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Photoexcitation in solids brings about transitions of electrons/
holes between different electronic bands. If the solid lacks an
inversion symmetry, these electronic transitions support sponta-
neous photocurrent due to the geometric phase of the constitut-
ing electronic bands: the Berry connection. This photocurrent,
termed shift current, is expected to emerge on the timescale of
primary photoexcitation process. We observe ultrafast evolution
of the shift current in a prototypical ferroelectric semiconductor
antimony sulfur iodide (SbSI) by detecting emitted terahertz elec-
tromagnetic waves. By sweeping the excitation photon energy
across the bandgap, ultrafast electron dynamics as a source of
terahertz emission abruptly changes its nature, reflecting a contri-
bution of Berry connection on interband optical transition. The
shift excitation carries a net charge flow and is followed by a
swing over of the electron cloud on a subpicosecond timescale.
Understanding these substantive characters of the shift current
with the help of first-principles calculation will pave the way for
its application to ultrafast sensors and solar cells.
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In the modern theory of polarization, the spontaneous elec-
tronic polarization in a crystal is formulated as the quantum

phenomenon in terms of the geometric Berry phase (1, 2). The
spontaneous photocurrent in the polar crystals has also been
reviewed recently both in theory and in experiment. The shift
current (or shift photocurrent) due to the coherent shift of
electron cloud in real space is found to emerge via a difference in
the Berry connection between valence and conduction bands:
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where e is the elementary charge; Eexc and ωexc are the electric
field and angular frequency of excitation light, respectively; v12 is
the transition matrix element; Γ= 2π=τ is the scattering rate, e1
(e2) is the energy of the valence (conduction) band, and Z is the
Planck constant divided by 2π. Here, Rk is the gauge-
independent shift vector, with φ12 being the phase of v12 and a1
(a2) being the Berry connection –i< unkj∇kunk > of the valence
(conduction) band (3, 4). Historically, the shift current has been
discussed as an anomalous bulk photovoltaic/galvanic effect (5,
6) and described in several ways, including second-order non-
linear optics (7), kinetic theory (8), and Floquet formalism (3).
First-principles calculations with the above formalism have suc-
cessfully reproduced the experimentally observed spectral

features of the shift current in actual ferroelectric materials
(9). These quantum theories have clearly unveiled the shift cur-
rent of geometric-phase origin, which is now extended to the
cases of excitonic process (10) and spin current (11). Experimen-
tally, the shift current has been demonstrated in various systems
(12–16) and is proposed to be a major factor for realizing highly
efficient solar cells (17–19). Since the shift current initiates on an
interband photoexcitation, its dynamics is inherently ultrafast,
which was, in fact, observed recently (20).
When charged particles run in space, they radiate electromag-

netic waves. Thus, a pulsed photocurrent excited by subpicosecond
lasers leads to the generation of electromagnetic waves in the
terahertz-frequency range (21). This phenomenon is widely uti-
lized for terahertz light sources by comprising photoconductive
switches under the electric bias. Conversely, if we analyze the
temporal/spectral dynamics of the emitted terahertz waves, it is
possible to elucidate the dynamics of charges in a crystal with
subpicosecond time resolution, which cannot be attained by using
conventional electric circuits with electrodes. Such terahertz
emission spectroscopy has become a powerful tool to study the
ultrafast spontaneous photocurrent as exemplified in several
semiconductors and quantum dots (22–26). There are known to be
several electromagnetic wave sources in solids under pulsed
photoexcitation, such as optical rectification (OR) (27) and
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coherent phonons (28, 29). We refer to the OR with the below-
bandgap excitation as the “in-gap OR” hereafter (7).
In this study, we analyze terahertz spectra by using the procedure

of a factor analysis, enabling us to resolve electron dynamics of dif-
ferent origins. The excitation spectrum well follows that predicted by
the first-principles calculations. It is concluded that the shift current
dominates the photocurrent in antimony sulfur iodide (SbSI) when
excited above the bandgap, which relaxes with the time constant of
∼0.5 ps after transferring a portion of charges to the neighboring sites.

Results
SbSI is a prototypical ferroelectric semiconductor with a bandgap
of 1.9–2.0 eV and spontaneous polarization of ∼25 μC/cm2

(30, 31) proposed to be a candidate for the shift current solar
cell (32). The ferroelectric polarization appears along the c
axis, which is parallel to the quasi–one-dimensional struc-
tures (Fig. 1A) (33). Photovoltaic properties of SbSI have
been studied intensively (31, 34, 35). Sample preparation and
experimental setups are described in Materials and Methods.
Fig. 1B shows the representative terahertz waveforms emitted

from an SbSI single crystal on pulsed photoexcitation. When the
bulk polarization is reversed by an electric poling procedure, the
phase of the terahertz wave is perfectly reversed, indicating
the opposite current flow in the sample. The terahertz wave in-
tensity is found to be approximately five times as large as that
from a ZnTe (110) crystal, a prevailing terahertz source, mea-
sured under the similar setup. This terahertz emission can be
seen only below the transition temperature (TC = 295 K) (31),
and the temperature variation of its absolute amplitude (

ffiffiffiffiffiffiffiffiffi
ITHz

p
;

square root of the integrated power spectrum) nearly follows
that of the ferroelectric polarization (Fig. 1 C and D).
To uncover the photocarrier dynamics with and without Berry-

phase contributions, we perform terahertz emission spectroscopy
by scanning the excitation photon energy across the bandgap.

Fig. 2A compares the terahertz waveforms excited at 2.1 and
1.8 eV, just above and below the bandgap energy of SbSI
(interband and in-gap excitation, respectively).
It is seen that the interband excitation causes a delay of the

terahertz peak (∼220 fs) from the time 0, which is accompanied
by a prolonged dip in the end of the emission (extending to
∼0.5 ps) (indicated by a vertical arrow in Fig. 2A). The presence
or absence of the delay in the terahertz peak appears due to the
difference in the emission mechanism: the interband process,
ascribed to the shift current below, follows a real transition of the
electron cloud, whereas the in-gap excitation drives only a virtual
one (i.e., deformation of the wave function in the valence band).
Mathematically, this difference can be described by the varying
order of time derivatives for each process (7). Since the in-gap
OR comes from photoinduced polarization (P), while the shift
current is already a charge current on excitation, the relation j =
dP/dt shifts the peak between those two processes; if the main
frequency of the emitted signal is around 1.0 THz (SI Appendix),
the π/2-phase shift corresponding to the time derivative (or in-
tegration) leads to a 250-fs shift of the peak position.
By using the terahertz spectra measured by scanning the ex-

citation photon energy from 0.5 to 2.6 eV (22 points), we per-
formed a factor analysis (36). This technique was used to single
out a terahertz waveform from possibly mixed signals of multiple
origins, such as has been conventionally utilized in the analyses
of fluorescence photoresponse spectra (37). We found that all of
the spectra can be expressed by the two base waveforms shown in
Fig. 2B, which can be attributed to the cases of interband exci-
tation and in-gap OR (Fig. 2A). The corresponding photo-
response spectra, as second-order photoresponse, are shown in
Fig. 2C. The absolute value is deduced by using the terahertz
signals from the reference ZnTe crystal with known nonlinear
optical constants (38) and by taking the effective generation
length into account (SI Appendix). It is seen that the interband
excitation shows a photocurrent peak around 2.10 eV, whereas
the in-gap OR waveform diminishes above the bandgap. Con-
sidering the instrumental factors, the photocurrent generated by
interband excitation is found to be ∼500 times larger in density
compared with that of the in-gap OR. No signal was detected at
300 K (nonpolar state) (Figs. 1C and 2C, Lower), indicating that
the surface contributions and other extrinsic signals can be
neglected.
The experimental photocurrent spectra nearly quantitatively

follow that deduced from the first-principles calculation with the
Berry connection integrated (Materials and Methods), although
the fine structures above 2.2 eV are somewhat smeared out in
our experiment (Fig. 2C). Thus, we can ascribe the terahertz
wave emission for the interband excitation to the shift current,
whereas for the in-gap (virtual) one, we can ascribe it to the
conventional OR. We will further discuss the reasoning for this
assignment below.
In general, in-gap optical excitation induces deformation of

the wave function in polar crystals (7). Such induced polarization
follows the envelope of the excitation laser pulse (Fig. 3A), with
time derivative that leads to the transient charge current but not
to the net flow of current (i.e., its integral over time vanishes).
This current can also be a source of the terahertz emission (Fig.
2C), with the waveform following the second derivative of the
nonlinear polarization. By the shift current excitation, in con-
trast, the electron cloud transits in real space on the primary
process timescale. Subsequently, this charge shift relaxes in the
absence of optical field via several scatterings and radiative/
nonradiative transitions. Most importantly, a portion of charges
is left in the neighboring site on this relaxation, leading to a net
current flow that survives even after the integration over time.
Note that the scatterings are incorporated phenomenologically
as level broadening in Eq. 1, while some of the previous works
emphasize only the excitation process (5, 9).

A

C

B

D

Fig. 1. Emission of terahertz waves from SbSI. (A) Crystal structure of SbSI.
(B) Terahertz waves emitted from SbSI in the ferroelectric phase after ±Ps
poling (±2.0 kV/cm, respectively). (C) Temperature dependence of the ter-
ahertz waveform (offset for clarity). (D) Temperature dependence of the
terahertz intensity plotted together with the pyroelectric polarization. ITHz
stands for the frequency integration of the power spectrum in the Fourier space,
which is proportional to the square of the source current. Excitation photon
energy (Zωexc) is 2.3 eV (400 nJ), and photon polarization is EðωexcÞ k EðωTHzÞ k c.
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The respective carrier dynamics discussed above can be visu-
alized by integrating the terahertz waveforms. The experimen-
tally obtained carrier dynamics was fitted by

JðtÞ= 1ffiffiffiffiffi
2π

p
τr
exp

�
−t2

2τ2r

�
*
h
JshiftδðtÞ− JdecayuðtÞexp

�
−
t
τ

�i
, [3]

where the first part represents the incident laser pulse (τr = 55 fs
for the case of our 130-fs incident Gaussian laser pulse), δðtÞ is the
delta function, and uðtÞ is the step function (20). Fig. 3B illustrates
the retrieved transient current. The in-gap OR shows the wave-
form to be a derivative of the incident laser envelope (approxi-
mately of Gaussian form). In stark contrast, the shift current
appears with some delay and with a slow relaxation (swing over)
and carries the net current. The decay (scattering) time τ was
found to be ∼0.5 ps for SbSI by following Eq. 3. This decay time
is found to be nearly independent of temperature and incident
photon energy, except for the case near the bandgap energy
(Fig. 3D); thus, the impurity can be the source of scattering.
In materials without inversion symmetry, there can be an-

other mechanism generating spontaneous photocurrent. The
so-called ballistic current appears due to the asymmetric ex-
cited population in the momentum space through the photo-
excitation accompanied by asymmetric phonon scatterings (6,
39–41). We ascribe our observation predominantly to the shift
current from the following observations; the experimental
photoresponse spectrum is quantitatively comparable with

that from theory (Fig. 2C), and the decay time (∼0.5 ps) is
insensitive to the sample temperature (Fig. 3C). Thus, the
phonon-assisted asymmetric population process seems irrel-
evant in this case. We note that our previous study (35) also
points to the existence of shift current in SbSI by showing
that the pulsed photocurrent in SbSI appears constantly at
low temperatures. The intrinsic delay in the photocurrent
peak compared with the in-gap OR (Fig. 3 A and B) is also
consistent with the profile based on the simple analytical
model (7).
Eq. 1 indicates that the shift current shows a specific incident

power (jEexcj2) dependence. Fig. 4A displays the corresponding
experiment. The fitting to Eq. 1 yields v12 to be ∼2.9 × 104 m/s
for the scattering time τ of 0.5 ps. Fig. 4B represents the optical
conductivity spectrum σðωÞ of SbSI at 282 K. We used a
multiple-dipole model to analyze this spectrum (42), which is
also compared with the theoretical calculation (Materials and
Methods). The transition matrix element at 2.3 eV averaged by
three peaks vmean is estimated to be 2.0× 104m=s. This is very
close to the value evaluated above from the incident power
dependence. Note that a sublinear incident power dependence
has also been reported for GaAs (110) (43).
Lastly, we demonstrate the incident polarization depen-

dence. Fig. 5 compares the polarimetry of zero-bias photocurrent
evaluated by using a conventional electric circuit (35) with that of
the terahertz emission. The anisotropy can be discussed by fol-
lowing the motion of electron cloud on the chemical bonds (Fig.
5A). With the interband excitation at photon energy (Zωexc) of
2.3 eV (Fig. 5B), a finite shift current along the c axis runs into
the electrodes. Both the zero-bias photocurrent and terahertz
emission show sinusoidal polarization dependence with a maxi-
mum near 90° (Fig. 5 B and D), which is consistent with the
previous reports (31). In contrast, the zero-bias photocurrent is
absent for the in-gap excitation with Zωexc = 1.0 eV (Fig. 5C).
The terahertz emission for this case shows distinct polarization
dependence with a maximum near 0°. The terahertz emission

A C

B

D

Fig. 3. Transient nonlinear polarization and carrier dynamics. (A) Sche-
matics of the nonlinear polarization (P), transient current (J), and emitted
electric field (Eemit) for the shift current (Shift) and in-gap photoexcitation
(in-gap). The detected terahertz electric fields are further modified (Eobs)
due to the diffraction and instrumental factors. (B) Retrieved current dy-
namics for the shift current and in-gap photoexcitation. Solid lines represent
the fitting curves. Shift current accompanies a swing over (relaxation) of the
charge with a decay time of ∼0.5 ps, whereas the in-gap photoexcitation
appears only within the incident pulse duration. (C and D) Temperature and
incident photon energy dependence of the decay time τ. Excitation intensity
is 400 nJ, and photon polarization is EðωexcÞ k EðωTHzÞ k c.

A

C

B

Fig. 2. Action spectra of the shift current deduced by the factor analysis. (A)
Experimental terahertz waveforms for the excitation above and below the
band gap (offset for clarity). (B) Extracted base waveforms by using the
factor analysis (covariance matrix calculation) from 22 datasets. (C) Action
spectra of shift current (Shift) and in-gap OR at 282 and 300 K (below and
above TC, respectively). Error bars reflect the unique variance in the factor
analysis, which is smaller than the marker for the case of in-gap OR. The
result of the first-principles calculation is also shown. Excitation intensity is
400 nJ in the linear regime to the incident pulse energy, and photon po-
larization is EðωexcÞ k EðωTHzÞ k c.
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perpendicular to the c axis [EðωTHzÞ⊥ c] is found to be small for
both cases of excitation. The SbSI belongs to the C2v (mm2)
point group in the ferroelectric phase, with the second-order
photoconductivity [σð2Þijk ] tensors of the form

σð2Þijk =

0
BBB@

0 0 0

0 0 0

σð2Þcaa σð2Þcbb σð2Þccc

0 σð2Þaca 0

σð2Þbbc 0 0

0 0 0

1
CCCA. [4]

The nonlinear optical tensor [χð2Þijk ] has the same symmetry. By
fitting (Fig. 5 D and E), we can estimate the effective tensor
elements to be χð2Þcaa=χ

ð2Þ
ccc = 0.16, χð2Þaca=χ

ð2Þ
ccc = 0.07 for the in-gap ex-

citation (in-gap OR; Zωexc = 1.0 eV) and σð2Þaca=σ
ð2Þ
ccc = 0.09,

σð2Þcaa=σ
ð2Þ
ccc = 1.42 for the interband excitation (shift current;

Zωexc = 2.3 eV). Here, each tensor element includes Fresnel
factors, and we set a= b for simplicity. We speculate that the
observed enhancement of σð2Þcaa [=σð2Þcbb] in the shift current is re-
lated to the electron transition between S and I sites and that
between S and Sb sites (Fig. 5A) (44).

Conclusion
By analyzing the terahertz electromagnetic spectra radiated from
the photo-induced charge dynamics, we have uncovered the ul-
trafast shift current, including its relaxation. The intriguing
characteristics of the shift current, reflecting the Berry-phase
contributions in the electronic process, were traced with photo-
excitation under varying temperature, poling, excitation photon
energy, and photon polarization conditions. It is found that the
subpicosecond photocurrent shows a distinct transition from the
in-gap OR to the shift excitation in their time profile when
the excitation photon energy is crossing the bandgap; only the
latter carries a net current to the electrodes. The shift current
spectrum is found to be consistent with the band calculation in-
corporating the Berry connection. Understanding these features
of the shift current would materialize dissipationless ultrafast
electronic devices.

Materials and Methods
Single crystals of SbSI were grown by a physical vapor transport technique in
an evacuated quartz tube. The typical sample size was 5 mm (length) ×
0.5 mm (width) × 0.4 mm (thickness), with the crystal c axis parallel to the
longest orientation. Silver electrodes were attached along the c axis with
∼2-mm separation. The spot size of the excitation laser, penetration depth
of the light above the bandgap, and coherence length of the terahertz
emission are much smaller than the sample size.

The terahertz emission from SbSI single crystals was measured in reflection
geometry using a variable-wavelength laser (130 fs, 1 kHz, spot size ∼ 70 μm in
diameter) for excitation. A ZnTe (110) crystal (500-μm thickness) was used for
the electrooptic sampling to analyze the terahertz waveform. The samples
were mounted on a Peltier stage and poled before each measurement by
cooling through the transition temperature under the external electric field. A
reference ZnTe (110) crystal was mounted next to the sample to evaluate the
time 0 and instrumental functions of the terahertz waveform measurements.

The band structure of SbSI was calculated on the basis of the density-
functional theory with the localized atomic orbital basis and the full
potential as implemented in the full-potential local orbital code (45). The
exchange correlation functions were considered at the generalized gra-
dient approximation level (46). By projecting the wave function in atomic
basis into a reduced symmetric atomic orbital, like Wannier functions (Sb-
p, S-p and I-s, p orbitals), we constructed tight-binding Hamiltonians with
96 bands and computed the shift current response. The obtained second-
order photoresponse spectrum was shifted in energy (∼0.09 eV) due to the
underestimation of the bandgap and convoluted with the experimental
incident laser bandwidth (Fig. 2C). Note that there are several uncer-
tainties in the comparison between the theoretical and experimental
spectra; the ferroelectric polarization is not fully developed in the exper-
iment at 282 K, and the scattering is not included in the original shift
current formalism. It is reported, however, that the scattering does not
substantially affect the generation of shift current (47, 48). In Fig. 2C, the
experimental spectra were deduced from the peak amplitude of the ter-
ahertz wave (such as that in Fig. 1B) by following ref. 23.

Linear optical conductivity was derived by Kramers–Kronig transformation
of the reflectance spectrum. We used dipole model (42)

σαβðωÞ=−iZe2
X
m,n

fðenÞ− fðemÞ
en − em

ÆmjvαjnæÆn
��vβ��mæ

Zωexc − ðen − emÞ+ iZγ
, [5]

where ωexc is the angular frequency of incident photon; γ is the scattering
rate; n and m are the index of the excited and ground states, respectively;
α and β are the optical polarization; and v is the group velocity matrix
elements. For the corresponding data from the first-principles calculation,
the optical conductivity was limited to 2.7 eV due to the numerical
instability.

Direct photocurrent under light pulse (130-fs, 1-kHz) excitation was
measured by using a transimpedance amplifier (bandwidth of 200 MHz). The
signal was averaged 150 times with a digitizing oscilloscope.
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