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ABSTRACT Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are
widely used model systems to study mechanisms of virus-host interactions. Here, we in-
vestigated how the cell cycle affects replication of these viruses using an array of cell
lines with different levels of impairment of antiviral signaling and a panel of chemical
compounds arresting the cell cycle at different phases. We observed that all compounds
inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51
in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type
III interferon (IFN) production as well as expression of IFN-stimulated genes in response
to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai vi-
rus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did
not stimulate the replication of a wild-type VSV that is more effective at evading antivi-
ral responses. In contrast, the positive effect of G2/M arrest on virus replication was not
observed in cells defective in IFN signaling. Altogether, our data show that replication of
IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a re-
sult of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcrip-
tion, a global repression of cellular transcription during G2/M phase. The G2/M phase
thus could represent an “Achilles’ heel” of the infected cell, a phase when the cell is in-
adequately protected. This model could explain at least one of the reasons why many
viruses have been shown to induce G2/M arrest.

IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51
are widely used model systems to study mechanisms of virus-host interactions. Here, we
investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that
G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-
type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression,
likely due to mitotic inhibition of transcription, a global repression of cellular tran-
scription during G2/M phase. Our data suggest that the G2/M phase could represent
an “Achilles’ heel” of the infected cell, a phase when the cell is inadequately pro-
tected. This model could explain at least one of the reasons why many viruses have
been shown to induce G2/M arrest, and it has important implications for oncolytic
virotherapy, suggesting that frequent cell cycle progression in cancer cells could
make them more permissive to viruses.

KEYWORDS G2/M, Sendai virus, cell cycle, colchicine, mitotic inhibition of
transcription, nonsegmented negative-strand RNA virus, paclitaxel, type I interferon,
vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is a prototypic nonsegmented negative-strand (NNS)
RNA virus (order Mononegavirales, family Rhabdoviridae). The 11-kb genome of VSV

encodes five proteins that are all included in the enveloped, bullet-shaped VSV virion:
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nucleocapsid protein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and
large polymerase (L) (1). VSV is able to infect and replicate in a wide range of cell types
(2). The pantropism of VSV is determined in part by the fact that several ubiquitously
expressed cell surface molecules could be utilized by VSV for attachment to host cells,
including the low-density lipoprotein receptor (LDLR) (3), phosphatidylserine (4–6),
sialoglycolipids (7), and heparan sulfate (8). The ability of VSV to replicate in a wide
range of cells is facilitated by the virus-encoded M protein, which helps VSV to evade
innate antiviral responses in infected cells via inhibition of nuclear exit of host mRNAs,
including transcripts for virus-induced antiviral genes (9–11).

VSV’s rapid replication, high virus yields in a wide range of cell types, and easily
manipulated genome make it a popular model virus for studying basic mechanisms of
virus-host interactions in NNS RNA and other cytoplasmic RNA viruses. However,
although VSV is one of the best-studied viruses, the role of the cell cycle in VSV
replication is still unclear, and previous studies that focused on different VSV recom-
binants and cell types have provided conflicting results. One study reported that the
availability of certain translation initiation factors after successful G0-to-G1 cell cycle
transition is crucial to sustain VSV replication in primary T lymphocytes (12). In contrast,
a similar analysis of human hepatocellular carcinoma (HCC) cell lines showed that
neither the G0-to-G1 transition nor the availability of translation initiation factors after
the G0-to-G1 transition is essential for successful VSV replication in HCC cells (13).
Another study showed that in the BHK-21 (baby hamster kidney fibroblast) cell line, the
highest numbers of infectious particles were produced when cells were infected during
the G2/M transition, although no mechanism was proposed to explain the observation
(14).

Here, we examined the effects of the cell cycle on viral replication using VSV
recombinants encoding either wild-type (WT) M or ΔM51 M protein and an array of
human pancreatic ductal adenocarcinoma (PDAC) cell lines with different levels of
impairment of type I interferon (IFN) signaling, which have been studied in detail in our
previous studies (15–17). Most of our experiments in this study utilized VSV-ΔM51 and
the Suit2 cell line. Compared to WT VSV, VSV-ΔM51 is sensitive to type I IFN antiviral
responses, which allowed us to examine the effects of the cell cycle on cellular antiviral
responses. VSV-ΔM51 has a deletion of methionine 51 in the VSV M protein, resulting
in an inability of this protein to inhibit nucleus-to-cytoplasm transport of cellular mRNA,
including antiviral transcripts (18–21). We chose Suit2 because it has limited permis-
siveness to VSV-ΔM51 due to functional type I IFN antiviral signaling (15, 22). As a result,
the VSV-ΔM51/Suit2 combination is a useful model to study the effects of the cell cycle
on replication of IFN-sensitive cytoplasmic viruses, as it allows one to detect decreases
as well as increases of viral replication and examine changes in cellular antiviral
responses in response to manipulations of the cell cycle.

Our data demonstrate that G2/M mitotic arrest strongly enhances the replication of
VSV-ΔM51 (but not of WT VSV) and does so via inhibition of antiviral gene expression.
A similar result was also observed for Sendai virus (SeV; a paramyxovirus), suggesting
that the replication of at least some IFN-sensitive cytoplasmic RNA viruses can be
strongly stimulated by this stage of the cell cycle. This model could explain at least one
of the reasons why many viruses have been shown to induce G2/M arrest.

RESULTS
G2/M arrest strongly enhances replication of VSV-�M51. To examine the role of

the cell cycle in the permissiveness of cells to VSV-ΔM51, we used a panel of chemical
compounds known to arrest the cell cycle at different phases (Fig. 1). Most of the
compounds are commonly used to block the cell cycle in G2/M phase by either
stabilization of microtubules (paclitaxel and docetaxel are microtubule-stabilizing
agents [MSAs]) or destabilization of microtubules (nocodazole, vinblastine, colchicine,
and colcemid are microtubule-destabilizing agents [MDAs]), which inhibit spindle
dynamics, thereby leading to mitotic arrest. In addition, we included aphidicolin and
thymidine to block the cell cycle in G1/S and S phases, respectively. First, we wanted to
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confirm that the chosen compounds arrested cells in the above-mentioned phases.
Suit2 cells were treated for 24 h with the indicated compound and then stained with
DAPI (4=,6-diamidino-2-phenylindole) and analyzed for cellular DNA content using flow
cytometry (Fig. 1). As expected, the majority of mock-treated cells (“control”) (Fig. 1)
were in G0/G1 phase. In contrast, paclitaxel, docetaxel, nocodazole, vinblastine, colchi-
cine, and colcemid treatments dramatically shifted most of the cells to G2/M phase;
thymidine treatment arrested most of the cells in S phase; and aphidicolin arrested
most cells between G1 and S (Fig. 1). The flow cytometry data agreed with data from
the confocal microscopy analysis demonstrating that only the compounds inducing
G2/M arrest (as indicated by flow cytometry) induced easily visible chromatin conden-
sation as well as the expected cell rounding that was observed using a phase-contrast
microscope (data not shown). In contrast to the effects of these compounds on the cell
cycle, infection of Suit2 cells with VSV-ΔM51 (indicated as “VSV” in Fig. 1) did not
dramatically alter the cell cycle distribution, although a shift toward S and G2/M phases
was observed (Fig. 1).

After confirming that chemical compounds were able to block the cell cycle in G1,
G1/S, or G2/M phase, we examined the effect of the blocks on viral replication (Fig. 2).
Suit2 cells were treated with different concentrations of each compound for 24 h and
then infected with VSV-ΔM51 at a multiplicity of infection (MOI) of 0.1 PFU per cell (the
MOIs here and elsewhere were calculated based on VSV-ΔM51 titration on BHK-21 cells,
the reference cell line, which translates to a 20-fold-lower MOI in Suit2 cells). As
VSV-ΔM51 has a green fluorescence protein (GFP) gene reporter between VSV genes G
and L, we used GFP fluorescence to measure virus replication kinetics (Fig. 2A and B).
As shown in previous studies, due to its downstream position between VSV genes G
and L, virus-directed GFP expression can be used to measure virus replication levels, as

FIG 1 Induction of cell cycle arrest in Suit2 cells. Suit2 cells were treated (or mock treated [“Control”]) for 24 h by chemical compounds known to block the
cell cycle in G2/M (500 nM paclitaxel, docetaxel, nocodazole, vinblastine, colchicine, or colcemid), in S (2 mM thymidine), or in G1/S (3 �M aphidicolin) phase.
Alternatively, Suit2 cells were infected with VSV-ΔM51 at an MOI of 0.1 PFU/cell (the MOI was calculated based on virus titration on BHK-21 cells) for 24 h and
then analyzed. Cell cycle stages were analyzed by flow cytometry with DAPI staining to determine nuclear DNA content, which was used to calculate the
percentages of cells in different cell cycle phases. Single cells were gated via DAPI area and DAPI width signals and analyzed from a DAPI area histogram. Results
show the data from one of three independent experiments.

G2/M Arrest Enhances Replication of RNA Viruses Journal of Virology

February 2019 Volume 93 Issue 4 e01885-18 jvi.asm.org 3

https://jvi.asm.org


FIG 2 G2/M arrest strongly stimulates VSV-ΔM51 replication. (A) Experimental design scheme. (B) Suit2 cells were mock treated (control [“ctrl”]) or treated
for 24 h with the indicated compounds at different concentrations and then infected with VSV-ΔM51 (indicated as “VSV”) at an MOI of 0.1 PFU/cell (the MOI
was calculated based on virus titration on BHK-21). The level of GFP fluorescence was measured over the time from 1 h until 72 h p.i. The figure presents
data representative of results from at least two independent experiments. The means and standard deviations (SD) of the means are indicated.

Bressy et al. Journal of Virology

February 2019 Volume 93 Issue 4 e01885-18 jvi.asm.org 4

https://jvi.asm.org


it can be detected only if the virus genome is replicated (23). We observed that all
chemical compounds blocking the cell cycle in G2/M caused a strong increase in
VSV-ΔM51 replication (Fig. 2B). The strongest positive effect was observed for pacli-
taxel, docetaxel, and colchicine. In contrast, aphidicolin (G1/S-phase arrest) and thymi-
dine (S-phase arrest) treatments strongly inhibited VSV-ΔM51 replication (Fig. 2B).
While inhibition of virus replication by aphidicolin and thymidine could be attributed
to negative effects of these treatments on cell physiology and/or specific inhibition of
VSV replication, the observed strong stimulation of VSV-ΔM51 replication by every
tested compound (MDA or MSA) inducing G2/M arrest was more intriguing. The
observed increase in VSV-driven GFP expression (Fig. 3A and B) was also accompanied
by an increase in de novo VSV virion production by paclitaxel-treated cells (Fig. 3C) (only
paclitaxel was tested), confirming that paclitaxel-mediated G2/M arrest increased pro-
ductive viral replication and not just VSV-driven GFP expression or stability. The
increases in de novo virion production (Fig. 3C) and VSV-driven GFP expression (Fig. 3B)
were particularly strong when cells were infected at a lower MOI. The effect of MOI on
stimulation of viral replication by G2/M arrest is addressed again below in this study.

Despite their various chemical structures and mechanisms of action (e.g., paclitaxel
is an MSA, while colchicine is an MDA), every chemical compound arresting cells in
G2/M phase also stimulates VSV-ΔM51 replication (Fig. 2), suggesting that G2/M arrest
is required for the observed stimulation of VSV-ΔM51 replication. To further address this
issue, we examined how different treatment schedules influence virus replication levels.
Our previous studies showed that treatment with ruxolitinib (a JAK1/JAK2 inhibitor)
enhances VSV-ΔM51 replication in cell lines with functional type I IFN signaling but only
when ruxolitinib was present after infection (24). In agreement with that study, we
observed a strong stimulation of VSV-ΔM51 replication in Suit2 cells that were infected
and then treated with ruxolitinib, while no such effect was observed if cells were
treated with ruxolitinib prior to infection (Fig. 4A). In contrast, paclitaxel treatment had
a strong increase on VSV-ΔM51 replication in pre- or postinfection paclitaxel-treated
Suit2 cells (Fig. 4A). If stimulation of VSV-ΔM51 replication by paclitaxel treatment prior
to infection was due to mitotic arrest, we anticipated that the arrest would persist for
at least some time after the removal of paclitaxel from the medium. To test this
hypothesis, we treated Suit2 cells with or without paclitaxel for 24 h; removed pacli-
taxel; continued cell incubation without it for 0, 8, or 24 h; and then analyzed the cell
cycle using flow cytometry. In agreement with our hypothesis, the majority of cells
remained in G2/M phase 8 h after paclitaxel removal, and even 24 h after paclitaxel
removal, a large portion of cells remained in G2/M phase (Fig. 4B). A similar result was
observed for colchicine-treated cells (data not shown). Based on this result, we hypoth-
esized that paclitaxel treatment would enhance VSV-ΔM51 replication even if
paclitaxel-treated cells (24-h treatment) were incubated without it for another 24 h and
then infected (“24-h drug withdrawal”) (Fig. 4C). In agreement with this hypothesis,
paclitaxel increased VSV-ΔM51 replication under this experimental condition albeit to
a lesser extent than under the “0-h drug withdrawal” condition (Fig. 4C). Interestingly,
we consistently observed a lower number of GFP-positive cells in all groups when
comparing 24-h to 0-h drug withdrawal conditions (Fig. 4C). We think that this may
have happened because cells were allowed to grow an extra 24 h before virus infection,
and it is possible that some changes (altered expression of cytokines or cell surface
molecules or more dead cells, etc.) during those extra 24 h resulted in the decreased
susceptibility and/or permissiveness of cells to VSV-ΔM51.

To further investigate whether G2/M arrest or the presence of drugs alone is
required to increase VSV-ΔM51 replication, we blocked Suit2 cells in S phase with
thymidine prior to and after VSV-ΔM51 infection with or without colchicine or paclitaxel
(Fig. 5A). Our data showed that thymidine treatment suppressed stimulation of VSV-
ΔM51 replication by colchicine (Fig. 5B) or paclitaxel (Fig. 5B and C), likely because it
prevented the transition of S-phase-arrested cells to G2/M phase (Fig. 5D). Altogether,
our data suggest that G2/M phase is required for the observed increase in VSV-ΔM51
replication by paclitaxel and other G2/M-arresting compounds.
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FIG 3 G2/M arrest stimulates VSV-ΔM51 replication under lower-MOI conditions. (A) Light and epifluorescence microscopy of Suit2 cells mock treated
(Ctrl) or treated with paclitaxel (3 �M), VSV-ΔM51 (MOI of 0.01 or 0.1 PFU/ml [the MOI was calculated based on virus titration on BHK-21 cells]), or both
for 72 h p.i. (B) Suit2 cells were seeded and washed with PBS before infection with 100 �l of VSV-ΔM51 at different MOIs (0.001, 0.1, or 10 PFU/cell [the
MOI was calculated based on virus titration on BHK-21 cells]) for 1 h in medium without FBS. Cells were then washed and incubated for 72 h with 100 �l
of medium (5% FBS) containing or not 500 nM paclitaxel. The measurements of GFP fluorescence were performed at the indicated time points. The data
show results of one experiment representative of two, each performed in quadruplicates, and data represent the means and SD of the means. *, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.0001; ns, nonsignificant. The significance of the data was determined using two-way ANOVA with a Tukey posttest
at a 95% confidence interval for comparison between VSV plus paclitaxel and VSV alone. (C) De novo virion production in the supernatant of Suit2 cells
infected with VSV-ΔM51, incubated for 72 h, and treated or not treated with 3 �M paclitaxel (PAC). Virion production yield was measured by titrating
the supernatants on BHK-21 cells using a standard plaque assay. The experiment was performed two independent times, and data are presented as the
means and SD of the means. *, P � 0.05; ***, P � 0.001; ns, nonsignificant. The significance of the data was determined by using the two-tailed unpaired
t test.
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FIG 4 Paclitaxel is able to block the cell cycle in G2/M as well as improve viral replication even after its withdrawal from cells. (A) Suit2 cells were either treated
with a compound (500 nM paclitaxel or 500 nM ruxolitinib) for 24 h before infection with VSV-ΔM51 (“preinfection treatment”) or first infected with VSV-ΔM51
and then treated with a compound (“postinfection treatment”). The level of GFP fluorescence was measured over the time from 1 until 72 h p.i. The data are
representative of results from two independent experiments. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001; ns, nonsignificant. The significance of the
data was determined using two-way ANOVA with a Tukey posttest at a 95% confidence interval for comparison of VSV plus paclitaxel or VSV plus ruxolitinib
versus VSV alone. (B) Suit2 cells were treated with 500 nM paclitaxel (or mock treated) for 24 h and then monitored by a cell cycle analysis 0, 8, or 24 h after
compound removal. Cell cycle stages were analyzed by flow cytometry with DAPI staining to determine nuclear DNA content, which was used to calculate the
percentages of cells in different cell cycle phases. Single cells were gated via DAPI area and DAPI width signals and analyzed from a DAPI area histogram. (C)

(Continued on next page)
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Stimulation of VSV-�M51 replication by G2/M arrest is due to inhibition of
antiviral responses. Two major mechanisms could explain the observed stimulation of
VSV-ΔM51 replication by G2/M arrest. First, it is possible that in G2/M-arrested cells,
some restriction factors of viral replication are inhibited. Alternatively, it is possible that
during this cell cycle phase, some limiting host factors of VSV replication become
available, thus enhancing viral replication. We decided to focus on the first hypothesis,
which is consistent with our previous studies demonstrating that the ability of cells to
mount functional type I IFN antiviral responses is a major determinant of permissive-
ness of cells to VSV-ΔM51 (15, 17, 24). To test this hypothesis, we analyzed the effect
of paclitaxel on viral replication using different cell lines and viruses with various
abilities to mount and evade type I IFN responses, respectively (Fig. 6). First, paclitaxel
treatment increased VSV-ΔM51 replication not only in Suit2 (Fig. 6A) but also in HPAF-II
(Fig. 6B) and AsPC-1 (data not shown) cells, all of which can mount a functional type I
IFN response against VSV-ΔM51 (15). Second, in Suit2 cells, paclitaxel treatment stim-
ulated the replication of Sendai virus (a paramyxovirus), another cytoplasmic NNS RNA
virus which is also sensitive to type I IFN responses (Fig. 6C) (25). Importantly, this result
shows that G2/M arrest can stimulate the replication of other cytoplasmic RNA viruses,
via general mechanisms that are not limited only to VSV-ΔM51. Third, we did not
observe any positive effects of paclitaxel on VSV-ΔM51 replication in MIA PaCa-2 cells,
which are defective in type I IFN signaling (Fig. 6D) (15–17). Fourth, we did not observe
any positive effects of paclitaxel on replication of WT VSV, which is capable of inhibiting
type I IFN responses (Fig. 6E). These results also suggest that G2/M arrest does not
stimulate viral replication by increasing the availability of some limiting host factors of
VSV replication. If that was the case, then we would expect to see increases in WT VSV
replication in Suit2 cells and VSV-ΔM51 replication in MIA PaCa-2 cells as well. We also
tested the effects of paclitaxel and colchicine on replication of VSV-ΔM51 in BHK-21
cells, which are the most commonly used cells for production of VSV and many other
viruses. As shown in Fig. 6F, while VSV-ΔM51 replication decreased in a dose-
dependent manner in paclitaxel-treated cells, colchicine at several lower tested con-
centrations (25 to 384 nM) had a modest positive effect on VSV-ΔM51 replication (Fig.
6F). Importantly, VSV-ΔM51 replication in BHK-21 cells was slightly stimulated not only
by colchicine but also by ruxolitinib (a JAK1/JAK2 inhibitor) (Fig. 6F), indicating that
BHK-21 cells are not completely defective in type I interferon signaling, which agrees
with a previous report (26).

Interestingly, we observed negative effects of paclitaxel on replication of VSV-ΔM51
in MIA PaCa-2 (Fig. 6D) and BHK-21 (Fig. 6F) cells and on replication of WT VSV in Suit2
cells (Fig. 6E). It is likely that paclitaxel has some negative effect on viral replication in
all virus/cell line combinations, but it is directly observable only when the antiviral
response is effectively evaded by virus (WT VSV) or when it is not functional (MIA PaCa-2
cells) or weak (BHK-21 cells) due to cellular defects.

G2/M arrest inhibits expression of ISGs and antiviral IFNs. Type I IFN signaling is
particularly protective against secondary infections of neighboring cells, which occur
only under low-MOI infection conditions (when most cells are not infected during
primary infection) and at later time points after infection (when virus spreads to
neighboring cells) (27). Our data are consistent with this scenario, as the strongest
positive effect of paclitaxel on VSV-ΔM51 replication was observed at lower tested MOIs
(Fig. 3B and C). To measure VSV replication and type I IFN response levels at different
MOIs and time points, Suit2 cells were treated with paclitaxel or colchicine for 24 h and
infected with VSV-ΔM51 at different MOIs, and cellular lysates were then collected at 1,
8, and 24 h postinfection (p.i.) and analyzed for viral and cellular proteins using Western

FIG 4 Legend (Continued)
Suit2 cells either were treated with 500 nM paclitaxel (PAC) or remained untreated for 24 h. Paclitaxel (or medium) was then removed for 0 or 24 h before
infection with VSV-ΔM51 (MOI of 1 or 10 PFU/cell [the MOI was calculated based on virus titration on BHK-21 cells]). After virus infection, incubation of cells
continued for 12 h. The percentage of GFP-positive (GFP�) cells as well as the mean fluorescence were analyzed by flow cytometry and are indicated on the
top right of each graph. The data represent results from at least two independent experiments.
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FIG 5 Treatment of Suit2 cells with thymidine impairs the ability of chemical compounds blocking the cell cycle in G2/M to improve VSV-ΔM51
replication. (A) Experimental design scheme. Suit2 cells were incubated with either 2 mM thymidine or medium with 10% FBS for 24 h.

(Continued on next page)
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blot analysis. As expected, no viral proteins were detected at 1 h p.i. (Fig. 7). For this
time point, we did not observe any changes in the total signal transducer and activator
of transcription 1 (STAT1) level, and no STAT1 phosphorylation (indicative of type I IFN
signaling activation) was detected. At the same time, strong accumulation of cyclin B
was detected in paclitaxel- and colchicine-treated cells, which is expected for cells
arrested in G2/M phase (Fig. 7). In agreement with our hypothesis that G2/M arrest
stimulates VSV-ΔM51 replication via inhibition of type I IFN signaling, we did not
observe any positive effect of paclitaxel or colchicine on VSV-ΔM51 replication at 8 h
p.i., when VSV is still replicating mainly in initially infected cells. In fact, a clear inhibition
of viral replication can be observed at this time point, which is likely due to some
negative effects of these chemical compounds on the cellular environment for viral
replication in the initially infected cells. This result also suggests that G2/M arrest does
not stimulates viral replication by increasing the availability of some limiting host
factors of viral replication. If paclitaxel or colchicine treatment would make a host factor
more available to virus, then we would expect to see an increase in VSV-ΔM51
replication at an earlier time after infection and at a higher MOI.

Interestingly, despite this negative effect on viral replication at 8 h p.i., decreases in
total STAT1 accumulation (under all conditions, even in mock-infected cells) as well as
STAT1 phosphorylation (MOI of 50 and MOI of 250) could be seen (likely as a result of
a lower total STAT1 level). At 24 h p.i., a clear positive effect of paclitaxel or colchicine
on VSV-ΔM51 replication was observed but primarily when cells were infected at a
lower MOI. Again, we observed a clear inhibition of total STAT1 accumulation (espe-
cially in virus-infected cells) as well as STAT1 phosphorylation (under all MOI conditions)
(Fig. 7).

To examine if the observed inhibition of total STAT1 accumulation (and phosphor-
ylation) during G2/M arrest also happens in response to nonviral stimuli, we utilized
IFN-� and poly(I:C), a mimic of viral double-stranded RNA and a potent inducer of type
I IFN signaling. Suit2 cells were treated with the vehicle, paclitaxel, or colchicine at
500 nM for 25 h and then either treated with the vehicle (negative control), TransIT-TKO
(TransIT) transfection reagent (control for the transfection reagent), poly(I:C) mixed with
TransIT, or IFN-� or infected with VSV-ΔM51 (MOI of 30). Total protein was isolated at
4 h posttreatment and analyzed by Western blotting. The highest levels of phosphor-
ylated STAT1 (STAT1-P) were found in mock-treated (no paclitaxel or colchicine)
samples when cells were stimulated by IFN-�, while the lowest levels were found after
poly(I:C) stimulation. Importantly, treatment of cells with paclitaxel or colchicine de-
creased STAT1-P levels induced by either IFN-�, poly(I:C), or VSV (Fig. 8). The paclitaxel-
mediated inhibition of STAT1-P levels induced by IFN-� is not evident in Fig. 8 but was
more apparent with a shorter exposure of this Western blot (data not shown). Again, as
in Fig. 7, we observed a decrease in total STAT1 levels in cells treated with paclitaxel or
colchicine, which likely determined lower levels of STAT1-P in those samples. A similar
trend was observed for STAT2-P and STAT2, although STAT2-P levels were below our
detection levels for cells induced with poly(I:C) or VSV. Not surprisingly for such an early
stage in virus infection (4 h p.i.), no increase in VSV protein accumulation was observed

FIG 5 Legend (Continued)
VSV-ΔM51 (0.1 PFU/cell) was used to infect cells for 1 h. After virus incubation, cells were washed with PBS. Medium containing either the
vehicle, 500 nM paclitaxel (PAC), or 500 nM colchicine (COL) (plus 2 mM thymidine) was added for 72 h. (B) Kinetics of GFP expression by VSV
over the time after the different treatments described above for panel A. The data are from two independent experiments, each performed
in quadruplicates, and data represent the means and SD of the means (*, P � 0.05; ****, P � 0.0001; ns, nonsignificant). The significance of
the data was determined using two-way ANOVA with a Tukey posttest at a 95% confidence interval for comparison of VSV plus paclitaxel
or VSV plus colchicine versus VSV alone. (C) Suit2 cells were incubated with either 2 mM thymidine or the vehicle for 24 h. Cells were then
infected (or mock infected) with VSV-ΔM51 (0.1 PFU/cell) for 1 h. After virus incubation, cells were washed, and medium containing either
the vehicle, 500 nM paclitaxel, or 500 nM paclitaxel and 2 mM thymidine was added for 24 h. Light and epifluorescence microscopy of Suit2
cells were imaged. (D) Cell cycle stages were analyzed for cells described above for panel C using flow cytometry with DAPI staining to
determine nuclear DNA content, which was used to calculate the percentages of cells in different cell cycle phases. Single cells were gated
via DAPI area and DAPI width signals and analyzed from a DAPI area histogram. The data are representative of results from two independent
experiments. FACS, fluorescence-activated cell sorter.
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FIG 6 G2/M arrest improves viral replication only when active type I IFN signaling inhibits viral replication. (A to E) Suit2 cells (A, C, and E), HPAF-II cells (B), or MIA
PaCa-2 cells (D) were treated with medium or different concentrations of paclitaxel (Pac) at the indicated concentration ranges for 24 h and then infected (or mock
infected) with VSV-ΔM51 (MOI of 0.1 for Suit2 or MOI of 10 for HPAF-II cells), WT VSV (MOI of 0.1), or Sendai virus recombinant SeV-GFP (MOI of 0.1). The MOI for
each virus was calculated based on virus titration on BHK-21 cells. The level of GFP intensity was measured in cells over time. (F) BHK-21 cells were treated 26 h
prior to or following VSV-ΔM51 infection at an MOI of 0.01 with medium, paclitaxel, colchicine (Col), or ruxolitinib (Ruxo) at the indicated concentration ranges. After
infection, virus replication was measured at regular intervals by way of GFP fluorescence. The means and SD of the means are indicated.
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FIG 7 Inhibition of the type I interferon response in Suit2 cells blocked in G2/M allows an increase in viral
replication. Suit2 cells were treated with 500 nM paclitaxel (Pac) or 500 nM colchicine (Col) or remained

(Continued on next page)
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for paclitaxel- or colchicine-treated cells (Fig. 8), which is consistent with our data for
8 h p.i. (Fig. 7).

Altogether, our data suggest that G2/M arrest primarily enhances secondary infec-
tion and replication of VSV-ΔM51 by inhibiting the establishment of an “antiviral state”
in uninfected neighboring cells. The observed stimulation of viral replication could be
due to inhibition of expression of IFN genes in response to initial viral infection and/or
expression of antiviral IFN-stimulated genes (ISGs) in response to IFNs secreted by
infected cells. To test this, we conducted two experiments. First, we examined kinetics
of production of antiviral IFNs in response to viral infection (Fig. 9). In the second
experiment, we analyzed global expression of antiviral genes in G2/M-arrested cells in
response to the same amounts of exogenously added type I IFN (Fig. 10).

To determine the effect of G2/M arrest on antiviral IFN production, Suit2 cells were
treated with paclitaxel or colchicine (or mock treated) for 24 h and then infected with
VSV-ΔM51 for 1 h at an MOI of 0.1 (or mock infected) (Fig. 9A). Following infection, we
examined virus replication-driven GFP expression (Fig. 9B), collected cell supernatants
at different time points, and measured the production of the three most important
antiviral IFNs, IFN-� (type I IFN), IFN-� (type I IFN), as well as IFN-�2 (also known as
interleukin-28A [IL-28A]), a type III IFN. The triggers for expression of type III IFNs and
their activities are very similar to those of type I IFNs, but type I and III IFNs bind to
unrelated heterodimeric receptors (28). Paclitaxel treatment (Fig. 9, left) resulted in not
only statistically significantly increased viral replication at 24 and 48 h p.i. (Fig. 9B) but
also decreased production of IFN-� at 24, 36, and 48 h p.i. (Fig. 9C; IFN-� at 48 h p.i.

FIG 7 Legend (Continued)
untreated for 24 h and then infected with VSV-ΔM51 at different MOIs (0, 0.4, 2, 10, 50, and 250 PFU/cell
based on the titer determined on BHK-21 cells) for 1, 8, or 24 h. Western blotting shows the expression
of phospho-STAT1 (STAT1-P) at Y701, STAT1, VSV proteins (G, N/P, and M), and cyclin B1. Protein names
and protein sizes in kilodaltons are indicated on the left and right, respectively. GAPDH was used to
confirm that protein loading was the same across the gel.

FIG 8 Induction of type I IFN signaling by viral and nonviral stimuli is inhibited in G2/M-arrested cells.
Suit2 cells were treated for 25 h with the vehicle, paclitaxel, colchicine, or ruxolitinib at 500 nM. Cells were
then treated with the vehicle (untreated), TransIT reagent (0.5%, vol/vol), poly(I:C) at 10 �g/ml plus
TransIT reagent, IFN-� at 5,000 U/ml, or VSV at an MOI of 30 based on titration on BHK-21 cells. VSV was
aspirated 1 h later, and medium was added to infected wells. Cells remained in treatment for a total of
4 h, after which total protein was isolated. Western blot results for STAT1 and -2 proteins and their
phosphorylated forms are shown in addition to VSV proteins. GAPDH was used to confirm that protein
loading was the same across the gel. Protein names and protein sizes in kilodaltons are indicated on the
left and right, respectively.

G2/M Arrest Enhances Replication of RNA Viruses Journal of Virology

February 2019 Volume 93 Issue 4 e01885-18 jvi.asm.org 13

https://jvi.asm.org


FIG 9 G2/M arrest inhibits expression of antiviral interferons. (A) Experimental design scheme. (B) Suit2 cells were treated (or mock
treated) for 24 h with the compound (500 nM paclitaxel or colchicine) and then infected with VSV-ΔM51 (MOI of 0.1 PFU/cell [the MOI

(Continued on next page)
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(Fig. 9D); and IFN-�2 at 24 h p.i. (Fig. 9E). In general, similar results were obtained for
colchicine-treated cells (Fig. 9, right), which were analyzed only at 0, 24, and 48 h p.i.
(Fig. 9B to E). Colchicine treatment resulted in not only statistically significantly in-
creased viral replication at 24 and 48 h p.i. (Fig. 9B) but also decreased production of
IFN-� at 24 h p.i. (Fig. 9C), IFN-� at 48 h p.i. (Fig. 9D), and IFN-�2 at 24 h p.i. (Fig. 9E). In
general, these data demonstrate a clear negative correlation between stimulation of
VSV-ΔM51 replication and inhibition of IFN production in cells treated with paclitaxel or
colchicine. It is important to note that paclitaxel and colchicine treatments do not
completely inhibit antiviral signaling including the production of IFNs, which are still
strongly upregulated at many time points, for example, IFN-� at 48 h p.i. in colchicine-
treated cells) but rather dampen antiviral responses at the time points (such as at 24 h
p.i.) critically important for viral replication (Fig. 9).

Although the decreased production of antiviral IFNs would decrease ISG production
and thus alone could explain the stimulation of viral replication, we wanted to examine
if, in addition to inhibition of IFN production, G2/M arrest also independently inhibits
transcription of antiviral ISGs in response to IFNs. To focus on this mechanism and
nullify G2/M arrest-mediated stimulation of viral replication as well as inhibition of IFN
production (both would modulate ISG expression), we treated Suit2 cells with paclitaxel
or colchicine (or mock treated them) for 24 h and then treated cells with the same
amounts of exogenously added IFN-� for 4 h, and total cellular RNA was isolated and
analyzed by microarray analysis for the effects of paclitaxel and colchicine on ISG
expression in response to IFN-� treatment. To address this question, we compared cells
treated with no drug (“control”), paclitaxel, or colchicine and then exposed to IFN-� to
cells treated with the same compound but not treated with IFN-� (“Control � IFN
versus Control,” “Paclitaxel � IFN versus Paclitaxel,” and “Colchicine � IFN versus
Colchicine” in Fig. 10 and Tables S1 to S4 in the supplemental material). We focused our
analysis on the number of upregulated cellular transcripts (Fig. 10A and Tables S1 to S4)
as well as their expression fold change (Fig. 10B and Tables S1 to S4). Both paclitaxel
and colchicine treatments strongly decreased the number of transcripts upregulated in
response to IFN-� treatment (Fig. 10A). Thus, IFN-� treatment upregulated the expres-
sion of 797 transcripts in control cells, 472 transcripts in colchicine-treated cells, and
only 336 in paclitaxel-treated cells (Fig. 10A). Moreover, even for the 245 common
transcripts upregulated in all cells treated with IFN-�, most of them were upregulated
to a much lower level in paclitaxel- and colchicine-treated cells than in control cells. For
example, for 2=,5=-oligoadenylate synthetase 2 (OAS2), IFN-� treatment resulted in a
60.6-fold change in control cells, a 24.9-fold change in colchicine-treated cells, and only
a 25.9-fold change in paclitaxel-treated cells (Fig. 10B). Together, the microarray data
demonstrate that G2/M arrest strongly inhibits IFN-mediated expression of antiviral
genes even in response to the same amounts of IFN added to cells. To examine if G2/M
arrest also functionally inhibits the response of cells to IFN treatment, Suit2 cells were
treated with paclitaxel (or mock treated) for 24 h in the presence or absence of IFN-�
treatment, and serial dilutions of VSV-ΔM51 were then added to cells to calculate viral
yield (expressed as titer in PFU per milliliter) (Fig. 10C). We observed that IFN-�
treatment dramatically reduced VSV-ΔM51 infectivity in control cells (7.1 � 107 PFU/ml
to 6.1 � 103 PFU/ml); however, it was almost completely restored by paclitaxel treat-
ment (to 3.3 � 107 PFU/ml) (Fig. 10C). Therefore, paclitaxel treatment inhibited not only
the expression of ISGs (Fig. 10A and B) but also the functional antiviral effects of IFN-�
(Fig. 10C). Altogether, our data demonstrate that G2/M arrest inhibits the expression of
antiviral IFNs as well as antiviral ISGs.

FIG 9 Legend (Continued)
was calculated based on virus titration on BHK-21 cells]) for 48 h. The level of GFP intensity was measured in cells at different time points
following viral infection. (C to E) In parallel, the production of IFN-� (C), IFN-� (D), and IFN-�2 (IL-28A) (E) was quantified by an ELISA of
the culture supernatants. The data represent the means and SD of the means. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, nonsignificant.
The significance of the data was determined by using the two-tailed unpaired t test at a 95% confidence interval.
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FIG 10 G2/M arrest inhibits upregulation of ISG expression in response to exogenously added IFN-�. (A) Suit2 cells were mock treated
or treated for 24 h with 500 nM paclitaxel or 500 nM colchicine and then stimulated with 5,000 U/ml IFN-� for 4 h. Three biological
repeats were conducted on 3 different days under each condition for RNA microarray analysis. Three comparisons were done (control
plus IFN, paclitaxel plus IFN, and colchicine plus IFN versus control, paclitaxel, and colchicine, respectively). The number of transcripts
upregulated in response to IFN-� treatment is indicated for each comparison in the Venn diagram. (B) List of the commonly
upregulated transcripts in all three comparisons. (C) Suit2 cells were treated (or mock treated) with 500 nM paclitaxel for 24 h with

(Continued on next page)
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DISCUSSION

In this study, we show that cell cycle arrest in G2/M phase can strongly enhance
replication of VSV-ΔM51 via inhibition of antiviral gene expression. We observed this
effect in all 3 tested human PDAC cell lines (Suit2, HPAF-II, and AsPC-1) that have
functional type I IFN signaling (15–17). We also observed that paclitaxel treatment
stimulated the replication of Sendai virus, another cytoplasmic NNS RNA virus (family
Paramyxoviridae), which, like VSV-ΔM51, is highly sensitive to type I IFN responses. On
the other hand, we did not observe any positive effects of G2/M arrest in the MIA
PaCa-2 cell line, another human PDAC cell line, which, unlike Suit2, HPAF-II, and AsPC-1,
has severely defective type I IFN antiviral signaling (15–17). Also, G2/M arrest of Suit2
cells did not stimulate replication of WT VSV, which is more effective in inhibiting type
I IFN responses. We also showed that in cells with functional type I IFN signaling, G2/M
arrest inhibited the expression levels of STAT1 and STAT2 and type I and III IFNs, as well
as inhibiting the upregulation of ISGs in response to the same amounts of exogenously
added type I IFN. Altogether, these and other data (e.g., G2/M arrest stimulated viral
replication at later but not earlier time points after infection and under low- but not
high-MOI conditions) suggest that G2/M arrest stimulates viral replication via inhibition
of antiviral responses rather than by increasing the availability of some limiting host
factors of viral replication. In the latter case, we would expect to see increased
VSV-ΔM51 replication in MIA PaCa-2 cells and WT VSV replication in Suit2 cells.

Several previous reports agree with our data. One study showed that in BHK-21 cells,
the highest numbers of infectious particles were produced when cells were infected
during the G2/M transition, although no mechanism was proposed to explain that
observation (14). In that study, BHK-21 cells were initially arrested at the G1/S phase
with aphidicolin, the block was then released, and synchronously progressing cells
were infected with an attenuated VSV-GFP recombinant at different time points after
removal of the G1/S block (14). We also observed some improvement in VSV-ΔM51
replication in BHK-21 cells treated with colchicine. Importantly, VSV-ΔM51 replication in
BHK-21 cells was slightly stimulated not only by colchicine but also by ruxolitinib (a
JAK1/JAK2 inhibitor), indicating that BHK-21 cells are not completely defective in type
I interferon signaling, which agrees with a previous report (26). In contrast to BHK-21
cells, no stimulation of VSV-ΔM51 replication was observed in MIA PaCa-2 cells treated
with ruxolitinib, suggesting that they are more defective in type I IFN signaling (data
not shown).

In another study, paclitaxel treatment stimulated the replication of Maraba virus,
another member of the family Rhabdoviridae, genus Vesiculovirus, in breast cancer cell
lines in vitro and in vivo (29). Interestingly, the effect was observed only in two of the
three tested cell lines. Both EMT6 and 4T1 cells, in which sensitization to the virus was
observed, produced IFN-� in response to Maraba virus infection, and IFN-� production
was inhibited by paclitaxel treatment. In contrast to EMT6 and 4T1 cells, E0771 cells,
which were refractory to this effect of paclitaxel, showed defective IFN-� production in
response to Maraba virus infection (with or without paclitaxel treatment). In general,
these data agree with results of our study demonstrating that, as G2/M arrest stimulates
viral replication via inhibition of antiviral signaling, the effect can be seen only where
this antiviral pathway is functional.

Another study showed that microtubule-destabilizing agents (MDAs), including
colchicine and nocodazole, enhanced the replication of VSV-ΔM51 in several non-PDAC
cancer cell lines (30). Although that study did not look at the effects of colchicine and
nocodazole on the cell cycle in treated cells and did not test MSAs, it showed that these

FIG 10 Legend (Continued)
or without 5,000 U/ml IFN-� and then infected with serial dilutions of VSV-ΔM51 and incubated for 24 h to calculate virus infectivity
under each condition. The data represent the means and SD of the means from three independent experiments. ***, P � 0.001; ****,
P � 0.0001. The significance of the data was determined by using one-way ANOVA with a Tukey posttest at a 95% confidence interval
for comparisons of VSV-ΔM51 versus VSV-ΔM51 plus IFN, VSV-ΔM51 plus paclitaxel versus VSV-ΔM51 plus IFN, and VSV-ΔM51 plus
paclitaxel plus IFN versus VSV-ΔM51 plus IFN.
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treatments inhibited ISG production following viral infection due to specific disruption
of type I IFN mRNA translation (thus, ISG expression was inhibited due to the lower
levels of IFN production by treated cells) (30). Importantly, in contrast to our results, in
that study, colchicine treatment did not inhibit total STAT1 expression (or STAT1
phosphorylation) and did not overcome the antiviral effects of type I IFNs (30). Our data
also show inhibition of type I (as well as type III) IFN production in cells treated with
colchicine (MDA) or paclitaxel (MSA), which could be at least in part due to disruption
of type I IFN mRNA translation, as shown previously (30). However, in our study,
colchicine and paclitaxel overcame the antiviral effects of type I IFNs, and when cells
were treated with the same amounts of exogenously added type I IFN as control cells,
we observed a dramatic inhibition of ISG upregulation (the number of upregulated ISGs
as well as the degree of their upregulation in G2/M-arrested cells), suggesting that, in
addition to the reported colchicine-mediated inhibition of type I IFN mRNA translation
(30), VSV-ΔM51 replication in G2/M-arrested cells is stimulated due to transcriptional
repression of antiviral gene expression (IFNs and ISGs). Future studies will examine
whether the discrepancies between our studies were due to differences between cell
lines or our experimental procedures.

We think that such transcriptional repression is likely a consequence of a global
repression of cellular transcription during the G2/M transition, so-called mitotic inhibi-
tion of transcription (31). The diminished transcription during mitotic arrest is well
documented (32–38). Mitotic inhibition of transcription not only is a consequence of
high condensation of chromatin during mitosis but also is achieved via multiple
mechanisms, including mitosis-specific phosphorylation and displacement of the gen-
eral transcription factor TFIID from the prophase nucleus to the mitotic cytoplasm
around the time of nuclear envelope breakdown (34). Our data demonstrating the
inhibition of antiviral gene expression during G2/M arrest agree with data from several
previous studies. Thus, lower levels of IFN production were shown for mouse L cells
(strain L-929) at late G2 phases of the cell cycle (39). Also, several studies reported
inhibition of IFN production in various cell types after MSA treatment: in FS-4 human
foreskin fibroblast cells by vinblastine or colchicine (40), in mouse bone marrow-derived
macrophages and resident peritoneal macrophages by nocodazole (41), in mouse
spleen cells by colchicine (42), and in a human lymphoblastoid cell line by colchicine
(43). Also, MSA-mediated inhibition of IFN activities by colchicine and nocodazole was
shown in 3T3-Swiss mouse fibroblasts (44). More recently, an unfavorable effect of
colchicine in combination with IFN-� was reported for treated chronic hepatitis C
patients (45). Although this epidemiological study did not examine the mechanism, the
observation could be related to inhibition of IFN responses in colchicine-treated
infected cells.

Our model suggests that even though replication of many viruses occurs exclusively
in the cytoplasm, the cell cycle could affect the replication of such cytoplasmic viruses
by modulating the ability of cellular transcriptional machinery to transcribe antiviral
genes. It is possible that when cells are transitioning via G2/M phase, they are unable
to adequately respond to viral assault by producing sufficient amounts of antiviral
transcripts due to mitotic inhibition of transcription. This model could explain at least
one of the reasons why many viruses (including DNA viruses, retroviruses, and RNA
viruses [nuclear and cytoplasmic]) have been shown to induce G2/M arrest (46). For
example, Borna disease virus (order Mononegavirales, family Bornaviridae) (repli-
cates in the nucleus) nucleoprotein interacts with the CDC2-cyclin B1 complex and
induces a delayed G2/M transition (47). Virus-mediated induction of G2/M arrest was
also shown for other viruses, including JC polyomavirus (48), serotype 3 reoviruses
(49), simian virus 40 (50), human parvovirus B19 (51), human papillomavirus 1 (52,
53), chicken anemia circovirus (54), herpes simplex virus 1 (55), herpes simplex virus
6 (56), hepatitis B virus (57), human immunodeficiency virus type 1 (58, 59), and Zika
virus (60). We envision the G2/M phase as the “Achilles’ heel” of the infected cell, a
phase during cell cycle progression when the cell is inadequately protected and
thus is permissive to viral infection and replication. However, not all viruses need to
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induce G2/M cell cycle arrest or even benefit from it if they are well equipped to
evade antiviral signaling. This could explain why WT VSV, which is able to evade
innate antiviral responses in infected cells, did not benefit from G2/M arrest in our
study and why VSV does not induce G2/M arrest.

Our data have interesting implications for oncolytic virotherapy, which utilizes
attenuated VSV recombinants and other viruses that preferentially replicate in and kill
cancer cells while leaving nonmalignant cells unharmed. Numerous preclinical studies
demonstrated the effectiveness of VSV as an oncolytic virus (OV) (61–63), and a safe VSV
recombinant, VSV-hIFNbeta-NIS (encodes human IFN-� and a sodium iodide sym-
porter), is currently being tested in the United States in several phase I clinical trials
against various malignancies (see details at ClinicalTrials.gov for trials under registration
numbers NCT02923466, NCT03120624, and NCT03017820). We speculate that frequent
cell cycle progression in cancer cells makes them more permissive to attenuated VSV
recombinants and other OVs, and this mechanism could contribute to the oncoselec-
tivity of viruses. This is an important issue as it is still unclear why cancer cells are
generally more permissive to viruses (such as VSV-ΔM51) than nonmalignant cells. The
oncoselectivity of attenuated VSV recombinants is mainly based on defective or re-
duced type I IFN responses in cancer cells (13, 19, 64–70). These responses are generally
unfavorable for tumor formation and spread, as they are antiproliferative, antiangio-
genic, and proapoptotic (71). Several mechanisms have been shown to downregulate
or inactivate type I IFN responses in cancer cells, including IFN signaling inhibition by
MEK/extracellular signal-regulated kinase (ERK) signaling (72) or epigenetic silencing of
the IFN-responsive transcription factor interferon regulatory factor 7 (IRF7) or IRF5 (73).
Here, we propose that continuous cell cycle transition, a hallmark of cancer cells, could
be another factor of oncoselectivity for many viruses, also facilitating viral replication
via inhibition of antiviral responses in dividing cancer cells.

MATERIALS AND METHODS
Viruses and cell lines. The recombinant VSV-ΔM51 was described previously (74). It has a deletion

of the methionine at amino acid position 51 of the matrix protein and the green fluorescent protein (GFP)
open reading frame (ORF) inserted at position 5 of the viral genome (between the VSV G and L genes).
WT VSV is similar to VSV-ΔM51 (and has the GFP ORF inserted at the same position) but has WT M (75).
The recombinant Sendai virus SeV-GFP (SeV-GFP-Fmut), which has been described previously (76), has the
GFP ORF at position 1 of the viral genome and a mutation in the cleavage site of the fusion (F) protein,
allowing F activation and production of infectious virus particles in cells without acetylated trypsin added
to the medium. VSV-ΔM51 was grown on BHK-21 cells, and Sendai virus was grown on Vero (ATCC
CCL81) cells. Viral titers for both viruses were determined by a standard plaque assay on BHK-21 cells and
expressed as PFU per milliliter. The following human PDAC cell lines were used in this study: Suit2 (77),
HPAF-II (ATCC CRL-1997), and MIA PaCa-2 (ATCC CRL-1420). The human origin of all these PDAC cell lines
was confirmed by partial sequencing of KRAS and actin. As expected, all PDAC cell lines had a mutation
in KRAS, as is typical for PDACs (17, 24). The BHK-21 baby hamster kidney fibroblast cell line (ATCC
CCL-10) was used to grow viruses and determine their titers. MIA PaCa-2 and Suit2 cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) (catalog number 10-013-CV; Cellgro), while HPAF-II and
BHK-21 cells were maintained in modified Eagle’s medium (MEM) (catalog number 10-010-CV; Cellgro).
All cell growth media were supplemented with 10% fetal bovine serum (FBS; Gibco), 4 mM L-glutamine,
900 U/ml penicillin, 900 �g/ml streptomycin, and 1% nonessential amino acids. MEM was additionally
supplemented with 0.3% (wt/vol) glucose. Cells were kept in a 5% CO2 atmosphere at 37°C. For all
experiments, PDAC cell lines were passaged no more than 15 times.

Chemical compounds. The following compounds were used in this study: ruxolitinib (INCB018424,
Jakafi/Jakavi, catalog number S1378; Selleck Chemicals), paclitaxel (catalog number S1150; Selleck
Chemicals), docetaxel (catalog number S1148; Selleck Chemicals), colchicine (catalog number C9754;
Sigma-Aldrich), colcemid (catalog number 10295892001; Roche), nocodazole (catalog number S2775;
Selleck Chemicals), vinblastine (catalog number S4505; Selleck Chemicals), aphidicolin (catalog number
A0781; Sigma-Aldrich), and thymidine (catalog number T9250; Sigma-Aldrich).

Cell cycle analysis. Suit2 cells (1.0 � 106 cells) were seeded in 6-well plates in DMEM containing 10%
FBS. When cells became confluent, they were washed with phosphate-buffered saline (PBS) and treated
or not for 24 h with different chemical compounds (500 nM paclitaxel, docetaxel, colchicine, nocodazole,
or vinblastine; 3 �M aphidicolin; or 2 mM thymidine) in DMEM with 5% FBS. Alternatively, Suit2 cells were
infected by VSV-ΔM51 for 24 h and analyzed for the effect of viral replication on the cell cycle. For this,
Suit2 cells were washed with PBS and then infected (or mock infected) with 500 �l of VSV-ΔM51 at an
MOI of 0.1 PFU/cell for 1 h at 37°C in DMEM without FBS. Virus was then removed, and 1 ml of culture
medium containing 5% FBS was added for 23 h. After the treatment, cells were washed with PBS,
harvested, centrifuged 2 times at 1,200 rpm at 4°C for 5 min, and resuspended in 300 �l of sodium citrate
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buffer containing 0.1% Triton X-100, 100 �g/ml RNase, and 1 mg/ml DAPI. The cell cycle distribution was
determined by flow cytometry analysis performed using a BD LSR Fortessa instrument (BD Biosciences).
To analyze the cell cycle after paclitaxel withdrawal, Suit2 cells were treated with 500 nM paclitaxel for
24 h; the compound was then removed and replaced with DMEM (5% FBS) for 0, 8, or 24 h; and cell cycle
analysis was conducted as described above.

Analysis of GFP-positive cells by flow cytometry. Suit2 cells (1.0 � 106 cells) were seeded in 6-well
plates in DMEM or RPMI medium containing 10% FBS. When cells became confluent, they were washed
with PBS and infected or mock infected with 500 �l of VSV-ΔM51 at different MOIs (PFU per cell) for 1 h
at 37°C in DMEM without FBS. The medium was then removed, and 1 ml of culture medium (5% FBS)
containing 500 nM paclitaxel and/or 3 �M ruxolitinib was added. The percentage of GFP-positive cells
and the mean fluorescence were analyzed by flow cytometry on a BD LSR Fortessa instrument (BD
Biosciences) at 24 h p.i. using the fluorescein isothiocyanate area (FITC-A) channel. For some experiments,
Suit2 cells were pretreated or not with 1 ml of paclitaxel in cell culture medium containing 5% FBS for
24 h, and paclitaxel was then removed for 0 or 24 h before infection with VSV-ΔM51. Next, cells were
washed with PBS and infected or mock infected with 500 �l of VSV-ΔM51 at different MOIs for 1 h at 37°C
in culture medium containing 0% FBS. Finally, the medium was removed, 1 ml of medium was added,
and the analysis of cell fluorescence by flow cytometry was conducted at 12 h p.i.

Effect of chemical compounds on virus replication and virion production. Cells (5.0 � 104 cells)
were seeded in 96-well plates in corresponding culture medium containing 10% FBS. When cells became
confluent, they were pretreated for 24 h with 100 �l of either medium (5% FBS) or medium with
compounds at different concentrations, washed with PBS, and infected with 50 or 100 �l of virus (MOI
of 0.1 PFU/cell for Suit2, MOI of 10 PFU/cell for HPAF-II, and MOI of 0.01 PFU/cell for MIA PaCa-2 cells [the
MOI was calculated based on virus titration on BHK-21 cells]) for 1 h at 37°C in culture medium containing
0% FBS. Next, the medium was removed, and 100 �l of either medium (5% FBS) or medium with drug
was added for 72 h. Alternatively, for some experiments, when cells reached confluence, they were
washed with PBS and directly treated or not with 100 �l of virus at different MOIs for 1 h at 37°C in
culture medium without FBS. The medium was then removed, and 100 �l of either medium (5% FBS) or
medium with the compound was added for 72 h. Analysis of GFP fluorescence was performed at 1, 18,
24, 40, 48, 64, and 72 h p.i. with a CytoFluor series 4000 fluorescence multiwell plate reader (excitation
filter of 485/20 nm, emission filter of 530/25 nm, and gain of 75; Applied Biosystems). For de novo virion
production, supernatants of 96-well plates were collected at 3 days p.i., and plaque assays were
performed on BHK-21 cells to measure virus yield.

Poly(I:C) transfection. Thirty minutes prior to transfection, poly(I:C) at a final concentration of
10 �g/ml was mixed with TransIT-TKO transfection reagent at 0.5% (vol/vol) (catalog number MIR 2154;
Mirus). After treatment with chemical drugs, cells were washed once with 1 ml of PBS, and 1 ml of the
transfection mixture was added to each well of a 24-well plate. The mixture was aspirated upon total
protein isolation.

RNA microarray analysis. Three biological repeats were conducted on 3 different days under each
condition for RNA microarray analysis. Suit2 cells (1.0 � 106 cells) were seeded in 6-well plates in DMEM
containing 10% FBS. When cells became confluent, they were washed with PBS and treated or
mock-treated for 24 h with 500 nM paclitaxel or 500 nM colchicine in DMEM with 5% FBS. Cells were then
washed with PBS and left untreated or treated with 1 ml of human recombinant IFN-� (catalog number
407-294; Millipore) for 4 h at 37°C in DMEM without FBS. Cellular RNA was extracted with TRIzol (Life
Technologies) according to the manufacturer’s protocol, with slight modification. In brief, following the
first phase of separation, the aqueous layer was transferred to a new tube. Next, 500 �l of TRIzol and
100 �l of chloroform were added, and phase separation was repeated. The integrity of the RNA was
verified by an Agilent 2100 Bioanalyzer profile (Agilent Technologies Inc., Santa Clara, CA, USA). RNA
integrity number (RIN) values were �7. Samples were reverse transcribed, amplified, and labeled using
the 3= IVT Express kit (Affymetrix). The resultant labeled cRNA was purified and fragmented according to
the vendor’s instructions. The cRNA samples together with probe array controls were hybridized onto
Affymetrix human genome U133� PM array strips, which cover more than 47,000 transcripts and variants
selected from GenBank, dbEST, and RefSeq. Hybridization controls were spiked into the cRNA samples to
monitor and troubleshoot the hybridization process. Probes for housekeeping genes were used to assess
sample integrity. Hybridization, washing, staining, and scanning were performed using Affymetrix
GeneChip system instruments. Affymetrix GeneAtlas instrument control software version 1.0.5.267 was
used to analyze microarray image data and to compute intensity values. Affymetrix .CEL files containing
raw, probe-level signal intensities were analyzed using Partek Genomics Suite version 6.6.12.0713
(Partek). Robust multichip averaging (RMA) was used for background correction, quantile normalization,
and probe set summarization with median polish. Statistical differences were calculated by two-way
analysis of variance (ANOVA) with a false discovery rate (FDR) of 0.05. Finding common transcripts
between compared groups (Fig. 10A) was done using RStudio (version 1.0.153) running R (version 3.4.1).

Western blot analysis. Suit2 cells (1.0 � 106 cells) were seeded in 6-well plates in DMEM culture
medium containing 10% FBS. When cells became confluent, Suit2 cells were treated or mock treated for
4 or 24 h with compounds (3 �M paclitaxel or 3 �M ruxolitinib) and then treated or mock treated with
5,000 U/ml IFN-� (catalog number 407-294; Millipore) for 4 h. In another set of experiments, confluent
Suit2 cells were pretreated for 24 h with medium, 500 nM paclitaxel, or 500 nM colchicine. Next, cells
were washed with PBS and infected or mock infected with 500 �l of VSV-ΔM51 at different MOIs for 1 h
at 37°C in culture medium without FBS. Virus and media were then removed, and 1 ml of medium (5%
FBS) was added. Cells were harvested at 1, 8, and 24 h p.i. and lysed in lysis buffer containing 1 M Tris-HCl
(pH 6.8), 10% glycerol, 2% SDS, 5% beta-mercaptoethanol, and 0.02% (wt/vol) bromophenol blue. Total
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protein was separated by electrophoresis on SDS-PAGE gels and electroblotted onto polyvinylidene
difluoride (PVDF) membranes. Membranes were blocked using 5% nonfat powdered milk in Tris-buffered
saline–Tween 20 (TBS-T) (0.5 M NaCl, 20 mM Tris [pH 7.5], 0.1% Tween 20). Membranes were incubated
in TBS-T with 5% bovine serum albumin (BSA) or milk with 0.02% sodium azide and a 1:5,000 dilution of
rabbit polyclonal anti-VSV antibodies (raised against VSV virions), a 1:500 dilution of rabbit anti-phospho-
STAT1 (catalog number 7649S, clone Y701; Cell Signaling), a 1:500 dilution of rabbit anti-STAT1 (catalog
number 14994T, clone D1K9Y; Cell Signaling), a 1:1,000 dilution of mouse anti-STAT2 (catalog number
MAB1666; R&D Systems), a 1:500 dilution of rabbit anti-phospho-STAT2 (catalog number MAB2890, clone
Y689; R&D Systems), or a 1:1,000 dilution of rabbit anti-cyclin B1 (clone D5C10; Cell Signaling). A 1:2,000
dilution of goat anti-rabbit peroxidase-conjugated secondary antibodies (Jackson-ImmunoResearch) was
used. The Amersham ECL Western blotting detection kit (GE Healthcare) was used for detection. To verify
total protein in each loaded sample, membranes were reprobed with mouse antiactin antibody (catalog
number MA5-15739; Thermo Fisher) or rabbit anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
antibody (catalog number sc-25778; Santa Cruz) or stained with Coomassie blue R-250.

ELISA. Production of IFNs in supernatants of cell cultures was analyzed using the following com-
mercial enzyme-linked immunosorbent assay (ELISA) kits: the VeriKine human IFN-� multisubtype ELISA
kit (catalog number 41105; PBL Assay Science), the VeriKine human IFN beta ELISA kit (catalog number
41410; PBL Assay Science), and the human IL-28A ELISA kit (catalog number EHIL28A; Thermo Fisher
Scientific).

Confocal microscopy. Suit2 cells were seeded in Lab-Tek II chambered cover glass with a no. 1.5
borosilicate glass bottom (Thermo Fisher Scientific) at 50% confluence and treated or mock treated with
500 nM paclitaxel, 500 nM docetaxel, 500 nM colchicine, 3 �M aphidicolin, or 2 mM thymidine for 24 h.
Cells were washed in PBS, incubated for 10 min at 37°C with CellMask Deep Red plasma membrane stain
(catalog number C10046; Life Technologies), and diluted 1:1,000 in the medium. Cells were then washed
3 times with PBS, incubated for 10 min at 37°C with Hoechst-33342 (Thermo Fisher Scientific), and diluted
1:1,000 in PBS. Next, cells were washed 3 more times with PBS and fixed in 3.75% formaldehyde for 5 min.
After 3 additional washes in PBS, cells were dried and imaged using a confocal microscope (Olympus
FluoView1000), using filters for Hoechst-33342 (blue) and Alexa Fluor 594 (red).

Statistical analysis. All statistical analyses were performed using GraphPad Prism 7.0a software.
Tests used are indicated in the legends of the figures.
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