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Abstract: The mechanochemical synthesis of cocrystals has been introduced as a promising approach
of formulating poorly water-soluble active pharmaceutical ingredients (APIs). In this study, hot-melt
extrusion (HME) as a continuous process and grinding and ball milling as batch processes were
employed to explore the feasibility of cocrystallization. Ciprofloxacin (CIP) and isonicotinic acid
(INCA) were selected as the model API and coformer. CIP–INCA cocrystal was produced in all
techniques. It was revealed that higher cocrystal content could be achieved at longer durations of
grinding and ball milling. However, milling for more than 10 min led to increased co-amorphous
content instead of cocrystal. A design of experiment (DoE) approach was used for deciphering
the complex correlation of screw configuration, screw speed, and temperature as HME process
parameters and their respective effect on final relative cocrystal yield. Statistical analysis showed
that screw configuration, temperature, and their interaction were the most critical factors affecting
cocrystallization. Interestingly, screw speed had minimal impact on the relative cocrystallization
yield. Cocrystallization led to increased dissolution rate of CIP in phosphate buffer up to 2.5-fold.
Overall, this study shed a light on the potential of mechanochemical synthesis techniques with special
focus on HME as a continuous process for producing cocrystals.

Keywords: cocrystal; mechanochemical synthesis; hot-melt extrusion; ball milling; grinding; solid
state chemistry; continuous manufacturing; design of experiment; green chemistry

1. Introduction

About 40% of newly marketed drugs have low solubility and 70–90% of drugs in the
development pipeline are categorized in the low solubility classification [1]. A study on
812 drug candidates from Pfizer, AstraZeneca, Eli Lilly, and GlaxoSmithKline depicted that
poor bioavailability and pharmacokinetic are the third main failure cause of the molecules
in phase 1 clinical trials [2]. Traditionally, different solid form modifications of a drug such
as metastable polymorph(s), amorphous form, solvate/hydrates, and salt formation have
been used for altering the physicochemical properties of APIs. Each of these strategies has
its own benefits and challenges.

Metastable polymorphs usually only offer a 1- to 2-fold increase in solubility, while
maintaining their processability and shelf-life has been extremely challenging due to their
poor physical and chemical stability [3]. Moreover, solvates/hydrates are not always the
most desirable solid forms for manipulating physicochemical properties of APIs due to their
low thermal stability and minimal impact on solubility [4–6]. Additionally, transformation
of crystalline APIs to amorphous form potentially leads to improved solubility of poorly
water-soluble APIs. However, high recrystallization tendency of amorphous APIs due to
their higher free energy and entropy is a significant challenge for their further develop-
ment [7,8]. Salt formation is a well-established approach for modifying the physicochemical
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properties of a drug substance. It is only applicable to APIs with ionizable moieties [9].
Cocrystal formation has been introduced as a promising alternative to commonly used solid
form control strategies [10–12]. It can afford a broad platform for optimizing API properties
based on the pharmaceutical development requirements. For instance, cocrystallization of
itraconazole as an antifungal drug with very low aqueous solubility by adding succinic,
L-malic, and L-tartaric acid as coformer increased its dissolution rate compared with its
pure crystalline form [13]. Furthermore, Hickey et al. showed that cocrystallization of
carbamazepine and saccharin led to its improved stability [14]. The recent advances in
crystal engineering field, regulatory acceptance, and ease of access to a wide range of co-
formers have paved the way for adaptation of cocrystallization within the pharmaceutical
industry [15].

The pharmaceutical industry is facing myriad challenges to overcoming economic
limitations, operational complications, and flexible market demands [16–18]. Moreover,
the patents lifetime of newly developed drug products has been significantly reduced by
market globalization. This has caused the need for minimising the development time for
new products on one hand and maximising their production throughput on the other hand.
Continuous manufacturing (CM) is the answer to the need of maximizing the throughput
while maintaining drugs quality. CM has been widely used in industries such as paper, food,
plastics, and ceramics, and is gradually being adopted by the pharmaceutical industry
as well. Manufacturing cocrystals using techniques such as hot-melt extrusion (HME)
has been part of the efforts towards adaptation of CM principles in the pharmaceutical
industry [19–21].

Ciprofloxacin (CIP), or 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro
quinoline-3-carboxylic acid, is one of the most prescribed APIs globally that was introduced
to market for the first time in 1986. It is a broad-spectrum antibiotic of the fluoroquinolone
class applied against Gram-positive and Gram-negative bacteria, as well as other mi-
croorganisms [22,23]. It has a wide range of applications in bacterial infection treatment,
especially respiratory infections, such as sinusitis, pharyngitis, pneumonia, tuberculo-
sis, and bronchitis. Moreover, it is commonly used for treating tissue, bone, and skin
infections [24,25].

The dependence of aqueous solubility of CIP on pH has led to its limited applica-
tion [26]. The ‘U-shape’ pH-solubility profile of CIP shows that its solubility increases at pH
values higher than 8.7 (basic pKa) and lower than 6.1 (acidic pKa) [27], with the lowest solu-
bility at neutral pH values. Therefore, CIP has been classified as an intermediate compound
with BCS Class II/III classification [28]. In some cases, CIP has been classified as BCS class
IV due it low solubility and low permeability, which leads to limited bioavailability [29].
Moreover, ciprofloxaine hydrochloride has been classified as BCS class IV [30]. Several
attempts for tackling CIP’s low aqueous solubility issue include salt formation [26,29,31–36]
and amorphization [23] with less frequent cases of cocrystallization [36–41]. As an example,
Martinez-Alejo et al. studied the cocrystal of ciprofloxacin and moxifloxacin hydrochloride
salts with 4-hydroxybenzoic acid as coformer. Different approaches such as slurry conver-
sion, solvent drop grinding, solvent evaporation, and reaction crystallization have been
applied to form the CiHCl-4HBA and MoHCl-4HBA cocrystalline solids. As a result, the
aqueous solubility and dissolution rate of the CiHCl-4HBA cocrystal was lower than the
starting salt form, but the aqueous solubility of MoHCl-4HBA was improved and higher
than its starting material [38].

In addition, it was depicted that cocrystallization of CIP and resorcinol can enhance
the dissolution rate of pure CIP at pH 4.0, 5.0, and 5.5. F. J. Caires and co-workers studied
the cocrystal formation of CIP with different coformers. They could successfully form the
novel cocrystals of CIP with pyrazinoic acid (PZCA) and p-aminobenzoic acid (PABA) in
1:1 stoichiometric ratio. Neat grinding (NG) and liquid-assisted grinding (LAG/ethanol)
were used as mechanochemical approaches for cocrystallization. They showed that both
NG and LAG methodologies were applicable when forming the cocrystal of CIP–PZCA,
but for CIP–PABA, only the LAG approach led to the formation of cocrystal. Moreover, they
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demonstrated the feasibility of formation of CIP cocrystal with picolinic acid (PCA) in 1:1
molar ratio via LAG, with an increase of 27% in solubility of CIP compared with the pure
form of the drug [41]. In another study, nicotinic (NCA) and isonicotinic acid (INCA) were
selected as coformer with CIP as API to study cocrystal formation. Mechanochemical meth-
ods such as NG and LAG led to the successful cocrystal formation at q 1:1 molar ratio of CIP
and NCA and INCA. Two different frequencies (15 Hz and 30 Hz) were used for grinding
via ball milling, and based on the results, 30 Hz of grinding frequency contributed more to
cocrystallization due to the higher mechanical forces for sample synthesis. Moreover, the
solubility of CIP–NCA and CIP–INCA cocrystals was increased up to 20-fold in pure water,
while the solubility of CIP–NCA in phosphate buffer pH = 6.8 was improved by about
1.5-fold and for CIP–INCA by 2.5-fold [42]. Traditional batch processes such as grinding
and ball milling have been predominantly used for cocrystallization of CIP, despite the
strong need for moving towards continuous manufacturing processes. Therefore, hot-melt
extrusion was employed to cover the gap in the literature on the application of continuous
manufacturing techniques in cocrystallization of the CIP–INCA system.

The aim of this study was to compare three mechanochemical synthesis approaches
for cocrystallization of ciprofloxacin, to increase its dissolution rate, and to optimize the
processes. Moreover, a design of experiment approach was used to develop continu-
ous manufacturing process and define the most significant critical process parameter for
achieving the highest relative cocrystal yield.

2. Materials and Methods
2.1. Material

Isonicotinic acid (INCA) (CAS no. 55-22-1) with purity ≥99.0% was purchased from
Sigma-Aldrich (Dublin, Ireland). Ciprofloxacin (CIP) (CAS no. 85721-33-1) with purity
>98% was purchased from Kemprotec (Carnforth, UK). All chemicals were used as received.

2.2. Materials Selection Rationale

The presence of a carboxylic acid group in the CIP structure makes it a proper hydrogen
bond donor which facilitates its intermolecular interaction with the coformer. INCA was
selected as coformer, which has been reportedly used in combination with other APIs as a
hydrogen bond donor and acceptor [43]. Figure 1 shows the molecular structure of CIP
and INCA.
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2.3.1. Neat Grinding 

Figure 1. Molecular structure of (a) CIP, (b) INCA.

2.3. Cocrystal Preparation Methods
2.3.1. Neat Grinding

CIP cocrystal with INCA as a coformer was synthesized by a range of mechanochemi-
cal techniques including neat grinding of 1:1 stoichiometric ratio of the physical mixture of
starting materials (API and coformer) in mortar and pestle. Total amount of 0.5 g of the
physical mixture was ground for different time durations (5, 10, 15, 20, and 30 min).
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2.3.2. Ball Milling

Milling process was carried out to investigate the cocrystal formation using a ball
milling apparatus (MM 400, Retsch, Düsseldorf, Germany) equipped with 10 mL milling
jars and one stainless steel grinding ball with diameter of 8.74 mm and weight of 4.06 g.
Half a gram of equimolar mixture of CIP–INCA was placed in 10 mL grinding jar. The
mixture was milled at 30 Hz for various periods of time (5, 10, 15, 20, and 30 min). The
obtained samples were then collected and tested for formation of cocrystals using powder
X-ray diffraction (PXRD) and differential scanning calorimetry (DSC).

2.3.3. Hot-Melt Extrusion (HME)

A 1:1 molar ratio of CIP–INCA physical mixture was prepared for cocrystallization via
hot-melt extrusion. A co-rotating twin screw extruder (Hybrid extruder ZE 5/12, Three-Tec
GmbH, Seon, Switzerland) with screw diameter of 5 mm and length-to-diameter ratio of 32:1
(Figure 2) was used. The samples were extruded with two different screw configurations
of only conveying and conveying with areas of integrated kneading elements. A 3-zoned
barrel with three heating elements was employed, where all the zones were kept at the
same temperature. CIP and INCA were mixed (in 0.05 kg batches) in a tubular mixer for
10 min prior to the feeding at a rate of 0.025 kg/h through a gravimetric double screw
feeder (ZD 5 FB-C-1M-50 i6000, Three-Tec GmbH, Seon, Switzerland) to the extruder.
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(bottom) screw with only conveying elements.

Considering the multivariate nature of the HME process, a design of experiment
(DoE) was used to evaluate the effect of each of the process factors on the cocrystallization
relative yield. Therefore, a three-factor full factorial DoE was used to study the effect of
temperature, screw speed, and screw configuration on the relative cocrystallization yield.
The DoE identifies the effect of individual factors and their interactions on the studied
response. A full factorial DoE is an appropriate choice when fewer than five factors are
being investigated, as was the case of this study. Two continuous factors of screw speed
and temperature and a categorial factor of screw configuration were considered as effective
factors for studying their effects on final relative cocrystal yield. Each continuous factor was
studied at three levels, and screw configuration was studied at two levels of conveying and
kneading. Statistical analysis of variance (ANOVA) test was performed to determine the
significance (p-value) and impact (F-value) of each main factor as well as their interactions.
F-value is the indication of statistical significance of the test. The p-value for each term tests
the null hypothesis that the coefficient associated with a particular term is zero. A small
p-value (significance level p-value < 0.05 is used here) shows that the null hypothesis can
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be rejected and that the term is significant in adding information to the model. Conversely,
a p-value > 0.05 indicates that the predictor in question cannot be used to predict changes
in the response.

The fitted model was suitable for identifying the most significant factors that affect the
final cocrystal yield. Three samples 4, 5, and 14 that were produced at 200 ◦C and kneading
screw configuration were excluded from the analysis due to the extremely low physical
yield of the process. The calculated area under the peak of 2θ = 5.37◦ as the characteristic
peak of CIP–INCA cocrystal was correlated with the corresponding relative cocrystal yields.
Table 1 shows the studied factors and the corresponding values used for each sample based
on the DoE and the calculated relative cocrystal yield.

Table 1. Factorial design of experiment and the considered parameters to be studied with their
corresponding values.

Number of
Experiments

Temperature
(◦C)

Screw Speed
(rpm)

Screw
Configuration

Relative CC
Yield (%)

1 100 55 conveying 41.3
2 100 10 conveying 43.5
3 150 10 conveying 61.9
4 200 55 kneading _
5 200 10 kneading _
6 200 100 conveying 81.2
7 100 55 kneading 51.4
8 100 100 conveying 42.3
9 150 100 Conveying 81.2
10 200 55 conveying 100
11 150 55 conveying 45.6
12 150 55 conveying 48.2
13 150 10 kneading 89.5
14 200 100 kneading _
15 100 10 kneading 39.5
16 100 100 kneading 56.7
17 150 100 kneading 98.6
18 150 55 kneading 91.7
19 200 10 conveying 93.6

In order to design the DoE, a set of initial experiments was performed to define the
lowest and highest working conditions. Thereby, 100 ◦C was selected as the minimum
temperature because it was the lowest temperature that allowed the transition of powder
from the point of entry to the end of the barrel. Moreover, 200 ◦C was selected as the
maximum temperature because at higher temperatures the mixture of the API and coformer
transformed to a dark and sticky paste that could not pass through the barrel, and the
physical yield was really low. Several considerations were also taken for selecting the range
of screw speeds. The lowest range of screw speed was set to 10 rpm, which provided
enough residence time for the samples within the barrel. However, in order to determine
the effect of screw speed on the cocrystal formation, 100 rpm was selected as the maximum
screw speed considering its practicality in industrial environment.

The extruder was operated with a die with a diameter of 1.75 mm in order to collect
the final product. The physical appearance of some of the samples at various temperatures
is shown in Figure 3. The transition of the colour of powders from white to light brown
by increasing the temperature from 100 ◦C to 200 ◦C is clearly visible. This signifies
the possible transformation of the powder from initial materials to a new compound at
higher temperatures.



Pharmaceutics 2022, 14, 634 6 of 19

Pharmaceutics 2022, 14, x  6 of 20 
 

 

The extruder was operated with a die with a diameter of 1.75 mm in order to collect 
the final product. The physical appearance of some of the samples at various temperatures 
is shown in Figure 3. The transition of the colour of powders from white to light brown 
by increasing the temperature from 100 °C to 200 °C is clearly visible. This signifies the 
possible transformation of the powder from initial materials to a new compound at higher 
temperatures. 

 
Figure 3. Physical appearance of samples extruded at 100 °C (sample 2), 150 °C (samples 3), and 200 
°C (sample 19). 

2.4. Powder X-ray Diffraction (PXRD) 
The powders were analysed by PXRD to define their crystallinity using a PANalytical 

X’Pert PRO MRD (PANalytical, Almelo, The Netherlands) with monochromatized Cu Kα 
radiation (λ = 0.15405 nm). The High Score Plus software was used for running the instru-
ment. The X-ray generator settings were set at 40 kV and 40 mA. The scans were per-
formed over 2θ range of 2.5–40°, with step size of 0.02°/step and step time of 40 s/step. 

2.5. Differential Scanning Calorimetry (DSC) 
The formation of cocrystal compound after HME process was tested via a 214 Polyma 

DSC (NETZSCH Group, Selb, Germany). A 30 mL/min flow of nitrogen was used as purge 
gas. Samples of approximately 5.0 mg were weighted into aluminium pans and crimped. 
Heating rate of 10 °C/min was used to ramp up the temperature in the range of 20–350 °C. 

2.6. Scanning Electron Microscopy (SEM) 
The morphology of the granulated samples produced via HME was investigated by 

high resolution field emission electron microscopy (SEM, Hitachi SU-70, Tokyo, Japan) 
operating at 5 kV with 15 mm working distance. To avoid overcharging, the powders were 
coated with gold–palladium for 2 min with 20 mA current. 

2.7. Fourier Transform Infrared Spectroscopy (FTIR) 
The FTIR spectrum of the granulated samples produced via HME was measured at 

ambient temperature using a Perkin-Elmer Spectrum 100 FTIR spectrometer (Perkin-
Elmer Company Waltham, MA, USA). The spectrum was collected at wavelengths of 
4000–450 cm−1 using an attenuated total reflection (ATR) accessory with a ZnSe crystal. 
Samples were placed on the crystal with a pushing arm, and 64 scans were collected for 
each sample at a resolution of 4.00 cm−1. 

2.8. Dissolution 

Figure 3. Physical appearance of samples extruded at 100 ◦C (sample 2), 150 ◦C (samples 3), and
200 ◦C (sample 19).

2.4. Powder X-ray Diffraction (PXRD)

The powders were analysed by PXRD to define their crystallinity using a PANalytical
X’Pert PRO MRD (PANalytical, Almelo, The Netherlands) with monochromatized Cu
Kα radiation (λ = 0.15405 nm). The High Score Plus software was used for running the
instrument. The X-ray generator settings were set at 40 kV and 40 mA. The scans were
performed over 2θ range of 2.5–40◦, with step size of 0.02◦/step and step time of 40 s/step.

2.5. Differential Scanning Calorimetry (DSC)

The formation of cocrystal compound after HME process was tested via a 214 Polyma
DSC (NETZSCH Group, Selb, Germany). A 30 mL/min flow of nitrogen was used as purge
gas. Samples of approximately 5.0 mg were weighted into aluminium pans and crimped.
Heating rate of 10 ◦C/min was used to ramp up the temperature in the range of 20–350 ◦C.

2.6. Scanning Electron Microscopy (SEM)

The morphology of the granulated samples produced via HME was investigated by
high resolution field emission electron microscopy (SEM, Hitachi SU-70, Tokyo, Japan)
operating at 5 kV with 15 mm working distance. To avoid overcharging, the powders were
coated with gold–palladium for 2 min with 20 mA current.

2.7. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectrum of the granulated samples produced via HME was measured
at ambient temperature using a Perkin-Elmer Spectrum 100 FTIR spectrometer (Perkin-
Elmer Company Waltham, MA, USA). The spectrum was collected at wavelengths of
4000–450 cm−1 using an attenuated total reflection (ATR) accessory with a ZnSe crystal.
Samples were placed on the crystal with a pushing arm, and 64 scans were collected for
each sample at a resolution of 4.00 cm−1.

2.8. Dissolution

The dissolution study was performed for sample 10 (highest relative cocrystal yield)
following the USP29 procedure for CIP solubility study. A USP II apparatus was employed
with paddle rotation speed at 50 rpm for 120 min. The dissolution flasks were filled
with 900 mL of prepared 0.1 M phosphate buffer with pH 6.8. Flasks were immersed in
water bath to provide fixed and approved temperature at 37 ± 0.5 ◦C before starting the
experiment. The paddles were then assembled and rotated with 50 rpm for 15 min to
equilibrate the dissolution media.
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Ciprofloxacin shows a U-shape dissolution behaviour as a function of pH with the low-
est dissolution rate at pH 6.8, the intestinal fluid pH value. Therefore, this pH was selected
in order to be able to observe the potential of cocrystallization approach in addressing the
low dissolution rate of CIP. Moreover, CIP shows high dissolution rate at acidic pH values
that are not suitable for showing a meaningful difference between CIP and its cocrystal.

After the temperature was equilibrated, the paddles were stopped and a fixed amount
of each formulation containing 50 mg equivalent of CIP was added to each dissolution
media. The paddles were then immediately rotated at 50 rpm. Samples of 5 mL were
collected from the media and filtered using Nylon 0.45 µm filters at specified intervals of
5, 10, 15, 20, 30, 45, 60, 90, and 120 min. The samples were then analysed using a UV-vis
spectroscopy setup. For this purpose, the collected aliquots were scanned at 275 nm as
λmax for ciprofloxacin to measure the concentration of it within the dissolution media [44].

3. Results and Discussion
3.1. Grinding
3.1.1. Powder X-ray Diffraction (PXRD)

The PXRD graph of ground samples for different time durations is depicted in Figure 4.
Appearance of new peaks was observed even in sample that was ground only for 5 min.
Characteristic peaks of cocrystal at 5.4◦, 10.6◦, and 19.2◦ could be detected in all of the
ground samples regardless of the grinding time. At the same time, the gradual disappear-
ance or decrease in the intensity of main characteristic peaks of initial materials confirmed
the transformation of the starting materials to a new cocrystal form. For instance, the peak
at 16.9◦, which is the peak with highest intensity of INCA, completely disappeared from
the spectra of all ground samples. Moreover, the intensity of peaks at 14.5◦ and 25.3◦ as the
characteristic peaks of CIP gradually decreased over longer grinding durations. Overall,
the PXRD spectra confirmed the formation of a new cocrystal. Moreover, the gradual
increase in intensity of characteristic peaks of cocrystal at longer grinding times showed the
positive correlation between grinding time and cocrystal formation. The longer grinding
time led to the formation of new surfaces which increased the chance of formation of new
bonds between API and coformer. Cocrystallization mechanisms during neat grinding
have been well explained by Friscic and Jones as molecular diffusion, eutectic formation,
and cocrystallization mediated by amorphous phase [45]. Therefore, approximately the
mechanism of formation of the CIP–INCA cocrystal via neat grinding could involve one,
two, or all of the mechanisms, simultaneously.
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3.1.2. Differential Scanning Calorimetry (DSC)

To confirm the conclusions derived based on PXRD analysis, samples were anal-
ysed using DSC (Figure 5). The melting peak of CIP and INCA as precursors are clearly
shown at 275.5 ◦C and 318.2 ◦C, respectively. Two new endothermic peaks are visible in
all thermograms after grinding, with temperatures lower than melting points of initial
materials. One minor peak at approximately 210–212 ◦C and a major peak at approximately
247–249 ◦C. The first peak is associated with the crystalline phase transition, while the
second endotherm confirms the presence of a major portion of cocrystal. This is in agree-
ment with the binary phase diagram of CIP–INCA cocrystal system that shows the solid
to liquid phase transformation at approximately 220 ◦C, followed by complete melting at
temperatures above 240 ◦C [40].
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3.2. Ball Milling
3.2.1. Powder X-ray Diffraction (PXRD)

PXRD spectra of ball milled samples are shown in Figure 6. The appearance of new
peaks at 5.4◦, 10.6◦, and 19.2◦ can be seen only in samples that were milled up to 10 min.
Interestingly, after 10 min of ball milling, peaks that were associated with cocrystal forma-
tion are no longer visible in the spectra. Moreover, the rest of the peaks in these spectra
are experiencing a decrease in intensity. This phenomena is most likely correlated with the
gradual formation of co-amorphous compound due to the excess mechanical stress applied
during the ball milling process [46]. These observations were verified by DSC analysis of
ball milled samples.

3.2.2. Differential Scanning Calorimetry (DSC)

Similar to the ground samples, two main peaks at approximately 210–212 ◦C and
246–248 ◦C were observed in the DSC thermogram of all samples (Figure 7). These peaks
are attributed to the presence of the phase transition and melting of cocrystal, respectively.
However, an extra exothermic peak at 61 ◦C, 71.4 ◦C, and 89.3 ◦C was present in each of the
samples that were ball milled for 15, 20, and 30 min, respectively. Not only did the PXRD
spectra confirm the gradual increase in the amorphous content of the samples after ball
milling for longer periods but also the presence of exothermic crystallization peaks in DSC
thermograms of these samples revealed the recrystallization of a portion of co-amorphous
content. The effect of time on the formation of co-amorphous blends has been shown by
Lobmann et al. in which they observed a general increase in the formation of co-amorphous
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blends after ball milling for longer periods of time [47]. Consequently, only 10 min ball
milling at 30 Hz would suffice for the formation of cocrystal between the two molecules.
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There is a discrepancy between the approximate amorphous content shown in PXRD
(Figure 6) and DSC (Figure 7) that needs to be explained. As it can be seen from the PXRD
graphs, apparently samples that were milled for 30 min have a substantially high amount
of amorphous content, while the DSC graph suggests otherwise. The lower amount of
amorphous content in DSC samples is likely due to the transformation of some portions
of amorphous content to cocrystal due to the heat during the DSC analysis. In order to
prevent this transformation, it is recommended to run the DSC analysis at a much higher
heating rate (e.g., 50 or 100 ◦C) as well and compare the results with the lower heating rate.
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3.3. Hot-Melt Extrusion
3.3.1. Powder X-ray Diffraction (PXRD)

Studying the PXRD graphs of samples produced at various temperatures and screw
speeds via two screw configurations—i.e., conveying and kneading—depicts the critical
effect of temperature and screw speed on the final cocrystal yield (Figure 8). Overall, re-
gardless of the screw speed, minor cocrystal formation was observed in samples granulated
at 100 ◦C. This is most likely attributed to the absence of an essential intermediate molten
phase that could potentially boost the chemical interaction between the two components.
However, the lowest screw speed of 10 rpm led to a higher cocrystal formation even at
temperatures as low as 150 ◦C, which is at least 70 ◦C lower than the eutectic temperature
of CIP and INCA based on the binary phase diagram of this model drug system reported
in the literature [40]. This is most likely due to the enhanced mixing and wider residence
time of powder along the barrel at this screw speed. The presence of extra peaks at 2Theta
= 11–11.5◦ at 150 ◦C is due to the start of transition of initial precursors to the cocrystal
at this specific temperature. These intermediate peaks are not present at 200 ◦C, which
depicts the end of the transition period and the formation of pure cocrystal. As the effi-
ciency of mixing decreases at higher screw speeds, only a negligible portion of cocrystal
was formed at 150 ◦C. Nevertheless, at 200 ◦C, cocrystal was formed at all screw speeds
confirming the critical importance of temperature in cocrystal formation in accordance
with the results obtained from statistical analysis. In samples granulated using screw with
integrated kneading elements, small portions of cocrystal were formed at 100 ◦C at all screw
speeds. The increase in the intensity of cocrystal characteristic peak at 5.4◦ by increasing the
temperature to 150 ◦C infers the significant role of temperature in formation of CIP–INCA
cocrystal (Appendix A, Figure A1).
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3.3.2. Differential Scanning Calorimetry (DSC)

The DSC thermograms of extrudates prepared using conveying screw configuration
at various temperatures and screw speeds are shown in Figure 9. In all thermograms,
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two endothermic peaks at 211 ◦C and 246 ◦C were observed. Comparing these peaks
with the binary phase diagram of CIP–INCA prepared by A. C. Almeida, confirms that
the first peak shows the crystalline phase transition while the second peak is the melting
point of the cocrystal [40]. Moreover, a third endothermic peak at 185 ◦C is present in
the samples granulated at 100 ◦C regardless of the screw speed and samples granulated
at 150 ◦C and 100 rpm. This peak, which is attributed to the physical form transition of
the eutectic peak, has only been present in samples with minimal cocrystal formation.
The presence of distinctive melting peaks at totally different temperatures compared
with the initial materials and the absence of the melting peaks of the initial precursors
confirm the formation of a new cocrystal compound between CIP–INCA. In samples that
were granulated using screws with kneading configuration (Figure A3), the cocrystal
melting peak was detected in all samples due to the higher applied mechanical force
during extrusion.
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3.3.3. Scanning Electron Microscopy (SEM) and Morphological Analysis

SEM images of the initial materials and four extruded samples under various con-
ditions are shown in Figure 10. Ciprofloxacin is consisted of agglomerates in the range
of 10–30 µm consisted of smaller particles. Particles of INCA are in the range of 2–20 µm
without any agglomeration. All the extrudates regardless of the process conditions are
highly agglomerated particles that are formed by smaller particles. However, slightly
large agglomerates are visible in sample 15 which was extruded at 100 ◦C as the lowest
temperature compared with the rest of the samples.

3.3.4. Fourier Transform Infrared Spectroscopy (FTIR)

The IR spectra of extruded samples and the initial precursors were obtained in order
to identify the possible intermolecular interactions and the extent of cocrystal formation
for samples extruded using conveying and kneading screw configurations (Figures 11
and A1). The IR spectrum of CIP was similar to the data available in the literature [41,48].
The presence of strong bands between 1702 cm−1 (νC=Ocarbonyl) and 1623 cm−1 (δN-
Hamine bending) and weak bands in the range of 2580–2680 cm−1 that are related to the
presence of ν NH2+ group confirmed the presence of CIP in the zwitterionic form [49].
Moreover, the peak at 3403 cm−1 is related to (νO-Hcarboxylic acid). The INCA spectrum
shows the peaks at 3425 cm−1(νO=Hcarboxylic acid), 1616 cm−1(δN-Hamine bending),
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and 1716 cm−1 (νC=Ocarbonyl) which is in agreement with the available data in the
literature [50].
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The IR spectra of extruded samples show a blue shift of the νC=Ocaboxyl group of
INCA from 1716 cm−1 of CO=(νC=O) stretching to 1728 cm−1 in cocrystal form, which
refers to the possible formation of a hydrogen bond between CIP and INCA molecules.
Moreover, the intensity of the peak at (δN-Hamine bending) is gradually decreased by
increasing the temperature until it completely disappears from the spectrum of cocrystal
at 200 ◦C. This is an indication of the involvement of N of CIP in a hydrogen bonding.
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Therefore, it can be concluded that the hydrogen bond between C=O of INCA and N–H
of CIP was formed mainly at samples produced at 200 ◦C. The FTIR spectra of samples
extruded using screws with a kneading configuration at 150 ◦C showed the blue shift in
a high intensity peak at 1705 cm−1 to 1728 cm−1 (Figure A2). The same shift in the peak
position could be seen in FTIR spectra of samples extruded at 100 ◦C; however, this peak
had lower intensity compared with its counterpart at 150 ◦C.

3.3.5. Statistical Analysis

The full factorial ANOVA test revealed the presence of significant factors with sub-
stantial effect on the cocrystal yield. It should be mentioned that the series of samples
that were extruded with a kneading screw configuration at 200 ◦C were excluded from the
ANOVA analysis and model due to their extremely low physical yield. Based on the results,
factors with p-values < 0.05 were considered as significant. Figure 12a shows the parameter
estimates plot with the most significant factors shown in shaded bars. The scale of each bar
depicts the significance of each factor and its effect on the relative cocrystal yield. ANOVA
revealed that temperature, screw type, and the interaction of these two factors have impact
on the relative cocrystal yield. Surprisingly, the screw speed appeared as a nonsignificant
factor with minimal impact. This could be due to the fact that cocrystallization process in
this system is more likely controlled by temperature and mechanical force, as opposed to
the residence time. The positive impact of kneading configuration on the final cocrystal
yield suggests the effect of increased mechanical force due to the presence of kneading
elements on increasing the cocrystal yield. Consequently, it is the interaction of these two
factors that controls the cocrystallization process of the CIP–INCA system via HME. The
data-driven model based on the standard least square regression was in good agreement
with the experimental data, as shown in parity plot in Figure 12b.

ANOVA analysis revealed the significant effect of temperature on the final yield
of the cocrystallization process. The contour map is a practical and informative tool
for deciphering the interrelation of two or more factors and their effect on the studied
properties. The contour map in Figure 12c shows the interrelation of temperature and screw
speed and their cumulative effect on cocrystallization yield. The cocrystal yield is almost
independent of screw speed, with only minimal impact. On the other hand, temperature is
the main factor that affects the cocrystal, and the cocrystal yield is directly proportional
to the extruding temperature—i.e., higher cocrystal yields have been achieved at higher
temperatures regardless of the screw speed.

3.3.6. Dissolution Rate Analysis

The dissolution rate of an extrudate sample with the highest relative cocrystal yield
was measured in a phosphate buffer at pH 6.8 (Figure 13). This range of pH for the buffer
was selected as CIP shows the lowest dissolution rate at the pH between 6.1 and 8.7.
Additionally, due to the possible changes in the pH of the dissolution media after the
dissolution of INCA, a buffer was used instead of pure water as dissolution media [40].
The solubility of ciprofloxacin in phosphate buffer pH 6.8 was reported to be 70 µg/mL
and higher than 55 µg/mL, which is the total amount of added API to the dissolution flask.
Therefore, the sink condition was maintained during the dissolution test. The cocrystal
shows almost a 2-fold increase in the dissolution as soon as 5 min after the start of the test.
Despite the faster dissolution rate of the cocrystal formulation compared with that of the
pure CIP, the cocrystal formulation dissolution graph reached a plateau after 2 h. This is
most likely due to the transformation of dissolved CIP to pure crystalline CIP with lower
solubility in dissolution medium. The level of dissolved drug then stabilizes at the same
level with only slight increase for the next 115 min until the end of the test, which shows
the stability of the dissolved CIP in the dissolution media without any recrystallization or
precipitation. The increased dissolution rate of CIP in cocrystal form compared with pure
crystalline CIP is mostly likely due to the higher solubility of the INCA component in the
dissolution media. This mechanism has been seen in other cocrystals as well [10]. At this
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stage, the coformer dissolves faster in the dissolution media due to the potential formation
of complex bonds between water and INCA molecules. This follows by the disintegration
of the crystal structure and release of CIP to the buffer.
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4. Conclusions

Dry grinding, ball milling, and HME were successfully used for cocrystallization of
CIP as a BCS class II API and INCA as coformer. Cocrystal formation was confirmed in all
mechanochemical methods used in this study. Higher cocrystal formation was observed by
griding the precursors for a longer time. However, ball milling resulted in the formation of
a cocrystal at up to 10 min, while at higher milling times, co-amorphous formation was
detected. Factorial DoE was employed as a powerful tool for determining the critical process
parameters and optimizing the cocrystallization process via HME due to its multivariate
nature. ANOVA analysis revealed temperature as the most critical process parameter in
cocrystallization via HME. Therefore, the sample extruded at 200 ◦C showed the highest
cocrystal formation. Moreover, it was verified that the kneading screw configuration has a
profound effect on the formation of cocrystal even at lower temperatures. Therefore, the
most optimized combination of temperature and applied mechanical force was determined
in order to achieve the highest possible cocrystallization yield via HME. FTIR analysis
confirmed the intermolecular interaction between CIP and INCA, further proving the
formation of cocrystal. CIP–INCA cocrystal showed a 2-fold increase in dissolution rate
compared with pure CIP. Overall, this study revealed the potential of mechanochemical
synthesis, especially HME in combination with a DoE approach for determining the critical
process parameters and process optimization.
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