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Abstract: Molecular iodine (I2) induces apoptotic, antiangiogenic, and antiproliferative effects in
breast cancer cells. Little is known about its effects on the tumor immune microenvironment.
We studied the effect of oral (5 mg/day) I2 supplementation alone (I2) or together with conventional
chemotherapy (Cht+I2) on the immune component of breast cancer tumors from a previously
published pilot study conducted in Mexico. RNA-seq, I2 and Cht+I2 samples showed significant
increases in the expression of Th1 and Th17 pathways. Tumor immune composition determined by
deconvolution analysis revealed significant increases in M0 macrophages and B lymphocytes in both
I2 groups. Real-time RT-PCR showed that I2 tumors overexpress T-BET (p = 0.019) and interferon-
gamma (IFNγ; p = 0.020) and silence tumor growth factor-beta (TGFβ; p = 0.049), whereas in Cht+I2

tumors, GATA3 is silenced (p = 0.014). Preliminary methylation analysis shows that I2 activates IFNγ

gene promoter (by increasing its unmethylated form) and silences TGFβ in Cht+I2. In conclusion,
our data showed that I2 supplements induce the activation of the immune response and that when
combined with Cht, the Th1 pathways are stimulated. The molecular mechanisms involved in
these responses are being analyzed, but preliminary data suggest that methylation/demethylation
mechanisms could also participate.

Keywords: molecular iodine; immune response; breast cancer

1. Introduction

The immune component of the tumor microenvironment is considered one of the key
players in prognosis and response to treatment [1]. In recent decades, the intratumoral pres-
ence of immune cell phenotypes has been associated with the prognosis of the disease. Thus,
cytotoxic lymphocytes (Th1 and CD8+), M1 macrophages, and their effector molecules are
considered favorable prognostic indicators [2], while immunomodulatory lymphocytes
(Th2, Treg) and macrophages (TAM-M2) are found in worse prognosis scenarios [3]. At the
molecular level, cytokines IL-1, IL-6, and tumor growth factor-beta (TGFβ) are associated
with tumor progression, whereas IL-12 and interferon-gamma (IFNγ) can inhibit cancer
proliferation and/or metastasis [4]. Immune cells can switch these secretion patterns from
one lineage towards another under certain circumstances, exhibiting phenotypic plastic-
ity [5]. This functional switch, or trans-differentiation, depends on epigenetic processes [6].
Methylation/demethylation of DNA is an epigenetic mechanism concerning the transfer or
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removal of a methyl group onto the C5 position of the cytosine. Methylation regulates gene
expression by recruiting proteins associated with gene repression or inhibiting the binding
of transcription factors to DNA [7]. Conversely, active demethylation allows gene activa-
tion [6]. In the antitumor immune response, demethylation of the IFNγ locus activates the
transition from naïve to memory CD8+ T cells, promoting increased IFNγ secretion [8].
Some dietary compounds can modify cancer progression, and over the past decade, numer-
ous micronutrients have demonstrated activity as epigenetic modulators [9]. Molecular
iodine (I2) exerts antineoplastic effects on different cancer models [10,11], whereas in its
non-oxidized form, like iodide (I-) or thyroid hormones (T4), it is not able to achieve these
effects [12]. In cancer cells, I2 could act as a “mitocan” agent (acronym for mitochondria
and cancer) by depleting thiol reserves or disturbing the mitochondrial membrane potential
(Mmp), thereby inducing apoptotic pathways [13]. Additionally, this chemical form of
iodine is an effective antioxidant, even tenfold more effective than ascorbic acid [14]. More-
over, I2 exhibited indirect antitumor activity by generating 6-iodolactone (6-IL) through the
iodination of arachidonic acid. This iodolipid is an active ligand of peroxisomal-activated
receptor type gamma (PPARγ), inducing re-differentiation by inhibiting stem signaling
and triggering apoptosis [15]. In addition, I2 supplementation exerts effects on the immune
system, acting as a direct genetic modifier [16] or as an attractor, increasing the amount
of CD8+ lymphocytes within the tumor [17]. We previously demonstrated in a breast
cancer pilot study that I2 supplementation exerted adjuvant effects when combined with
conventional chemotherapy, reducing the residual tumor size, and increasing disease-free
survival [17]. The RNA-seq analysis showed that I2-treated tumors exhibited significant
activation of Th1, NK, and CD8 cytotoxicity pathways [17]. In the present study and
using the same transcriptomic bank, we analyzed I2 and the chemotherapy treatment (Cht)
in the immune scenario. We describe the epigenetic patterns of immune effectors at the
methylation and demethylation level.

2. Materials and Methods
2.1. Mammary Tumors

Tumors were collected as part of a pilot study registered at Clinicaltrial.gov (NCT03688958).
Briefly, two pilot study groups were established based on the stage of cancer diagnosed:
Early (stage II) and Advanced (stage III) breast cancer groups. Thirty patients were
randomly assigned (double-blind) to receive either molecular iodine (I2; 5 mg/day) or
a placebo (vegetable colored water) for 7–35 days (as determined by the preoperative
oncologist’s protocol). In the Advanced group, 30 patients were randomly (double-blind)
divided into the I2 or placebo groups, and both groups received 4–6 cycles of neoadjuvant
chemotherapy (Cht; 5-fluorouracil/epirubicin/cyclophosphamide or taxotere/epirubicin).
Daily, after breakfast, I2 or placebo was diluted in drinking water. During the surgical
procedure, the tumor sample was kept in dry ice to avoid degradation and stored at −80 ◦C
until further analysis.

2.2. RNA-Seq and Transcriptomic Analysis

Detailed constructions and all specific data analyses, including pathway and up-
stream regulator prediction, as well as all other analyses involving the transcriptomic
data, can be found in protocols.io [18]. Briefly, total RNA was extracted with Qiazol and
RNeasy (both from Qiagen, Valencia, CA, USA). Two different pools of four individual
tumor samples were used. As a normal control, we used a pool of two normal mammary
gland samples from aesthetic surgeries (volume reduction). Poly-A enriched mRNA was
used to construct stranded mRNA-Seq libraries following the manufacturer’s instructions
(KAPA Biosystems). Sequencing was carried out at Duke University Genome Sequencing
Shared Resource Center (Durham, NC, USA). The libraries were sequenced on an Illumina
HiSeq 2500 platform, in which 101 bases were determined in pair-end mode. Data were
assessed for quality and trimmed with FastQC (Version number 0.11.7, Cambridge, UK)
and Trimmomatic (Version number V0.32, Mühlenberg, Germany), respectively. Reads
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were mapped to the human genome (GRCh38), and expression levels were determined
by htseq-count. Differential expression analysis was performed using Fisher’s exact and
Benjamini–Hochberg (FDR) tests. Genes that were altered at least 2-fold or less than 0.5-fold
with an FDR value equal to or lower than 0.05 were considered biological and statistically
significant. The complete annotated sequences from the RNA-sequencing are available
at the European Nucleotides Archives website (https://www.ebi.ac.uk/ena/erp110028)
(accessed on August 2019).

2.3. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed with Webgestalt (2013, Hous-
ton, TX, USA) and GSEA with the following parameters: Organism of Interest: hsapi-
ens; Method of Interest: GSEA; Functional Database: pathway, Kegg; Select Gene ID
Type: genesymbol. Annotation of genes with immunological function was done with the
Gene Ontology Consortium (wiki.geneontology.org/index.php/Immunology) (accessed
on June 2018). The 1325 most relevant immune genes were selected.

2.4. Th1 and Th2 Differentiation Genes

Genes known to be involved in CD4+ T cell differentiation towards Th1 or Th2 cells
were obtained from public datasets (KEGG hsa04658, R&D systems Pathways) and were
analyzed in our differential expression gene sets.

2.5. Deconvolution Analysis

Deconvolution studies were performed with CIBERSORT [19], which accurately quan-
tifies the relative levels of different types of immune cells within a complex mixture of gene
expression, and we used GED-IT to predict the cell type composition of tissue samples. We
also used ICTD to deconvolute and identify immune cells [20].

2.6. Real Time RT-PCR

Gene expression was quantified with the real-time quantitative polymerase chain re-
action (qPCR) method previously described [21]. Total RNA was obtained according to the
protocol described by the manufacturer (TRIzol reagent, Life Technologies, Inc., Carlsbad,
CA, USA). Messenger RNA (2 mg) was reverse transcribed using oligo-deoxythymidine
primers. Each PCR was done using a specific pair of oligonucleotides detailed in Table S1.
A Rotor-Gene 3000 apparatus (Corbett Research, Mortlake, NSW, Australia) was em-
ployed to perform qPCR with a marker for DNA amplification (SYBR Green, Fermentas,
Burlington, ON, Canada). Gene expression was calculated by the 2-DDCT method and
was normalized to the housekeeping gene β-actin. Table S1 shows the oligos used for
these amplifications.

2.7. Immunohistochemistry

The tumor tissues were cut into sections of 4 µm and treated with 3-aminopropyl-
triethoxysilane for subsequent staining with hematoxylin and DBA or with specific
antibodies for T-BET and IFNγ. Quantification of lymphocytes or positive-stain cells
was performed using ImageJ software (Version 1.41, NIH, Bethesda, MD, USA) from
three different sections of each tumor at 40× and 63×. We analyzed three tumors per
experimental group.

2.8. Methylation-Specific PCR

Tumor DNA extraction and purification (Quick-DNA Miniprep Plus Kit, Zymo, CA,
USA and DNA Clean & Concentrator-25, Zymo, CA, USA) was performed following the
manufacturer’s instructions. Subsequently, the DNA was subjected to sodium bisulfite
transformation (EZ-96 DNA Methylation MagPrep, Zimo, CA, USA). Promoter regions
with CpG islands (FASTA and Methprime) were identified, and differential oligos for IFNγ

and TGFβ were generated for these M&U regions (Tables S2 and S3). Amplification was

https://www.ebi.ac.uk/ena/erp110028
wiki.geneontology.org/index.php/Immunology


Biomolecules 2021, 11, 1501 4 of 10

performed with both oligos together with the housekeeping gene MLH-1 in endpoint
PCR. Subsequently, a nested q-PCR was performed using 4 µL of the product of the first
amplification. Relative gene expression was calculated by the 2-DDCT method and was
normalized to the housekeeping gene MLH-1.

2.9. Statistic Analysis

Differential expression analysis for RNA-Seq was performed using Fisher’s exact and
Benjamini–Hochberg (FDR) tests. Genes that were altered at least 2-fold or less than 0.5-fold
with an FDR value equal to or lower than 0.05 were considered biological and statistically
significant. Individual gene expressions and methylated/unmethylated amplicon amounts
were analyzed with Student’s t-test between treatment and control samples. p-values less
than 0.05 were considered statistically significant.

3. Results
3.1. Supplementation with I2 Increases the Immune Pathways Associated with an Antitumor Response

We first evaluated the expression level of genes involved in the immune response in
the early and advanced tumors as compared with the normal tissue controls. As shown in
Figure 1, regardless of tumor stage, I2 supplementation activates Th1 and Th17 antitumor
differentiation pathways, T receptor cells, NK cytotoxicity, B cell receptor, and antigen
processing/presentation. The color kay showed a genetic overexpression at least two times
higher in advanced tumors (Ch+I2) than in early-stage tumors (I2).

Figure 1. Immune pathways activated by iodine supplementation. The expression of genes in the I2

group correspond to early-stage tumors and those of the Cht+I2 group correspond to the advanced-
stage tumors.A color scale (color key) specific for each pathway is depicted. The overexpressed genes
for each pathway are shown in the right axis of each heatmap.
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3.2. I2 Increases the Intratumoral Ratio of Antigen-Presenting Macrophages/Dendritic Cells in
Early-Stage Tumors and B Lymphocytes in the Advanced Stage

To identify the immune cell composition of the infiltrate, we conducted a deconvo-
lution analysis with the CIBERSORT and ICTD algorithms. The analysis was carried out
on two pools (5 or 6 different samples in each pool) for each experimental group and
very similar results were observed in each pool-group. Both software programs showed
an increased relative percentage of macrophages-dendritic cells in early tumor samples
(placebo and I2). In advanced tumor samples (Cht and Cht+I2), both software programs
concur with an increasing of CD4 T and B cells global relative percentage (Figure 2A,B).
When analyzing the effect of the I2 supplement on the proportions of intratumoral immune
cells, different results were found depending on the software applied. The CIBERSORT
analysis (Figure 2A) showed an increase in the relative number of macrophages M0, while
ICTD interpreted this increase as dendritic cells in early stages (Figure 2B). In the case of
advanced-stage tumors, supplementation with I2 increased the fraction of B cells, pointing
to an activation of the tumoral response in the presence of both components (Cht+I2).

Figure 2. Deconvolution analysis of the relative composition of immune cells from two different
pools of samples of each group. (A) Deconvolution performed with CIBERSORT. (B) Deconvolution
obtained with ICTD. In both panels, Control bar corresponds to the non-cancer tissue (normal breast
sample pool), placebo and I2 correspond to early-stage tumors and Cht and Cht+I2 to those in
advanced stages. The composition of the immune infiltrate is color-coded and presented on the right
side of each panel.

3.3. I2 Activates Th1 Differentiation in the Early Stages of the Disease, While in Advanced Stages
It Suppresses Th2 Differentiation

To corroborate the results obtained with the RNA-seq experiments, individual tumor
samples were used to analyze markers of the cytotoxic IL12RB1, T-BET, IFNγ, and onco-
genic GATA3 and TGFβ inducers. Figure 3 shows that I2 supplementation is accompanied
by a significant increase in the expression of T-BET and IFNγ, and by the repression of
TGFβ in early-stage tumors (I2). In advanced-stage tumors, I2 generates a decrease in the
Th2 polarization marker GATA3 (Cht+I2). These data indicate that the presence of iodine
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at any stage induces an oncogenic polarization through Th1. The overexpression of T-BET
and IFNγ was also detected at the protein level in tumor tissues of early-state patients
supplemented with I2 compared to placebo (Figure 4).

Figure 3. Gene expression of tumor suppressor cytotoxic and oncogenic inducers in individual
samples. Expression was measured at the mRNA level by RT-qPCR. Data represent mean ± SD
of three independent experiments from three individual samples. Significant values correspond
to a Student’s t-test between I2 and its respective control group (* p < 0.05, ** p < 0.01). P: Placebo;
I2: Iodine; Cht: Chemotherapy and Cht+I2: Chemotherapy and Iodine.

Figure 4. Protein expression of T-BET and IFNγ in individual samples of tumor tissue from early-
stage patients (P; Placebo, I2; iodine). Data represent mean ± SD of three independent immunochem-
istry experiments from three individual samples. Student’s t-test ** p < 0.05.

3.4. I2 Modifies the Epigenetic Landscape Activating Antitumor Gene Promoters Expression and
Silencing Oncogenic Genes

To further investigate the molecular mechanisms of I2 in the tumors, we evaluated
the methylation status of IFNγ and TGFβ gene promoters with specific primers for the
unmethylated (active) and methylated (inactive) states. Figure 5A shows that in early-stage
tumors (placebo and I2), there were no significant differences between unmethylated or
methylated forms. In contrast, in the advanced-stage tumors, the presence of chemotherapy
is accompanied by the absence of active IFNγ (unmethylated) and a significant number
of active forms of TGFβ (unmethylated). In these conditions, the presence of I2 (Cht+I2)
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showed changes through the highest levels of active IFNγ (p > 0.051) and a total suppression
of TGFβ (undetectable amount of unmethylated form; <0.049). These patterns become
more evident when we analyze the unmethylated/methylated index (division between
the mean of unmethylated/methylated amplicons of each group; Figure 5B), showing
that in tumors that were supplemented with both components (Cht+I2), I2 redirected the
activation of the Th1 antitumor pathway through epigenetic mechanisms.

Figure 5. Methylation pattern of IFNγ and TGFβ gene promoters. (A) Amplification of the promoters
(qPCR) of Unmethylated (U) or Methylated (M) forms in individual samples. The quantification
was normalized by the expression of the housekeeping gene MLH-1. Left panel stage II and right
panel stage III. (B) Unmethylated/Methylated index (means division) of each gene. Cntrl, control;
I2, iodine; Cht, chemotherapy; Cht+I2, Chemotherapy plus iodine. Student’s t-test * p < 0.05.

4. Discussion

Avoiding immune destruction and tumor-promoting inflammation in the tumor mi-
croenvironment are hallmarks of cancer initiation, and the immune component plays
a key role in progression and metastasis [22]. Recognition of the critical importance of
the microenvironmental component has resulted in a shift in therapeutic strategies, plac-
ing greater emphasis on treatments that include its modulation. While CAR-T cells and
CTLA-4 and PD-1 blocking therapies are currently the most effective ways to reactivate the
antitumor immune system, other components, some of natural origin, can reactivate the
antitumor immune system and improve conventional therapies [23].

Molecular iodine is a micronutrient that shows antineoplastic properties in preclinical
and clinical studies of breast cancer [10,24,25]. The mechanisms of action include direct
antioxidant actions such as scavenging ROS and modulating mitochondrial functionality,
as well as indirect actions activating PPARγ receptors, triggering apoptosis, and cell
redifferentiation [13,17,26–28]. In a previous analysis of this protocol, it was demonstrated
that the I2 supplement plus chemotherapy generated the best antitumor response (smaller
tumor size and cancellation of chemoresistance) and increased the disease-free survival
from 63 to 92% in five years in patients who received the I2 supplement before and after
surgery [17]. Transcriptomic analysis showed that I2 promoted the antitumor response
(Th1), increasing the presence and cytotoxic activity of intratumoral NK and CD8 + cells.
In the present work, the specific analysis of the immunological profile showed that I2
generally activates both the anti-oncogenic and oncogenic immune pathways (Th1, Th17),
and that the presence of chemotherapy enhances the antitumor effect of I2, as the response
scale in these tumors (Cht+I2) was more than double.
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Deconvolution analysis showed that I2 increases the amount of M0 (or dendritic cells)
and B lymphocytes, corroborating the preponderance of the antitumor response. The two
subtypes of augmented B cells were naïve B cells and memory B cells. Activated naïve
B cells have been shown to promote Th1 polarization [29], while memory B cells can
mount a rapid antibody response, effectively controlling tumor growth [30]. Lymphocytes
and macrophages are highly plastic cells that can change their phenotype in response
to their microenvironment [31,32]. Increased IFNγ synthesis has been associated with a
better prognosis both by the inhibition of Th2 and M2 oncogenic immune polarization [33]
and by decreased angiogenic capacity [34]. Our results not only show an increase in the
mRNA expression and protein content of IFNγ, but also the upstream activation of the Th1
pathway via expression of T-BET, which is the main regulator of IFNγ. T-BET (encoded
by TBX21) is an immune cell-specific member of the T-box family of transcription factors.
It is expressed in a variety of immune cells, including dendritic cells, NK, CD4+, and
CD8+, B cells, and a subtype of Tregs. T-BET+ cells function as antitumor lymphocytes by
enhancing the production of cytokines such as IFNγ [35]. Previous studies have shown
that the presence of intratumoral T-BET+ lymphoid cells correlate with a good prognosis in
all breast cancers [36]. We discovered that the Cht+I2 combination not only promotes Th1
expression patterns in advanced-stage tumors, but also induces the silencing of key Th2
players such as GATA3. This transcription factor plays a critical role in the development of
T cells in the thymus. Moreover, GATA3 controls the differentiation of naïve CD4 T cells
and induces remodeling of the chromatin loci of Th2 cytokines and is an active repressor
of IFNγ expression [37]. The mechanisms by which I2 induces this transdifferentiation
effect in the tumor microenvironment have received scant attention. However, it is well
described that immune modulation components are regulated by epigenetic mechanisms,
where natural factors derived from the diet could take part [6,38]. In fact, in cancer progres-
sion, many of the changes in expression patterns are regulated at the epigenetic level by
methylation/demethylation in gene promoters [39]. Recently, ascorbic acid has received
great attention since this micronutrient participates as a cofactor of TET enzymes (ten
eleven translocations) involved in histone and DNA demethylation and, therefore, in the
epigenetic regulation of gene expression [40]. TET proteins convert 5-methylcytosine (5mC)
to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC), and finally to 5-carboxytosine
(5caC). Then, 5fC and 5caC are replaced by cytosine by base cleavage repair machinery [41].
Ascorbic acid increases TET-dependent 5hmC production and induces cytosine demethy-
lation in mammals [42]. Furthermore, in a lymphoma mouse model, the intratumoral
epigenome revealed a global increase of 5hmC after ascorbic acid treatment in the presence
of PD1, suggesting a direct effect of ascorbic acid on CD8+ T cells and their cytotoxic
function [43]. Interestingly, I2 exerts antioxidant effects in the same way as ascorbic acid
does, by producing electrons, and in ferric reactions that measure its capacity, I2 is 10 times
more potent than ascorbic acid [14]. To the best of our knowledge there are currently no
studies examining the role of I2 in the functionality of TETs. In conclusion, the preliminary
findings from this study indicate that I2, when used in conjunction with conventional
chemotherapy, induces immune activation and redirects the response to the Th1 pathway
through methylation and demethylation mechanisms.
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Bisulfite conversion).
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