Lu, H.; Liang, Y.; Dunn, W.B.; Shen, H.; Kell, D.B. Comparative evaluation of software for deconvolution of
metabolomics data based on GC-TOF-MS. TrAC Trends Anal. Chem. 2008, 27, 215–227. [CrossRef]

16. Dunn, W.B.; Broadhurst, D.; Ellis, D.I.; Brown, M.; Halsall, A.; O’hagan, S.; Spasic, I.; Tseng, A.; Kell, D.B.
A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample
collection and preparation protocols. Int. J. Epidemiol. 2008, 37, i23–i30. [CrossRef] [PubMed]

17. Lu, N.; Chen, J.-H.; Wei, D.; Chen, F.; Chen, G. Global metabolic regulation of the snow alga Chlamydomonas
nivalis in response to nitrate or phosphate deprivation by a metabolome profile analysis. Int. J. Mol. Sci.
2016, 17, 694. [CrossRef]

18. Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286,
25435–25442. [CrossRef] [PubMed]

19. Kim, J.K.; Park, S.-Y.; Lim, S.-H.; Yeo, Y.; Cho, H.S.; Ha, S.-H. Comparative metabolic profiling of pigmented
rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites.
J. Cereal Sci. 2013, 57, 14–20. [CrossRef]

20. Park, C.H.; Baskar, T.B.; Park, S.-Y.; Kim, S.-J.; Valan Arasu, M.; Al-Dhabi, N.A.; Kim, J.K.; Park, S.U. Metabolic
profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules 2016,
21, 157. [CrossRef]

21. Carreno-Quintero, N.; Acharjee, A.; Maliepaard, C.; Bachem, C.W.; Mumm, R.; Bouwmeester, H.; Visser, R.G.;
Keurentjes, J.J. Untargeted metabolic quantitative trait loci analyses reveal a relationship between primary
metabolism and potato tuber quality. Plant Physiol. 2012, 158, 1306–1318. [CrossRef] [PubMed]

22. Yaseen, M.; Ahmad, T.; Sablok, G.; Standardi, A.; Hafiz, I.A. Role of carbon sources for in vitro plant growth
and development. Mol. Biol. Rep. 2013, 40, 2837–2849. [CrossRef] [PubMed]

23. Yeo, H.J.; Park, C.H.; Lee, K.B.; Kim, J.K.; Park, J.S.; Lee, J.W.; Park, S.U. Metabolic analysis of vigna
unguiculata sprouts exposed to different light-emitting diodes. Nat. Prod. Commun. 2018, 13, 1349–1354.
[CrossRef]

24. Park, C.H.; Yeo, H.J.; Kim, N.S.; Park, Y.E.; Park, S.-Y.; Kim, J.K.; Park, S.U. Metabolomic profiling of the
white, violet, and red flowers of rhododendron schlippenbachii maxim. Molecules 2018, 23, 827. [CrossRef]
[PubMed]

25. Park, C.H.; Yeo, H.J.; Baskar, T.B.; Kim, J.K.; Park, S.U. Metabolic profiling and chemical-based antioxidant
assays of green and red lettuce (Lactuca sativa). Nat. Prod. Commun. 2018, 13, 315–322. [CrossRef]

26. Zulak, K.G.; Weljie, A.M.; Vogel, H.J.; Facchini, P.J. Quantitative 1 H NMR metabolomics reveals extensive
metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell
cultures. BMC Plant Biol. 2008, 8, 5. [CrossRef]

27. Muhlemann, J.K.; Maeda, H.; Chang, C.-Y.; San Miguel, P.; Baxter, I.; Cooper, B.; Perera, M.A.; Nikolau, B.J.;
Vitek, O.; Morgan, J.A. Developmental changes in the metabolic network of snapdragon flowers. PLoS ONE
2012, 7, e40381. [CrossRef] [PubMed]

28. Gomes, M.H.; Rosa, E. Free amino acid composition in primary and secondary inflorescences of 11 broccoli
(Brassica oleracea var italica) cultivars and its variation between growing seasons. J. Sci. Food Agric. 2001, 81,
295–299. [CrossRef]

http://dx.doi.org/10.1105/tpc.7.7.1085
http://www.ncbi.nlm.nih.gov/pubmed/12242399
http://dx.doi.org/10.1046/j.1365-2621.2002.00552.x
http://dx.doi.org/10.1016/j.cofs.2016.02.002
http://dx.doi.org/10.1016/j.fct.2007.01.003
http://dx.doi.org/10.1105/tpc.13.1.11
http://www.ncbi.nlm.nih.gov/pubmed/11158526
http://dx.doi.org/10.1016/j.trac.2007.11.004
http://dx.doi.org/10.1093/ije/dym281
http://www.ncbi.nlm.nih.gov/pubmed/18381390
http://dx.doi.org/10.3390/ijms17050694
http://dx.doi.org/10.1074/jbc.R111.238691
http://www.ncbi.nlm.nih.gov/pubmed/21632543
http://dx.doi.org/10.1016/j.jcs.2012.09.012
http://dx.doi.org/10.3390/molecules21020157
http://dx.doi.org/10.1104/pp.111.188441
http://www.ncbi.nlm.nih.gov/pubmed/22223596
http://dx.doi.org/10.1007/s11033-012-2299-z
http://www.ncbi.nlm.nih.gov/pubmed/23212616
http://dx.doi.org/10.1177/1934578X1801301029
http://dx.doi.org/10.3390/molecules23040827
http://www.ncbi.nlm.nih.gov/pubmed/29617312
http://dx.doi.org/10.1177/1934578X1801300313
http://dx.doi.org/10.1186/1471-2229-8-5
http://dx.doi.org/10.1371/journal.pone.0040381
http://www.ncbi.nlm.nih.gov/pubmed/22808147
http://dx.doi.org/10.1002/1097-0010(200102)81:3&lt;295::AID-JSFA811&gt;3.0.CO;2-


Metabolites 2019, 9, 59 12 of 12

29. Kim, J.K.; Bong, S.J.; Park, S.U. Amino acid content in different cultivars of Liriope platyphylla. Asian J.
Chem. 2016, 28, 1754–1756. [CrossRef]

30. Cho, S.-J.; Bang, M.-H.; Lee, I.-J.; Park, C.-G.; Kim, M.-S.; Kim, K.-S.; Sung, J.-D.; Baek, N.-I. Cytotoxicity of
steroid-saponins from the tuber of Liriope platyphylla WT. Appl. Biol. Chem. 1998, 41, 390–394.

31. Shin, J. Saponin composition of Liriope platyphylla and Ophiopogon japonicus. Korean J. Crop Sci. 2002, 47,
236–239.

32. Lee, K.-S.; Kim, G.-H.; Kim, H.-H.; Choi, J.-W.; Lee, H.-C.; Song, M.-R.; Kim, M.-R.; Lee, G.-H.
Physicochemical characteristics of Liriope platyphylla tubers by drying process. J. Korean Soc. Food Sci. Nutr.
2009, 38, 1104–1110. [CrossRef]

33. Choi, S.J.; Choi, J.; Jeon, H.; Bae, S.K.; Ko, J.; Kim, J.; Yoon, K.D. Application of high-performance
countercurrent chromatography for the isolation of steroidal saponins from Liriope plathyphylla. J. Sep.
Sci. 2015, 38, 18–24. [CrossRef] [PubMed]

34. Park, C.H.; Yeo, H.J.; Park, Y.J.; Morgan, A.; Valan Arasu, M.; Al-Dhabi, N.A.; Park, S.U. Influence
of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat
(Fagopyrum esculentum Moench) sprouts. Molecules 2017, 22, 374. [CrossRef]

35. Park, C.H.; Park, S.Y.; Lee, S.Y.; Kim, J.K.; Park, S.U. Analysis of metabolites in white flowers of magnolia
denudata desr. and violet flowers of Magnolia Liliiflora Desr. Molecules 2018, 23, 1588. [CrossRef] [PubMed]

36. Park, C.H.; Yeo, H.J.; Kim, N.S.; Eun, P.Y.; Kim, S.-J.; Arasu, M.V.; Al-Dhabi, N.A.; Park, S.-Y.; Kim, J.K.;
Park, S.U. Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Appl. Biol.
Chem. 2017, 60, 249–257. [CrossRef]

37. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes?
Curr. Opin. Chem. Biol. 2017, 36, 64–69. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14233/ajchem.2016.19813
http://dx.doi.org/10.3746/jkfn.2009.38.8.1104
http://dx.doi.org/10.1002/jssc.201401007
http://www.ncbi.nlm.nih.gov/pubmed/25353685
http://dx.doi.org/10.3390/molecules22030374
http://dx.doi.org/10.3390/molecules23071558
http://www.ncbi.nlm.nih.gov/pubmed/29954130
http://dx.doi.org/10.1007/s13765-017-0274-z
http://dx.doi.org/10.1016/j.cbpa.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28113135
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Analysis of Spicatoside A 
	Analysis of Phenolic Compounds 
	GC-TOFMS-Based Metabolic Profiling and Multivariate Analysis 

	Discussion 
	Materials and Methods 
	Plant Material 
	Spicatoside A Extraction and Quantification 
	Phenylpropanoid Extraction and Quantification 
	Metabolic Analysis 
	Statistical Analysis 

	Conclusions 
	References

