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ABSTRACT

Objectives: Guided by the concept of digital phenotypes, the objective of this study was to identify engagement

phenotypes among individuals with atrial fibrillation (AF) using mobile health (mHealth) technology for 6

months.

Materials and Methods: We conducted a secondary analysis of mHealth data, surveys, and clinical records col-

lected by participants using mHealth in a clinical trial. Patterns of participants’ weekly use over 6 months were

analyzed to identify engagement phenotypes via latent growth mixture model (LGMM). Multinomial logistic re-

gression models were fitted to compute the effects of predictors on LGMM classes.

Results: One hundred twenty-eight participants (mean age 61.9 years, 75.8% male) were included in the analy-

sis. Application of LGMM identified 4 distinct engagement phenotypes: “High-High,” “Moderate-Moderate,”

“High-Low,” and “Moderate-Low.” In multinomial models, older age, less frequent afternoon mHealth use,

shorter intervals between mHealth use, more AF episodes measured directly with mHealth, and lower left ven-

tricular ejection fraction were more strongly associated with the High-High phenotype compared to the

Moderate-Low phenotype (reference). Older age, more palpitations, and a history of stroke or transient ischemic

attack were more strongly associated with the Moderate-Moderate phenotype compared to the reference.

Discussion: Engagement phenotypes provide a nuanced characterization of how individuals engage with

mHealth over time, and which individuals are more likely to be highly engaged users.

Conclusion: This study demonstrates that engagement phenotypes are valuable in understanding and possibly

intervening upon engagement within a population, and also suggests that engagement is an important variable

to be considered in digital phenotyping work more broadly.
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INTRODUCTION

Mobile health (mHealth) technologies allow individuals to collect,

store, and share digital, personal health data.1,2 As the popularity of

these technologies has grown, the potential for mHealth data to en-

hance information exchange with healthcare providers, foster man-

agement of personal health, and personalize care has been

increasingly recognized.3–6 Within the personalized care space, a

growing body of research is using mHealth data to profile an indi-

vidual’s patterns of physiological and psychological health. This

work is known as digital phenotyping, defined as the “moment-by-

moment quantification of the individual-level human phenotype in

situ using data from personal digital devices.”7 Broadly, digital phe-

notyping seeks to construct phenotypes of human behavior, physiol-

ogy, and disease using mHealth data.8

Typically, digital phenotyping focuses on characterizing health-

related data collected with mHealth, but does not account for vari-

able rates of mHealth use and high rates of abandonment. Measures

of mHealth use over time show that many users discontinue use

within 3–6 months of initiation.9–11 In fact, digital phenotyping

studies have reported variable levels of engagement with mHealth

which hampers the feasibility of phenotyping work12,13 and may im-

pair accuracy.14 Prior work has identified correlates of mHealth use

over time but findings are inconsistent between studies. For exam-

ple, some studies report younger age and others report older age is

associated with sustained engagement.11,15,16 This suggests that sol-

utions to improve engagement are not “one size fits all.” Therefore,

a methodological approach to characterize sustained engagement in

a specific patient population, as well as factors associated with it,

may be useful to tailor interventions and the design of technologies

themselves to a patient population’s unique needs. Furthermore,

many studies characterize engagement as an average of usage over

time, which masks variation over time. Approaches that preserve

variation in engagement over time may uncover temporally hetero-

geneous levels of engagement.

Therefore, we propose to leverage digital phenotyping

approaches to phenotype engagement. We view engagement pheno-

types as an extension of digital phenotypes that aim to describe pro-

files of engagement with mHealth over time, rather than profiles of

health or disease states (as in classic digital phenotyping work). One

important distinction between digital phenotypes and engagement

phenotypes is that digital phenotypes, by definition, ideally use pas-

sively collected digital data as this allows for a more accurate and

temporally dense reflection of an individual’s natural environ-

ment.14 Engagement phenotypes, by contrast, characterize actively

collected data. While passively collected data is often considered su-

perior to actively collected data for phenotyping research, in many

cases it is not possible or logical to collect, such as in the case of sub-

jective experiences including symptoms and mood. To our knowl-

edge, the term engagement phenotypes has not previously been used

in this context, although one prior study characterized phenotypes

of engagement with mHealth using similar approaches,17 and an-

other digitally phenotyping depressive symptom severity included

engagement with mHealth as a model feature.18

In this study, we present our approach for characterizing engage-

ment phenotypes among adults with atrial fibrillation (AF) who self-

monitored their heart rhythm using mHealth. The primary objective

of this study was to identify distinct engagement phenotypes, de-

fined as patterns of mHealth use over time, within the sample. We

also explored possible predictors of engagement phenotypes. Sus-

tained engagement with heart rhythm monitoring using mHealth is

important for individuals with AF, the most common cardiac ar-

rhythmia encountered in clinical practice.19 AF most often occurs in

sporadic episodes which may be unpredictable and uncorrelated

with symptoms, making detection of AF episodes difficult without

frequent electrocardiogram (ECG) monitoring.20 Advancements in

mHealth now allow individuals with AF to record highly accurate

ECG data quickly, easily, and without invasive hardware.21,22

Timely detection of AF through mHealth is needed to restore normal

rhythm earlier, optimize therapies, and reduce negative sequelae of

AF such as hospitalization, stroke, or death.23–25 Thus, lack of sus-

tained engagement is a critical problem for individuals with AF,

who must regularly record and transmit ECG data to healthcare

providers in order for AF to be detected and treated in a timely man-

ner.21

METHODS

Study design and participants
We conducted a secondary analysis of mHealth data collected in the

iPhoneVR Helping Evaluate Atrial Fibrillation Rhythm through Tech-

nology trial (iHEART, R01NR014853). The full details and primary

findings of the iHEART trial have been previously reported.26–28

Briefly, the iHEART trial was a randomized, controlled trial con-

ducted at a single academic medical center in New York City from
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2014 to 2019. iHEART participants were English or Spanish speak-

ing adults age 18 or older who underwent a procedure (radiofre-

quency ablation or direct current cardioversion) to restore normal

sinus rhythm in the past 30 days. Exclusion criteria were severe cog-

nitive impairment, documented permanent or chronic AF, and clini-

cally unstable or other arrhythmias on the day of enrollment.

Participants were randomized 1:1 to either an mHealth monitoring

intervention or usual cardiac care for 6 months after the baseline

procedure to restore normal sinus rhythm. The primary endpoints of

the trial were time to documented recurrent AF and time to treat-

ment of the recurrent arrhythmia. In this study, we specifically ex-

amined data from iHEART participants who were randomized to

the intervention arm, as the control arm did not use mHealth.

This study was approved by the Columbia University Institu-

tional Review Board and data analysis was approved by the Weill

Cornell Medicine Institutional Review Board.

mHealth intervention
Participants randomized to the iHEART intervention arm were

given the AliveCorVR Mobile ECG device (Figure 1) and asked to

transmit ECGs using AliveCor twice daily for 6 months. The Alive-

Cor device is FDA-approved and captures highly sensitive (98%),

specific (97%), and accurate (97%) single-lead ECG recordings.29,30

ECGs are recorded when the user places his or her fingertips on the

AliveCor device. ECG recordings captured with the AliveCor device

are documented in a free accompanying smartphone application,

KardiaVR , and are automatically uploaded via WiFi or cellular net-

work transmission to the HIPAA-compliant, secure AliveCor cloud.

An algorithm in the Kardia app uses the regularity of R-to-R inter-

vals and presence or absence of p-waves in an ECG to identify the

rhythm of each recording as either normal sinus rhythm, AF, or

“unclassified,” meaning the algorithm could not identify the

rhythm.

In the iHEART trial, the rhythms identified by the algorithm

were reviewed and confirmed by a cardiac electrophysiologist who

was a co-investigator in the iHEART trial. Study coordinators in the

iHEART trial who were trained in ECG interpretation reviewed

ECG strips from patients daily through a secure portal.26,27 They

immediately contacted the patient’s primary cardiologist or health-

care provider in the event of a clinically significant arrhythmia, who

were responsible for follow-up. All study participants were patients

at a single clinic. All cardiologists at the clinic were familiar with the

iHEART trial, making close communication with study staff feasi-

ble.

All participants received in-person training on use of the device

prior to beginning the trial using the “teach back” method, in which

participants were asked to record an ECG with AliveCor to demon-

strate understanding. Participants who owned a smartphone com-

patible with AliveCor were given the option to continue using their

phone. Participants who did not own a smartphone or preferred to

use a study phone were given an iPhoneVR and cellular service plan

with unlimited data/text messaging. None of the participants in the

intervention arm received any reminders or prompts to use the

AliveCor device during the study, but all participants in the interven-

tion arm received text messages 3 times per week related to AF

knowledge and the American Heart Association’s Life’s Simple 7

(eg, diet, physical activity).31

Data sources
Constructing engagement phenotypes: Patterns of AliveCor use over

time

iHEART participants’ dated, time-stamped ECG transmissions with

heart rhythm identified by the KardiaVR algorithm for each transmis-

sion were extracted from the study database with support from

AliveCor. ECG recordings are initiated upon the user’s engagement

with AliveCor. The weekly count of ECG recordings was calculated

for each participant for each week they were enrolled in the trial.

Weekly AliveCor use over the 6-month study period was used to

construct engagement phenotypes. Of the 133 participants who

used AliveCor, we ultimately analyzed data for 128 after excluding

5 participants with days of use less than a week. We clustered Alive-

Cor use by distinct patterns over time within the sample, which we

describe in further detail below. All other variables described were

predictor variables in multinomial logistic regression models, also

described below.

Demographics and experience with technology

Participants’ baseline demographic characteristics (age, gender,

race, and ethnicity) were retrieved from the iHEART trial database.

At baseline, participants also self-reported experience with technol-

ogy using a 10-item survey about ownership and use of various tech-

nologies (smartphones, Internet, text messaging). The complete

survey is provided in the Supplementary Materials. Experience with

technology is important to assess because several studies have found

that the ability to use mHealth with ease contributes to higher rates

of engagement.32–35

AliveCor use behaviors

We constructed 3 different types of variables that reflect user behav-

iors with AliveCor, which served as predictors in the multinomial

analysis. Even though users were asked to use AliveCor for 6 months

for the trial, the total duration of AliveCor use greatly differs across

individuals. Therefore, the total duration of AliveCor use from first

to last usage, including that after the iHEART trial, was calculated

for each individual. Timing of usage was also considered to charac-

terize AliveCor use behaviors; the proportion of morning (6 AM–12

PM), afternoon (12 PM—6 PM), evening (6 PM–12 AM), and night (12

AM–6 AM) AliveCor use was calculated over the 6-month period.

Lastly, summary statistics of maximum, mean, standard deviation,

median and interquartile range were calculated to represent the dis-

tribution of intervals between usage.Figure 1. AliveCor mobile ECG device.
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AF and other clinical characteristics

Participants’ AF history was collected at baseline in the iHEART

trial through a combination of self-report and manual review of the

electronic health record. Specifically, whether participants were in

AF at the time of enrollment (immediately following an intervention

to attempt to restore normal sinus rhythm), healthcare utilization

for AF in the past year (ER visits, hospitalizations, and specialist vis-

its), history of prior cardioversions or radiofrequency ablations, and

participants’ perceived frequency and length of AF episodes were

collected. Risk factors for more severe AF, including body mass in-

dex, history of stroke or transient ischemic attack (TIA), and left

ventricular ejection fraction (LVEF), were also collected. Any AF re-

currence during the study period and the weekly average number of

AF episodes were recorded directly by participants using AliveCor.

Additionally, participants completed several surveys at baseline.

Symptom burden was assessed using the University of Toronto AF

Severity Scale (AFSS), which assesses the severity of 7 symptoms:

palpitations, shortness of breath at rest, shortness of breath during

physical activity, exercise intolerance, fatigue at rest, lightheaded-

ness/dizziness, and chest pain/pressure.36 Participants report the de-

gree each symptom has bothered them in the past 4 weeks on a scale

from 0 (have not had this symptom) to 5 (extremely bothersome).

Total scores range from 0 to 35 with higher scores indicating more

severe AF symptoms. AF-related quality of life was assessed using

the AF Effect on Quality of Life (AFEQT) scale. AFEQT assesses

quality of life across 4 domains: symptom burden, daily activities,

treatment concerns, and treatment satisfaction. The total AFEQT

score and subscale scores range from zero (complete disability) to

100 (highest quality of life).37 AF knowledge was measured using

the AF Knowledge Scale (AFKS), which measures knowledge about

AF in general, symptom recognition, and treatment on a scale of 0–

11 with higher scores indicating higher AF knowledge.38 The

Control-Attitudes Scale-Revised measures perceived control, a con-

struct relevant to effective self-management of disease.39 The Self-

efficacy for Appropriate Medication Use Scale (SEAMS) measures

medication self-efficacy in chronic disease management.40

Statistical analysis
We constructed engagement phenotypes using one variable: patterns

of AliveCor use over time (measured by weekly count of ECG

recordings) from baseline to 6 months, representing engagement

with mHealth technology. We used latent growth mixture models

(LGMMs)41,42 to detect subgroups with specific patterns of weekly

change in ECG recordings from baseline to 6 months. LGMM is a

multilevel model with repeated observations nested within individu-

als, which uncovers within-subgroup latent changes in patterns over

time. Each latent class is characterized by a distinct trajectory in lon-

gitudinal measures and represents a distinct engagement phenotype.

We fitted LGMMs with 2, 3, 4, 5, and 6 classes with linear, qua-

dratic, and cubic effects of time (week) and compared them using

the Akaike Information Criterion (AIC). The AIC is an information

criterion with a penalty for model complexity, dealing with both the

goodness of fit and the parsimony of the model.43 Models with im-

balanced class sizes (defined as less than 5 individuals or more than

70% of the sample in at least one class) were excluded for compari-

son.

The association of engagement phenotypes was explored with

demographics, experience of technology, and clinical characteristics.

Variables that reflect the pattern of AliveCor use were included as

potential predictors of engagement phenotypes as well. Analysis of

variance (ANOVA) and chi-square tests were conducted to test the

association of engagement phenotypes with numeric and categorical

predictors, respectively. The omega-squared (x2)44 and Cram�er’s

V45 were reported as effect size measures for ANOVA and chi-

square tests, respectively. Univariate multinomial logistic regression

models were fitted to compute the effects of the same predictors on

engagement phenotypes. The odds ratio (OR) as well as its 95%

confidence interval (CI) were reported for each multinomial logistic

regression model. We did not correct for multiple comparisons for

variables in the same family as these were exploratory analyses.

All the analyses were conducted using R statistical software ver-

sion 3.6.1 (R Core Team, Vienna, Austria). The R package “lcmm”

was used for fitting LGMMs.46

RESULTS

Description of the sample
Supplementary Table S1 describes the characteristics for 128

iHEART participants who had completed the intervention arm of

the trial and were ultimately included in our analysis. Study partici-

pants were 61.9 years old on average (SD 11.6 years) and predomi-

nantly male (75.8%), White/Caucasian (95.1%), and non-Hispanic

(84.1%). Nearly all participants reported that they owned a cell

phone (98.9%), smartphone (89.8%), and many were comfortable

using the Internet on a smartphone (82.8%). The average total dura-

tion of use was 434 (SD 331.7) days. Participants used AliveCor

most often in the morning (42%) and the average interval between

uses was 1 day. More than half of participants (61%) experienced

AF recurrence and participants had an average of 1.4 (SD 3.3) AF

episodes per week during the study period. In addition, 10% had a

prior stroke or TIA at baseline and the mean LVEF was 54% (SD

11.6), indicating moderate to high levels of cardiac functioning on

average. The mean AFEQT score was 65.0 (SD 21.0), indicating a

moderate AF-related quality of life. The mean AFSS score was 10.1

(SD 9.0), indicating a low burden of AF symptoms; the most burden-

some symptoms were shortness of breath on exertion, palpitations,

and fatigue on exertion.

Engagement phenotypes
Our final LGMM identified 4 distinct engagement phenotypes based

on distinct patterns of use over time (AIC 17132.7). Models with

quadratic and cubic effects of time consistently and comparably out-

performed those with linear effects; thus, the final LGMM was fitted

with quadratic time effects. Each line in Figure 2 represents the

weekly average number of ECG recordings among individuals in

each phenotype. Participants in the “High-Low” phenotype (n¼6)

started the iHEART trial with the highest weekly AliveCor use (over

15 ECG recordings per week) but declined rapidly over 6 months.

Participants in the “High-High” phenotype (n¼26) also started the

trial with high weekly AliveCor use and sustained high use for 6

months. Participants in the “Moderate-Moderate” phenotype

(n¼44) maintained the same level of use for 6 months, but with

lower weekly use than participants in the High-High phenotype (ap-

proximately 10 ECG recordings per week, versus 15 in the High-

High phenotype). Participants in the Moderate-Low phenotype

(n¼52) started with the lowest use, declined rapidly in the first 3

months, and maintained low use (approximately one to 2 ECG

recordings per week) during the subsequent 3 months.
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Predictors of engagement phenotypes
We set the Moderate-Low phenotype (ie, the phenotype with the

lowest weekly engagement) as a reference and fitted univariate mul-

tinomial logistic regression models. Supplementary Table S2

presents the ORs and the 95% CIs of each of the first 3 phenotypes

compared to the reference phenotype. Consistent with tests of asso-

ciation in Supplementary Table S1, the OR estimates from multino-

mial logistic regression models identified a statistically significant

difference in predictors between engagement phenotypes. Compared

to the Moderate-Low phenotype, the High-High and Moderate-

Moderate phenotypes are most distinctively different. Older partici-

pants were more likely to be in the High-High (OR: 1.06; 95% CI

[1.01, 1.11]) and Moderate-Moderate phenotypes (OR 1.05; 95%

CI [1.01, 1.09]). Participants who used AliveCor in the afternoon

were less likely to be in the High-High phenotype (OR 0.91; 95%

CI [0.87, 0.96]), and participants with the higher standard devia-

tions of the mean intervals between AliveCor use were less likely to

be in the High-High phenotype (OR 0.50; 95% CI [0.28, 0.89]).

Participants with more AF episodes during the study were more

likely to be in the High-High phenotype (OR 1.42; 95% CI [1.07,

1.89]). Participants with more palpitations were less likely to be in

the Moderate-Moderate phenotype (OR 0.70; 95% CI [0.51, 0.95]).

Additionally, participants with a history of a stroke or TIA were

more likely to be in the Moderate-Moderate phenotype, and partici-

pants with a higher LVEF were less likely to be in the High-High

phenotype.

DISCUSSION

This study was among the first to consider digital phenotyping of en-

gagement behaviors.17 We identified 4 distinct engagement pheno-

types representing distinct patterns of engagement over time.

Declines in engagement differed; rapid declines characterized the

High-Low phenotype while more gradual declines characterized the

Moderate-Low phenotype. More stable, but differing, levels of en-

gagement characterized the High-High (approximately 15 uses per

week) and Moderate-Moderate phenotypes (approximately 10 uses

per week). These findings provide more nuance to prior reports of

general declines in engagement with mHealth over time. This study

also illustrates a methodological approach for constructing engage-

ment phenotypes, which represents an important step toward under-

standing how certain individuals engage with mHealth. Future

work, particularly qualitative studies, can build upon the identified

engagement phenotypes to explore why certain individuals adopt a

specific engagement phenotype. Such work may lay the foundation

for improved design of mHealth technologies that engage individu-

als in collecting personal health data for a sustained period of time.

We also explored predictors of engagement phenotypes and

found that clinical factors (AF episodes, symptoms, and cardiovas-

cular history), AliveCor use behaviors, and age were among the

most distinguishing variables. Participants who sustained engage-

ment (ie, High-High and Moderate-Moderate phenotypes) appeared

to have a more significant cardiovascular history, including prior

stroke or TIA and lower LVEF, during the study period. Participants

in the High-High and Moderate-Moderate phenotypes also had

more AF episodes, although this variable was measured directly

with AliveCor and therefore may be directly related to the outcome

of engagement. Nonetheless, supported by our qualitative work,47

this suggests that these participants may have viewed AliveCor as a

tool for better documenting AF rhythm at home and better manag-

ing their cardiovascular health, thus motivating their engagement. It

is also possible that heavy symptom burden may have been a barrier

to frequent engagement, as participants with moderate engagement

throughout the study (Moderate-Moderate) were less likely to expe-

rience burdensome palpitations than those with low engagement

(Moderate-Low). However, this is difficult to assess because of the

complex relationship between AF episodes and symptoms; patients

may report AF symptoms while not actually having an AF episode,

while others may be totally asymptomatic during AF episodes.19

Figure 2. Weekly average number of ECG recordings among individuals in each phenotype. Lines represent the phenotype-specific average calculated using lo-

cally estimated scatterplot smoothing (LOESS) and the shaded area represents the 95% confidence interval for the fitted LOESS curve.
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Our qualitative work showed this complexity led to an inability to

interpret symptoms of AF that was frustrating to patients and in-

creased levels of anxiety about AF. Ultimately, it was a major reason

they decided to decrease or discontinue use of mHealth.47 Incorpo-

rating features that facilitate understanding of AF symptoms may be

an opportunity to improve engagement with mHealth through de-

sign for patients with AF.

Participants who maintained the highest levels of engagement

(High-High phenotypes) also used AliveCor in the afternoon less

and had less variance in the intervals between AliveCor use, indicat-

ing that they used AliveCor more regularly. This aligns with our

qualitative work in which engaged users reported incorporating

AliveCor use into their daily routines; many reported using it when

they took their morning and evening medications (explaining the

less frequent afternoon use).47

The general lack of many significant predictors in this study may

reflect inadequate statistical power due to a small sample size, or

may suggest that there are not strong associations of demographic,

technological, and clinical characteristics with sustained engage-

ment. Many variables that others have hypothesized are related to

engagement, including comfort with technology, knowledge, and

gender,48,49 were not statistically significantly predictors, or were

not clinically significant as in the case of the age variable. Older age

was associated with higher engagement in this study; participants in

both the High-High and Moderate-Moderate phenotypes were older

than those in the Moderate-Low phenotype. However, there was

only a difference of 6 to 7 years in the mean age of participants be-

tween phenotypes. This is consistent with prior studies reporting

that age predicts usage, but the difference in age between more and

less engaged users is less than 10 years.11,15,16,34 This is important in

light of prior questions surrounding the ability of older adults to

consistently use mHealth to collect personal health data.50,51 Taken

together, the lack of significant predictors may suggest the way users

engage with mHealth over time may largely be independent of their

clinical symptoms or demographic characteristics.

Many studies have examined engagement as an average over

time. By extending the concept of digital phenotyping into the do-

main of engagement, we were able to characterize individuals based

on variation in mHealth usage over time. These findings are not

only important in improving understanding around the phenomenon

of sustained engagement but may also carry importance for a

broader scope of digital phenotyping research. Others attempting to

use mHealth data to construct digital phenotypes of disease should

carefully consider engagement with mHealth, as digital phenotypes

may be driven by the abundance or sparsity of the data itself. For ex-

ample, in our study individuals with the lowest engagement (Moder-

ate-Low phenotype) had fewer AF episodes than the other groups,

which may suggest a disease phenotype characterized by less AF bur-

den. However, the relative sparsity of mHealth data from this group

was intrinsically linked to the documentation of AF episodes using

mHealth.

This study had several limitations. Participants in our moderate

sample size were relatively homogeneous in terms of their gender,

race, and ethnicity. Study participants were recruited from one elec-

trophysiology clinic, causing the risk of potential bias in generalizing

the findings related to engagement phenotypes to all patients with

AF. Additionally, this was a secondary analysis of a randomized,

controlled trial; participants may have been more engaged than in a

non-trial setting, thus biasing the resulting engagement phenotypes.

While participants received educational text messages during the

study which may have prompted use, participants did not receive

any explicit prompts or reminders to use the device during the trial.

Moreover, the sizes of the 4 phenotypes varied widely from 6 partic-

ipants in the High-Low phenotype to 52 participants in the

Moderate-Low phenotype. The imbalanced samples likely explain

the lack of differences we observed between these 2 phenotypes in

multinomial models. Finally, additional variables that may relate to

engagement were not measured, or not measured at multiple time

points, as this was a secondary analysis of data from a clinical trial

whose primary endpoints were not related to technology use or ac-

ceptance. Moreover, 6-month follow-up data were not used as there

was significant missingness, possibly because it required an in-

person visit. As such, most predictors were measured only at base-

line and failed to capture fluctuations in these constructs throughout

the 6-month study. This also made it challenging to generate hy-

potheses about potential reasons for differences in engagement be-

tween participants. In future work, capturing relevant predictor

variables with greater frequency using the same mHealth technology

may represent an opportunity to improve data completeness and

more accurately capture fluctuations in variables over time. Qualita-

tive investigations may also be useful in elucidating reasons individ-

uals adopt different engagement phenotypes.

CONCLUSION

Lack of sustained engagement with mHealth limits important poten-

tial uses of mHealth data but continues to be a poorly understood

phenomenon. By extending the concept of digital phenotyping to

characterize engagement, we constructed 4 engagement phenotypes

describing patterns of mHealth use among adults with AF over a 6-

month period. Moreover, we identified meaningful differences be-

tween individuals who adopted different patterns of use over time,

including many clinical variables. This study demonstrates that en-

gagement phenotypes are valuable not only in understanding and

possibly intervening upon engagement within a population, but also

by suggesting that engagement is an important variable to be consid-

ered in digital phenotyping work more broadly.
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